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Resumen— Se presenta la evolucion numérica de un
campo escalar de prueba en el espacio de Minkowski,
utilizando la técnica de mallas refinadas adaptativas
(AMR). La dinamica del campo escalar esta dada por la
ecuacion de Klein Gordon con wun potencial
exponencial, el cual es usado como un modelo de
campos escalares tipo quintaesencia. Primero se
realizara la descripcion del algoritmo AMR. Luego se
realizara un analisis relacionado con la convergencia de
las simulaciones numéricas, encontrando convergencia
de segundo orden, las cuales son consistentes con el
esquema de diferencias finitas de segundo orden usado.

Palabras clave— Ecuacion de Klein Gordon, mallas
refinadas adaptativas, campo escalar, algoritmo,
simulaciones numéricas

Abstract— In this paper we present the numerical
evolution of a test scalar field on a Minkowski
background using adaptive mesh refinement techniques
(AMR). The Dynamics of the scalar field is given by the
Klein Gordon equation with an exponential potential,
which has been used as a model of quintessence scalar
fields. As a first step in this work a description of the
AMR algorithm is presented. Then we perform an
analysis related to the convergence of the numerical
simulations, founding convergence of second order,
which is consistent with the second order finite
difference scheme used.

Key Word — Klein Gordon Equation, Adaptive mesh
refinement, scalar  field, algorithm, numerical
simulations.

L INTRODUCTION

Scalar fields have been of great interest since them
have played an important role in general relativity
and cosmology. For instance, scalar fields have been
used in cosmology to give a possible solution to the
horizon and flatness problems, by assuming a
mechanism  that provides an  exponential
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cosmological growth [1]. Moreover, in [2], by
considering the supernovae redshift observations, the
authors explored the possibility of a cosmic scalar
field to play the role of dark energy. Scalar fields
have been also proposed as a model of dark matter,
either to galactic [3] or cosmological scales [4]. On
the other hand, AMR methods are important because
they allow studying complex problems with a high
accuracy, without increasing the computational cost
too much. This is because when we solve the
problems numerically these methods are adapted to
the dynamics of the problem, using meshes that have
different resolutions in different regions and that also
adapt over time. In our case, an algorithm based on
the work of Berger and Oliger [5], Berger and
Colella [6] and Guzméan [7] was implemented with
the aim of adapting the numerical solution to a
specific one-dimensional problem as a first step to
advance in the development of this type of
algorithms.

In this work, we explore the evolution of a scalar
field on a Minkowski space-time by using adaptive
mesh refinement techniques. Specifically, in this first
article, we focus the attention in the implementation
of the AMR methods in our codes, in order to solve
the Klein-Gordon equation with exponential
potential, which is written as a first order system of
equations by using the 3+1 formulation of the
general relativity. It should be mentioned that the
way this system of equations is written will allow us,
in future works, to evolve the scalar field in a curve
background and so be able to do a full 3D numerical
study of the accretion of scalar field dark matter on to
a Kerr black hole with AMR techniques, which is
very useful at the time of giving high resolution close
to the black hole. It should be noted that exponential
potential has been used in a great variety of works.
For instance, this potential is considered as a possible
model for quintessence, see [8]. Moreover, this
potential arises naturally in the context of Kaluza-
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Klein theories, as well as in a variety of supergravity
models [9].

The paper is organized as follows, in section 2 we
show the Klein Gordon equation in the 3+1
formulation of the general relativity as well as the
potential and initial profile for the scalar field. In
section 3, we describe the adaptive mesh refinement
method used to solve the Klein-Gordon on the
Minkowski space-time. In section 4, we present the
evolution in time of the scalar field and show the self
convergence test in order to validate our results.
Finally in section 5, we present some conclusions. It
is worth mentioning that the units we assume in the
paper are such that ¢ = ¢ = 1.

IL. KLEIN GORDON
EQUATION

In this paper we consider the classical nature of the
scalar field, as assumed in SFDM and quintessence
models, from an effective Lagrangian

L = —R + (V®)? + V(d), (1)

where R is the Ricci scalar of the space-time,®the
scalar field and V(@) its potential. The variation of
such Lagrangian with respect to @ reduces to the

Klein-Gordon (KG) equation, which rules the
evolution of the scalar field.
od - =, (2)

do

where the DAlambertlan operator for a general
space-time ad — V2P =

(1/\/—) 0 [\/—g“" HCD] Since we work on a fixed

background space-time there is no need to vary the
Lagrangian with respect to the metric, which would
imply Einstein's equations. In terms of the variables

of the 3 + 1 splitting approach of general relativity
[10], the KG equation can be written as a first order
system of equations as follows

01 = 0,(B'T + at/WWIWY) — oy 3, (3)
aw_a( +pY,), (4)

o .
= — JAUS
0 =T+ B, )

Where 11 = /Y (8,® + B/ 6]-‘{’)/0( and ¥; = 9;® are
new first order variables, ais the lapse function, B*
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the shift vector, y;; are the components of the spatial

induced metric and y = det(yi]-). It is worth
mentioning that in this work, we restrict our AMR
numerical calculations to the Minkowski space time.
However in the way these equations are written allow
us to run simulations in a curve fixed background

[11].

In this work, we will consider the exponential
potential, which is given by the expression

V(®) = Ve @ (6)

Where V; and a are positive constants. Here we
work in units for whichc = G = 1. On the other
hand, in order to solve the first order KG system of
equations (5), we provide a scalar field initial profile
similar to that described in [12] , which corresponds
to a time-symmetric wave modulated by a Gaussian
profile

—(X—Xo)2

®(0,x) = Acos(kx)e o©2

wmw:gﬂﬁ (7)
ox
1(0,x) =0

where A and o are the amplitude and width of this
initial profile.

III. ADAPTIVE MESH
REFINEMENT

In numerical analysis, the AMR method adapts the
grid resolution according to the dynamics of the
specific problem to be solved, building refined
meshes in determined regions of the domain, which
can appear and disappear as it becomes necessary.
Those grids also can move in regards of a physical
criterion. In this work, we have built a refined grid
that displaces with the maximum value of the
numerical error (for instance, sensitive regions or that
present turbulence). At the beginning of the
simulations, the algorithm creates a regular Cartesian
grid that covers the whole domain, which is called
base-grid. In the case of the Klein Gordon equation,
the regions that present the maximum numerical
error displace with a constant velocity, which makes
easier to adapt the movement of the refined grids. In
other cases is normally based on the estimation of the
numerical error or in proper parameters of the
system.
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A. Coupled Evolution.

A very important aspect in the AMR methods is that
the adaptive meshes have a coupled evolution, which
consists in a singular grid with different resolutions
in some parts of the domain, and no different grids
evolving independently. In order to do this, is
necessary to consider two aspects: the first one is that
the values of the base-grid are replaced with the
values of the son-grid for each time step. This
guarantees that the base-grid does not evolve to the
next step with its numerical error (which is bigger).
The second aspect is that the border points of the
son-grid need to be calculated from the interpolation
of the points in the base-grid at each time of the
simulation. These can be better explained with Figure
1.

dt

® = = = O = = = © = = = ©@ = = =2 O

dx

Figure 1 Evolution of a one-dimensional grid with a sub-
domain refined by a = 4. In this figure we represent the
evolution of a single base-grid time step, where the circled
violet points correspond to the base grid, the orange
squares to the refined grid and the violet squares are
calculated by using the interpolation of the base-grid in the
shaded region. When the orange squares are inside the
violet circles means that the values of the refined grid are
replaced with the values of the grid-base. The time step of
the base-grid is dt = CFL * dx, and the time step of the
son-grid is dt, = CFL * dx. = CFL = (1/a) * dx

dt. = CFL x (1/4) *dx = (1/4)dt and so on for more
refined levels.

The algorithm discretizes the partial differential
equations with the method of finite differences,
integrating in time with the Runge Kutta schemes,
and for the boundary calculations we impose out-
going wave conditions, interpolating them with the
Lagrange method. Finally, to adapt the grids with the
dynamics of the problem, we displace them each
certain amount of time steps, depending on the
required velocity.

Iv. NUMERICAL RESULTS

After carrying out the implementation of the AMR
algorithm with the characteristics specified in the
previous section, we solve the Klein Gordon equation
(2) with an exponential potential as shown in
equation ((6). In Figure 2 and Figure 3, we plot the
complete evolution for a time interval, where the
base-grid and the refined-grid are displayed, the latter
moving at the same speed as one of the propagated
pulses, since the region near the pick of the pulse is
the one that presents the maximum numerical error.
Later, the numerical error associated with this
solution is calculated, and it is shown in Figure 4,
where it can be seen that the pulse traveling with a
refined mesh presents a considerable decrease in the
error. Finally, tests are carried out to verify the
accuracy of the implemented algorithm, which in this
case are the self-convergence and are presented in
Figure 5.

Figure 2 Evolution of the numerical solution for a complete
time interval using AMR. The time range is [0,0.8], the
refined subdomain [—0.3,0.3] moves at the same speed of
one of the pulses within the base domain [—1,1].
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Figure 3 Captures for different instants of time for the
evolution shown in Figure 2,t =0,t =0.3,t =06yt =
0.8 respectively.
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Figure 4 Evolution of the numerical error associated with
each of the plots in Figure 3. The error is calculated by
subtracting two numerical solutions with different base
resolution.

Scientia et Technica Afio XXIII, Vol. 23, No. 02, junio de 2018. Universidad Tecnoldgica de Pereira.

1.98 1 1 1 L L L 1
0 0.1 02 03 04 05 0.6 0.7 0.8

t

Figure 5 Convergence factor for each time step in
evolution shown in Figure 2. This factor is calculated using
three numerical solutions for three different base
resolutions.

V. CONCLUSION

The same postulates used to develop this algorithm
are extensible without problem to two and three
dimensions, which are algorithms in process of
development with favorable results. It was found that
numerical error in a specific region can be reduced
by refining only such region, reducing the
computational cost. Moreover there is an adequate
convergence by the AMR code, which is consistent
with the second order finite differences used. Finally,
we note that is not convenient to perform an abrupt
refinement when improving the resolution
considerably, it is better to do it by levels.
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