

Industrial Data ISSN: 1560-9146 ISSN: 1810-9993

industrialdata@unmsm.edu.pe

Universidad Nacional Mayor de San Marcos

Perú

Aldea Molina, Andrea Lizzeth
Influencia del rediseño de los procesos productivos de una
empresa de envolturas flexibles basado en la mejora continua
Industrial Data, vol. 24, núm. 1, 2021, -Julio
Universidad Nacional Mayor de San Marcos
Lima, Perú

DOI: https://doi.org/10.15381/idata.v24i1.19616

Disponible en: https://www.redalyc.org/articulo.oa?id=81668400001

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Industrial Data 24(1): 7-22 (2021) DOI: https://dx.doi.org/10.15381/idata.v24i1.19616 ISSN: 1560-9146 (Impreso) / ISSN: 1810-9993 (Electrónico) Facultad de Ingeniería Industrial - UNMSM

Influencia del rediseño de los procesos productivos de una empresa de envolturas flexibles basado en la mejora continua

Andrea Lizzeth Aldea Molina 1

RECIBIDO: 12/12/2021 ACEPTADO: 13/04/2021 PUBLICADO: 26/07/2021

RESUMEN

La empresa en estudio pretendía disminuir los índices de scrap de cada proceso de la producción de envolturas flexibles, originados como resultado de malos procedimientos, devoluciones internas, bobinas y/o fardos observados. Asimismo, se esperaba una reducción de reclamos como resultado de la mejora en la calidad del producto terminado. Al reducir el scrap en cada proceso de la división de plásticos, se observó una disminución en los reprocesos y costos, lo que a su vez tuvo un impacto positivo en los ingresos de la empresa, dado que al brindar un producto con altos estándares de calidad se fidelizó a los clientes. Además, se mejoró la eficiencia de los procesos de las áreas de extrusión, impresión, corte, laminado y sellado. Al poseer procedimientos y procesos estandarizados, se mejoró el tiempo de ejecución de los mismos, lo que originó una mejor imagen antes los clientes y competidores.

Palabras clave: procedimientos; reproceso; cliente; reclamo.

INTRODUCCIÓN

La presente investigación tiene como propósito servir de base para investigaciones de vanguardia, académicas o de utilidad social que beneficien a:

- Investigadores, estudiantes y personas que se encuentren interesados en la mejora continua de procesos, pues se destacan los aspectos más relevantes.
- Accionistas y colaboradores de la empresa, pues se obtienen mejores márgenes de utilidad.
- Clientes, pues se observa un bajo índice de producto no conforme.
- Competidores, pues se recomiendan mejoras para la disminución del *scrap*.

Este artículo busca ser un instrumento de evaluación que aporte conocimiento sobre los factores que influyen en la generación del *scrap* y sus consecuencias, así como sobre el patrón de comportamiento que presentan dichos factores. Este trabajo es una propuesta de investigación para todas las partes interesadas en la obtención de procesos eficientes que generen bajos índices de *scrap*.

Asimismo, la presente investigación da a conocer el rediseño de los procesos basado en la mejora continua, por medio de la evaluación y ejecución de:

- Plan de autocontrol en la producción
- · Análisis de causa-raíz del producto no conforme
- Establecimiento de acciones correctivas

Se pretende conocer además cómo, mediante la elaboración del plan de autocontrol de la producción en cada proceso, se reducirán los índices de *scrap* generado en los procesos de la división de producción plásticos.

ORCID: https://orcid.org/0000-0002-0118-971X
Autor de correspondencia: alizaldeamolina@gmail.com

Ingeniera industrial por la Universidad Alas Peruanas. Actualmente, es consultora independiente. (Lima, Perú).

ANTECEDENTES

Fernández y Ramírez (2017) presentaron un método de mejora apoyado en la gestión de procesos para ampliar la productividad, muy similar al que se desarrolla en la investigación propuesta en este documento.

Cáceres (2017) identificó que la implementación de la mejora continua optimiza los procesos del área en un almacén de productos electrónicos y, de este modo, eleva su productividad.

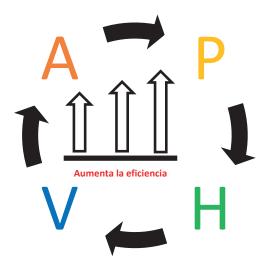
Gutiérrez y Vega (2019) elaboraron un plan de mejora en el área de producción para incrementar la productividad y concluyeron que la estandarización de procedimientos es elemental para la elaboración de un plan de mejora.

Eficiencia

Para De Asís (2007), la eficiencia es el uso óptimo de los recursos de manera que no se produzca el despilfarro de estos. Con la frase del autor se entiende que la eficiencia de una empresa, producto o persona depende de su capacidad para obtener resultados óptimos minimizando el impacto económico de los recursos. Por esto, es necesario que el gestor de la empresa conozca al detalle los procesos que intervienen en la organización; además, debe contar con planes estratégicos de mejora en cada área de la empresa.

Mejora continua

Chang (1996) proporciona una guía metódica que se utiliza para la obtención de importantes mejoras


en los procesos que suministran productos y servicios a los clientes. Al recurrir a la mejora continua, se observan minuciosamente los procesos y se obtienen maneras de mejorarlos. Se busca que el resultado sea más rápido, que se perciba una mejora y que sea más eficiente o efectivo para producir un servicio o producto.

La mejora continua de los procesos es la creación de metodologías (procedimientos, monitoreos, mediciones de desempeño, etc.) que se centren en la exploración continua de los inconvenientes que aparecen en la organización; además, la mejora continua procura optimizar el producto o servicio que provee la organización, de modo que resulte en la satisfacción del cliente, reducción de costos y racionalización de recursos.

La Figura 1 ilustra de manera gráfica el concepto expuesto en el párrafo anterior.

Producción

D'Alessio (2004) menciona que la producción abarca el planteamiento, el diseño, la operación y el control de los sistemas que elaboran bienes y servicios. Esta comprende además un amplio rango de procesos productivos que generan valor añadido al producto o servicio. Por su parte, Everett y Ronald (1991) señalan que la producción involucra la transformación de insumos o materia prima de un producto. Los autores coinciden en que la producción está relacionada con la generación de mercancías o actividades que comprendan un conjunto de funciones, tangibles o intangibles, para la satisfacción del cliente. Además, subrayan

Figura 1. Esquema de mejora continua. Fuente: Elaboración propia.

cómo se interconectan las fases de la producción para la obtención del bien o servicio.

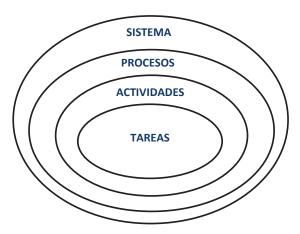
Producción es el resultado de actividades donde se obtiene un *bien* o *servicio* y, con ese fin, cada proceso ejecutado adiciona un valor agregado.

Procesos

Martín y Martín (2013) indican que los procesos son el conjunto de actividades que manipulan las entradas y salidas. Tener mapeados, definidos y controlados los procesos permite conocer el trabajo desarrollado en la organización y, por tanto, da la oportunidad de seguir practicando la mejora continua. En el proceso hay ingresos y salidas. Los ingresos son los insumos o materias primas relevantes para la elaboración de las actividades que conforman el proceso; mientras que las salidas están conformadas por el producto y las mermas que se producen. Además, dan a conocer la importancia del control del proceso en la optimización de las actividades de la organización.

Para García (1998), el proceso se origina de una situación inicial conocida que se desea llevar a una situación final también conocida, pero en el transcurso se presentan una serie de barreras o impedimentos, que deben ser resueltos mediante la realización de operaciones. El autor destaca que entre el inicio y final del proceso surgen imprevistos que deben ser examinados y mitigados; es necesario identificar y conocer todas las actividades del proceso, pues solo así se determinarán los procedimientos necesarios para su inspección, para esto, es crucial que el analista conozca los procesos involucrados.

Alarcón (1998) menciona que un proceso es un grupo de actividades que, con el ingreso de insumos,


crea un producto de valor para el cliente. Dichas actividades están relacionadas entre sí y finalizan con la entrega del producto o servicio.

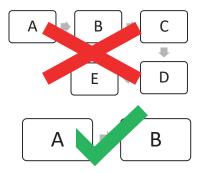
En el párrafo anterior se recalca que las actividades que se realizan para la obtención de un producto o servicio deben estar estrechamente interconectadas y ser afines, de modo que puedan generar el valor agregado que debe contener cada etapa de su producción.

Por otro lado, Chiavenato y Sapiro (2011) manifiestan que los procesos son los medios que permiten obtener resultados. Son conjuntos de actividades que utilizan recursos para transformar materiales o materia prima en productos. Se debe considerar que la administración por procesos crea una dinámica de mejora continua para que las organizaciones obtengan ganancias significativas en términos de desempeño, eficiencia, eficacia y costo.

En el enunciado anterior se mencionan las salidas o resultados de los conjuntos de actividades; para obtener estos resultados se utilizan entradas. Además, menciona también el concepto de administración por procesos y cómo está orientado a generar una cultura de optimización de procesos para una mejor productividad organizacional.

Del mismo modo, Pérez (2010) señala que se trata de un conjunto de actividades congruentes entre ellas, que transforman los elementos de entrada en salidas con un valor agregado. Además, considera que los procesos son una secuencia ordenada de actividades repetitivas cuyo producto tiene valores importantes para los clientes. La Figura 2 ilustra este concepto.

Figura **2**. El conjunto detallado del sistema y procesos. Fuente: Pérez (2010), Gestión por Procesos p.52.


Los procesos deben contar con una secuencia de tareas, las cuales tienen una interacción definida; además, el conjunto de tareas nos lleva a desempeñar las actividades necesarias para obtener un producto final con el valor requerido por el cliente.

Rediseño de procesos

Alarcón (1998) menciona que una comprensión elemental y profunda de los procesos que proporcionan valor agregado según los clientes es fundamental para conseguir un rediseño completo de los procesos e implementar una modificación notable de los mismos para obtener mejoras drásticas. De este modo se logra mejorar el rendimiento (costes, calidad, servicio, productividad, rapidez, etc.). Además, el propósito del trabajo y las estructuras del negocio varían al mismo tiempo, de tal manera que permiten determinar la idoneidad de la implementación de nuevas estrategias corporativas.

El rediseño del proceso solo puede concretarse si se conoce a fondo cada una de las actividades indispensables para la producción; decidirse por el cambio puede, aunque no necesariamente, implicar invertir grandes montos, pero a la larga los beneficios son mayores respecto a lo invertido.

El rediseño de procesos se explica de forma sencilla y gráfica en la Figura 3.

Figura 3. Definición de rediseño de procesos. Fuente: Elaboración propia.

METODOLOGÍA

El diseño de la investigación es de tipo cuasi-experimental de series temporales, ya que se desarrollan al paso de varias observaciones sobre una o más variables en el momento pretest y postest. A continuación, se presenta el esquema utilizado:

O1 O2 O3 X O4 O5 O6

En donde:

O: son las observaciones realizadas en el momento pretest y postest.

X: es la implementación de la variable independiente.

El tipo de investigación presenta un enfoque cuantitativo y experimental porque se procederá a recolectar datos para la comprobación de la hipótesis, apoyándose en la medición de las variables y en la manipulación de una variable independiente.

Las unidades de análisis son las órdenes de producción (OP) generadas en la empresa en estudio y los reportes estadísticos obtenidos de la data histórica, considerando como pretest el año 2014 y el postest el año 2019 para cada uno de los procesos.

Se debe considerar que se realizó el rediseño de los procesos basado en la mejora continua, mediante la evaluación y ejecución de:

 Análisis de causa-raíz del producto no conforme

Se definieron las causas de los defectos de producción en cada proceso (extrusión, impresión, laminado, corte y sellado) en conjunto con los jefes de área y/o supervisores de turno (exmaquinistas sénior).

· Establecimiento de acciones correctivas

Se determinaron las acciones correctivas para las causas de los constantes defectos que producían el incremento de los índices de *scrap*. Fueron necesarias acciones para las maquinarias, métodos, mano de obra, materiales, etc.

Plan de autocontrol en la producción

Se determinó el listado de defectos que se pueden originar en cada proceso, y se procedió a capacitar a los colaboradores al respecto, de acuerdo a las áreas donde ellos se encontraban involucrados. Además, se determinó que la frecuencia de estas capacitaciones tendría que ser trimestral.

 Se elaboró, conjuntamente con el área de sistemas, el módulo de producto observado y se mejoró el módulo de devoluciones internas para que los colaboradores registren en el ERP de la empresa los kilos de la producción que se encuentre defectuosa. Esto sinceraba los porcentajes de *scrap*.

Se procederá a evaluar los reportes de la cantidad de *scrap* de cada proceso. El cálculo del porcentaje de *scrap* anual se realiza con la siguiente fórmula:

Porcentaje de scrap anual

Kg. de Scrap

(Kg. de proceso anual + Kg. scrap anual + Kg. chancaca anual)

Nota: Esta fórmula se replica en los demás procesos. La chancaca solo se considera para el proceso de extrusión, se omite para los otros procesos.

Las OP por proceso en el pretest y postest son presentadas a continuación en la Tabla 1.

A continuación, se enuncia la hipótesis de investigación:

"Mediante la generación del plan de autocontrol de la producción en cada proceso, se reducirán los índices de *scrap* generado."

La variable de esta hipótesis son los índices de *scrap*, cuyo indicador a analizar en los procesos involucrados en la empresa en estudio (extrusión, impresión, corte, laminado y sellado) es el porcentaje de *scrap*.

A continuación, se enuncian las hipótesis estadísticas válidas para los procesos de extrusión, impresión, corte, laminado y sellado:

$$H_0: \pi_1 = \pi_2$$

 $H_1: \pi_1 > \pi_2$

a: 0.05

RESULTADOS

Extrusión

Los índices de *scrap* de extrusión son presentados a continuación en la Tabla 2.

La prueba de hipótesis utilizada fue la Z de proporciones y fue realizada en R. Se obtuvo el siguiente resultado:

Prueba de proporciones de 1 muestra con corrección de continuidad

Data: 348667 de 10277944, probabilidad nula 0.0343

X-cuadrado = 43901, gl = 1, p-valor = 1.727e-11

Hipótesis alternativa: *p* verdadera es menor que 0.0343

Intervalo de confianza del 95%: 0.00000000 0.03401686

Estimaciones de muestra: p 0.03392381

Con base en la obtención del p-valor 1.727e-11, se rechaza la H_0 y se acepta la H_1 que afirma que el porcentaje de scrap en el proceso de extrusión se ha reducido.

Impresión

Los índices de *scrap* de impresión son presentados a continuación en la Tabla 3.

La prueba de hipótesis utilizada fue la Z de proporciones y fue realizada en R. Se obtuvo el siguiente resultado:

Prueba de proporciones de 1 muestra con corrección de continuidad

Data: 229219 de 8201515, probabilidad nula 0.0267

X-cuadrado = 491.79, gl = 1, *p*-valor = 1

Tabla 1. Cantidad de OP.

Año	Extrusión	Impresión	Corte	Laminado	Sellado	
	No. de OP					
2014 (pretest)	3231	3182	1775	929	1704	
2019 (posttest)	3380	3054	1689	771	3380	

Fuente: Elaboración propia.

Tabla 2. Índices de scrap de extrusión.

Año	Kg. de proceso	Kg. scrap proceso	Chancaca	% de <i>scrap</i> anual	N.° de OP
2014 (pretest)	14 360 612.30	511 085	21 062.30	3.43%	3231
2019 (postest)	9 911 682.92	348 667.20	17 594.20	3.39%	3380

Fuente: Elaboración propia.

Hipótesis alternativa: *p* verdadera es menor que 0.0267

Intervalo de confianza del 95%: 0.00000000 0.02804326

Estimaciones de muestra: p 0.02794837

Con base en la obtención del p-valor 1, se acepta la H_0 .

Laminado

Los índices de *scrap* de laminado son presentados a continuación en la Tabla 4.

La prueba de hipótesis utilizada fue la Z de proporciones y fue realizada en R. Se obtuvo el siguiente resultado:

Prueba de proporciones de 1 muestra con corrección de continuidad

Data: 8768 de 2012448, probabilidad nula 0.0093

X-cuadrado = 5336.5, gl = 1, p-valor < 2.2e-16

Hipótesis alternativa: *p* verdadera es menor que 0.0093

Intervalo de confianza del 95%: 0.000000000 0.004434169

Estimaciones de muestra: p 0.004356883

Con base en la obtención del p-valor 2.2e-16, se rechaza la H_0 y se acepta la hipótesis H_1 , que afirma que el porcentaje de scrap en el proceso de laminado se ha reducido.

Corte

Los índices de *scrap* de corte son presentados a continuación en la Tabla 5.

La prueba de hipótesis utilizada fue la Z de proporciones y fue realizada en R. Se obtuvo el siguiente resultado:

Prueba de proporciones de 1 muestra con corrección de continuidad

Data: 55757 de 3152633, probabilidad nula 0.0153

X- cuadrado = 1191, gl = 1, p-valor = 1

Hipótesis alternativa: *p* verdadera es menor que 0.0153

Intervalo de confianza del 95%: 0.00000000 0.01780853

Estimaciones de muestra: p 0.01768585

Con base en base la obtención del p-valor 1, se acepta la $H_{\rm o}$.

Sellado

Los índices de *scrap* de sellado son presentados a continuación en la Tabla 6.

Tabla 3. Índices de scrap de impresión.

Año	Kg. de proceso	Scrap proceso	% de scrap anual	N.° de OP
2014 (pretest)	11 385 732.43	312 832.60	2.67%	3.182
2019 (postest)	7 972 305.47	229 209.72	2.79%	3.054

Fuente: Elaboración propia.

Tabla 4. Índices de scrap de laminado.

Año	Kg. de proceso	Scrap proceso	% de <i>scrap</i> anual	N.° de OP
2014 (pretest)	2 126 579.89	19 902.50	0.93%	929
2019 (postest)	2 003 680.43	8 767.52	0.44%	771

Fuente: Elaboración propia.

Tabla 5. Índices de scrap de corte.

Año	Kg. de proceso	Scrap proceso	% de <i>scrap</i> anual	N.° de OP
2014 (pretest)	3 765 802.30	58 440	1.53%	1775
2019 (postest)	3 096 874.58	55 757.31	1.77%	1689

Fuente: Elaboración propia.

Tabla 6. Índices de scrap de sellado.

Año	Kg. de proceso	Scrap proceso	% de <i>scrap</i> anual	N.° de OP
2014 (pretest)	7 682 209.69	221 166.60	2.80%	1704
2019 (postest)	5 171 234.00	97 649.80	1.85%	3380

Fuente: Elaboración propia.

La prueba de hipótesis utilizada fue la Z de proporciones y fue realizada en R. Se obtuvo el siguiente resultado:

Prueba de proporciones de 1 muestra con corrección de continuidad

Data: 97649.8 de 5268884, probabilidad nula 0.028

X-cuadrado = 17349, gl = 1, p-valor < 2.2e-16

Hipótesis alternativa: p verdadera es menor que 0.028

Intervalo de confianza del 95 %: 0.00000000 0.01863029

Estimaciones de muestra: p 0.0185333

En base a la obtención del p-valor 2.2e-16, se rechaza la H_0 y se acepta la hipótesis de H_1 , que afirma que el porcentaje de scrap en el proceso de sellado se ha reducido.

DISCUSIÓN

Los índices de *scrap* generados durante el proceso de producción eran ocasionados por la falta de control de los mismos, en la mayoría de los casos, atribuible al factor humano. Por desconocimiento de los defectos durante la producción, se generaban considerables cantidades de producto intermedio con defectos. La elaboración de un plan de autocontrol de la producción en cada uno de los procesos permitió que los índices mensuales de *scrap* disminuyeran.

En los procesos de impresión y corte, no se observó una disminución de *scrap* debido a la alta rotación del personal en dichas áreas. Se deberá considerar disminuir la frecuencia de las capacitaciones y reforzar el proceso de inducción.

Los resultados obtenidos en cuanto a la hipótesis guardan similitud con los de las investigaciones de Cáceres (2017), Fernández y Ramírez (2017), puesto que presentan un plan de mejora, rediseño y optimización de procesos. En todos estos casos similares a la presente investigación, se comprueban las

mejoras obtenidas en la implementación de dichos planes en sus respectivos escenarios.

CONCLUSIONES

- Se concluye que en los procesos de extrusión, laminado y sellado se evidencia la disminución de *scrap*, mientras que en los procesos de impresión y corte dicha hipótesis es rechazada.
- El proceso de impresión y corte no logró disminuir el scrap de proceso debido a la alta rotación del personal y falta de inducción adecuada al momento del ingreso a la empresa.
- 3. Se concluye que se debe realizar un análisis más profundo para reducir los porcentajes de *scrap* en los procesos de impresión y corte.
- 4. Los miembros del personal involucrado en la ejecución de los procesos mencionados fueron informados sobre la lista de defectos de cada uno de los procesos y capacitados de manera que puedan reconocerlos en el transcurso de los mismos.
- La mejora continua de los procesos para la disminución de scrap sirvió para la optimización de tiempos, puesto que se eliminaron varios reprocesos innecesarios de producción defectuosa; asimismo, resultó en la disminución de costos.
- 6. Se elaboraron varios procedimientos durante la determinación de control de los procesos y de las fichas que el personal marca.

REFERENCIAS BIBLIOGRÁFICAS

- [1] Alarcón, J. (1998). Reingeniería de procesos empresariales: teoría y práctica de la reingeniería de la empresa a través de su estrategia, sus procesos y sus valores corporativos. Madrid, España: Fundación Confemetal.
- [2] Cáceres, A. (2017). Aplicación de la mejora continua y su efecto en la productividad de los procesos del almacén de una empresa comercializadora de productos electrónicos

- *en Lima Metropolitana*. (Tesis de maestría). Universidad Ricardo Palma, Lima.
- [3] Chang, R. (1996). Mejora continua de procesos: Guía práctica para mejorar procesos y lograr resultados medibles (1ª ed.). Barcelona, España: Ediciones Granica.
- [4] Chiavenato, I., y Sapiro, A. (2011). Planeación estratégica. Fundamentos y aplicaciones (2ª ed.). México D.F., México: McGraw-Hill Education.
- [5] D'Alessio, F. (2004). Administración y dirección de la producción. Naucalpan de Juárez, México: Pearson Educación.
- [6] De Asís, M. (2007). Análisis de eficiencia de los departamentos universitarios. El caso de la universidad de Sevilla. Madrid, España: Editorial Dykinson S.L.
- [7] Everett, A., y Ronald, E. (1991). *Administración* de la producción y operaciones. México: Prentice-Hall.
- [8] Fernández, A., y Ramírez, L. (2017). Propuesta de un plan de mejoras, basado en gestión por procesos, para incrementar la productividad en la empresa distribuciones A & B. (Tesis de pregrado). Universidad Señor de Sipán, Pimentel.

- [9] García, A. (1998). Conceptos de organización industrial. Barcelona, España: Marcombo S.A.
- [10] Gutiérrez E., y Vega S. (2019). Plan de mejora para incrementar la productividad en el área de producción de la empresa JOSATEX. (Tesis de pregrado). Universidad Señor de Sipán, Pimentel.
- [11] Hammer, M., y Champy, J. (1994). Reingeniería: Olvide lo que usted sabe sobre cómo debe funcionar una empresa: ¡Casi todo está errado! (1ª ed.) Bogotá, Colombia: Norma.
- [12] Lynch, R., y Cross, K. (1993) *La mejora continua: Patrones y medidas*, (1ª ed.). Bilbao, España: Editorial Deusto.
- [13] Martín, S., y Martín S, P. (2013). La excelencia operativa en la Administración Pública. Madrid, España: Instituto Nacional de Administración Pública.
- [14] Pérez, J. (2010). *Gestión por Procesos* (4ª ed.). México: Alfaomega grupo editor, S.A. de C.V.
- [15] Socconini, L. (2014). Lean Company: Más allá de la manufactura (1ª ed.). México D.F., México: Norma Ediciones.