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Numerical Based Approach for Predicting the
Response of Flexible Risers Under Oscillatory
Flows at Low Re and KC Numbers

Enfoque Numérico para Predecir la Respuesta de Tubos Flexibles Bajo Flujos
Oscilatorios con Bajos Numeros De Re Y KC

M. C. Valencia-Céardenas

Abstract— Flexible riser response prediction relies on semi-
empirical models hindered by limitations due experimental data
scarcity for particular modelling considerations. This paper
presents a numerical-based approach for predicting the flexible
riser response under oscillatory flows. A single freedom degree
spring-mass-damper system is employed with the mass allowed to
move in cross-flow direction. To discretize the Navier-Stokes
equations the Finite Volume Method is used. To analyze the flow
patterns in each regime the cylinder oscillating period is executed
for long time. A bi-dimensional model is setting up using
OpenFOAM simulations. Flow behavior, hydrodynamic forces
and frequencies were analyzed for Reynolds values between 40-
1000 using a KC number 7,9. For Reynolds less than 300 the
behavior is in agreement with the literature. For Reynolds 300 or
higher, some discrepancies appear in the system dynamics. The
numerical results obtained from the numerical approach shows
good agreement with experimental data collected from a flexible
riser model.

Index Terms— Flexible riser, Keulegan-Carpenter number,
Numerical Simulation, Oscillating Flow, Vortex Dynamics

Resumen— La prediccién de respuesta en tuberias verticales
flexibles se basa en modelos semiempiricos limitados por escasez
de datos experimentales para modelados particulares. Este
articulo presenta un enfoque numérico para predecir la respuesta
de tuberias verticales flexibles en flujos oscilatorios. Se
implementa un grado de libertad en un sistema de masa-resorte
amortiguado, con la masa habilitada para moverse en la direccién
transversal al flujo. Las ecuaciones de Navier-Stokes son
discretizadas empleando el Método de Volumenes Finitos. Los
patrones de flujo en cada régimen son analizados en periodos de
oscilacién extensos. Se emplea un modelo bidimensional simulado
en OpenFOAM. Se analiza el comportamiento del flujo, fuerzas
hidrodinadmicas y frecuencias para los valores de Reynolds entre
40 y 1000 utilizando KC 7,9. Para Reynolds, inferiores a 300, el
comportamiento del modelo esta de acuerdo con la literatura. Para
valores de Reynolds 300 0 mas, algunas discrepancias aparecen en
la dinamica del sistema. Los resultados numéricos obtenidos a
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partir del enfoque numérico propuesto concuerdan con los datos
experimentales recopilados en un modelo de tuberia vertical
flexible
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I. INTRODUCTION

he movement around a cylinder is still an issue of great

interest in fluid dynamics because several key engineering

structures, such as marine cables, riser tubes, pipelines,
submarines, and off-shore structures among others, are affected
by the accumulated stress. These applications are exposed to an
external variable velocity flow that causes vortex shedding
downstream the cylinder, an unsteady unwanted phenomenon.
The frequency at which the vortices are shear is known as
vortex shedding frequencies; a regular pattern of vortices
induces fluctuating lift and drag forces on the cylinder [1].
Additionally, to the cylinder structural properties and the
incoming flow characteristics, those vortices can exert a
significant dynamic stress, increasing the damage accumulation
and eventually causing structural failure.

In some situations, the current relative velocity may be non-
stationary, due either to structural movement or to oscillations
in the incoming flow itself [2]. The structural movement is a
very common phenomenon in flexible cylindrical systems but
there is still a limitation to accurately predict the response of
these structures because most of the prediction models rely
heavily on large experimental databases. In addition, flexible
and light materials have been developing for marine
applications leading to slender structures with low mass ratios
(defined as the ratio of mass of the cylindrical system per unit
length to the mass of displaced water). Thorsen et al. [2]
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presents an improved semi-empirical model for predicting the
risers response, the model provides realistic results in terms of
frequency content, amplitude of vibration, and demonstrated
that the maximum amplitude for cross flow oscillation is
smaller for the high mass ratio case. Bowen Fu and Decheng
Wan [3] presented a numerical model based solely on the
computational fluid dynamics method using the strip theory,
and showed that it is possible to rely only on numerical
simulations for risers response prediction, overcoming the
limitations of large databases used by most current software for
predicting the response of risers; those authors use a mass ratio
of 1.53 and KC numbers ranging from 21 to 184.

A great deal of works about oscillatory flow around a fixed
cylinder have been done (e.g. [4], [5], [6], [7], [8], [9]). It has
been found that as flow period increases, the flow behavior
change, and the number of vortices shed from the cylinder
increases with the Keulegan—Carpenter (KC) number
increasing. This number is defined as KC = U,,T/D, where
U, is the amplitude of the oscillatory flow velocity, T is the
oscillatory flow period and D is the diameter of the cylinder. In
this way, the KC value determines the sinusoidal oscillatory
flow characteristics and hence the hydrodynamics forces
generated by vortices around the cylinder. When KC is small
enough, the cylinder’s surface boundary-layer is laminar and
two-dimensional, but as the KC increases it will become
unstable and three-dimensional [10].

Experimental work allowed to visualize the flow conduct for
KC numbers from 4 to 30 [5], [11]. The vortex pairs numbers
shed during each half of a flow period allows to classify the
oscillatory flow around a cylinder as transverse street 7 <
KC < 13, single pair 13 < KC < 15, double pair 15 < KC <
24, three pairs 24 < KC < 32 and four pairs 32 < KC < 40
vortex shedding regimes. Also, for each vortex shedding regime
the relationship between vortex motions and time-dependent
lift-force variations have been described [12]. Although,
extensive study of the vertical motion types produced when a
cylinder oscillates in a resting fluid has been made [13]. The
Tatsuno and Bearman’s [13] experiment and modelling differs
from Govardhan and Williamson [12] by the force vibration
condition and free vibration respectively, a very close
correspondence between these flows has been described [14].

With the available data accumulation, heavy influences of
Reynolds number on the cylinder maximum response have been
demonstrated by Govardhan and Williamson [12] and Klamo et
al. [15]. Both experimental and computational studies use a
very small mass ratio (m*¢) or zero for damping respectively.
These studies showed that the Reynolds number becomes
crucial in the transition regimen and many authors have been
researching its influence until a value of 500, considering a
fixed value for KC ([16], [17], [18], [19], [20], [21], [22], [23]).
Tatsuno and Bearman [13] analyzed 1.6 < KC < 15 and 5 <
B <160 (B8 = Re/KC = D?/vT, where v is the kinematic
viscosity and Reynolds number is Re = U,,D/v), including
three dimensional features, provided the identification of eight
regimes denoted from A to G, as show in Fig. 1 in a plane
(KC,R,). This classification has become the standard

description for the associated flow regimes. The regimen A
corresponds to the Williamson's symmetrical regimen [5] , that
is also similar to Regime B but with an axial direction three-
dimensional structure. Regime C corresponds to vortices of
opposite rotation senses in the same fashion of a Von Karman
vortex street. Regime D exhibits a symmetrical V-pattern
around the transverse axis, very similar to regime E, however
here the V-pattern changes intermittently its direction from one
side to the other. Regime F describes the Williamson's double
pair regime [5], whereas the Williamson's transverse street is
similar to Regime G [5]. Finally, the Tatsuno and Bearman [13]
regimen classification suggest that a KC such as 7,9 that crosses
five different regimens, can be assumed as critical and
important to be studied.

500
450
400
350
300
250

Re

200
150
100

50

Fig. 1. Classification of flow regimens A to G, identify by Tatsuno and
Bearman [13].

This study describes and discusses the oscillating fluid flow
effect around a cylinder under the influence of a fixed KC (7,9)
and Re between 40 and 1000, considering lower mass ratio and
covering the most Tatsuno and Bearman regimes (A, D, E, F
and G, see Fig. 1). The cylinder oscillating period is
implemented for a long time (more than fifty cycles) in order to
analyze the flow patterns in each regime. A single degree of
freedom system with a spring-mass-damper is implemented,
where the mass is allowed to move only in cross-flow direction.
To discretize the transport equations, the Finite Volume Method
(FVM) is used and to resolve the pressure-velocity linkage, an
iterative solution strategy SIMPLEC algorithm for transient
problems is used. Moreover, a bi-dimensional model is
established using OpenFOAM simulations and employing a
single desktop computer. The results presented here consider an
experimental validation by Riveros et al. [24] in order to
demonstrate the use of numerical based approaches to predict
the response of flexible risers.

In what follows, section 2 presents the numerical method
description with the respective equations modeling, parameters
taking account, computational domain and boundary
conditions. The section 3 provides the procedure for model
validation. Vortices behavior descriptions and the time history
of the drag and lift forces estimating when Reynolds increases
are present in section 4. Likewise, this section put forward a
discussion of the flow characterization according to the
transitions between regimes established for different intervals
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of Reynolds values. In addition, the results are compared with
experimental data in this section. A study summary is presented
in section 5.

Il. NUMERICAL METHOD

This section briefly describes the precisions of the main
parameters and numerical method implemented in this study.

A Governing equations and other parameters

To model the vortex generation around a structure,
commonly a sinusoidal oscillatory flow is considered to
represent a realistic phenomenon representation. The flow in
the longitudinal direction is given by:

U,(t) = Uy,sin(2at/T) (@)

The oscillating flow considered is controlled by 40, 100, 150,
200, 250, 300, 500 and 1000 as Reynolds numbers and 7,9 as
Keulegan Carpenter number, so eight different regimens were
simulated. Other parameters (mass, damping, reduced velocity)
are set up to allow the cylinder movement.

The mass ratio corresponds to m* =m/m,, where m
represents the cylinder mass and m, the displaced fluid mass.
The structural damping ratio is defined as ¢ = c¢/2Vkm,
where ¢ is the structural damping and k is the stiffness of the
spring. Finally, reduced velocity is determined as V,. =
Up/(fawD), where f,, represents the cylinder natural
frequency measured in water.

To solve the two-dimensional incompressible Navier-Stokes
equations, the flow evolution is computed by

div(u) =0 2
ou 1 U

—4u-Vu=—-Vp+-V?u

ot p p

Where u and p represent the velocity and pressure fields in
the fluid.

A discretized form of equation (2) must be defined at a nodal
point placed within each control volume in order to solve the
problem. OpenFOAM, an open source solver, is used to solve
the governing equations selecting adequate solution schemes in
order to achieve reliable results. To reach it, a second-order
central difference scheme is used for the convection and
diffusion terms. A stable and accurate simulation is obtained by
choosing an implicit second-order scheme for temporal
discretization. For the numerical procedure in the simulation, to
improve the pressure and velocity coupling, the PIMPLE
algorithm is utilized [25].

The structure is allowed to move only perpendicularly to the
flow direction. To apply the transport equations to the inertial
system, time to time and according to the cylinder movement,
the numerical grid is moved and adjusted. For that reason, a
mesh dynamic motion solver is implemented in the model,
where the cylinder is constrained to only move along “y” and
cannot rotate. Finally, the total force per unit length by a

stationary cylinder under an oscillatory flow F,¢. is known as
Morison’s equation [26], written as:

Fosc(t) = pCa = D2U (L) + 2 pCpDIUB)U(E) ©)

Where p represents the fluid density, C,, the inertia coefficient
and Cp, the drag coefficient. The last two are functions of
R, and KC.

B. Computational domain

The computational domain is a cylinder in a channel
represented using two-dimensional numerical simulations as
shown in Fig. 2. The cylinder is represented as a circle with
diameter D submersed in an incompressible fluid, represented
here as a rectangular flow domain. As the simulation begins, the
center body is located at the center of the coordinate’s axis, 10D
from the horizontal walls and 20D from the vertical walls. The
domain areas around the cylinder, where the vortices are shed,
contains a higher cell density in order to obtain a better
resolution. This region is shaped by four arcs whose radius

equal 2.5v2D.

Top

D

yoll

Bottom
20D e 20D y

U, (t) [intet Outlet |20D

Fig. 2. Sketch of oscillating flow around circular cylinder

To guarantee the smallest numerical errors, it is necessary to
proof the meshing independently. The test is developed from a
course mesh established, using a non-dimensional time step
U,;A./D = 0,1 (where A, is time step) as sufficient condition to
ensure coefficients with three significant digits [27]. Then, the
mesh is refined consecutively and the time step is determined
from the Courant number (c,) expression, c, = |U;|A:/A,
where A, is the smaller cell size in the velocity direction and c,
is defined as 0.2 [28]. Finally, the appropriate mesh is selected
considering the fitting between results and literature and the
tradeoff between precision and computational cost.

C. Boundary conditions

To carry out the time-dependent simulation, boundary
conditions are imposed at each time step. An oscillating
velocity is given in the inlet for x-direction only by (1). The
oscillatory flow velocity amplitude changes for every
Reynolds number.

Because the vertical walls are isolated, a zero gradient patch
is assigned to the outlet boundary for the velocity field. To
guarantee that the cylinder can move in the y-line, the so-called
movingWallVelocity provided by OpenFOAM is assumed as a
boundary condition of velocity. This means that the boundary
is allowed to move. Slip plane are used in the top and bottom of
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the domain to indicate that there are no physical walls in these
borders, so viscous effects on the border are negligible. At the
inlet domain and at the cylinder border, zero gradient is
assumed. A 0 fixed value is assigned at the outlet pressure field.
Finally, the boundary condition of the front and back side of the
domain is set as empty since the flow is simulated as two
dimensional.

1. MODEL VALIDATION

In order to guarantee an accurate solution, the model is
setting up at values of Reynolds and Keulegan Carpenter well
studied in the literature (e.g. [27], [29], [22], [30]). In this way,
Re = 200 and KC = 10 in an oscillating fluid flow passing
around the circular cylinder were selected. For the mass spring
system, the parameters selected are mass ratio m * equal to 4/,
the damping ratio ¢ equal to 0.01 and reduce velocity V. = 5.
Fig. 3 shows the computational mesh comprising 15600 cells
and 31720 points stablished after refined the mesh looking for
a good resolution. A 20% expansion ratio is used to refine the
cells near the cylinder. The minimum mesh radius size is
0.006D.

The drag and lift coefficients time history and the Strouhal
number are analyzed, considering 20 vortex shedding periods
once the periodic flow is stablished. These values have been
compared with published results ( [22], [30], [31]) and shown
in Table I.
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THT
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Fig. 3. Computational mesh domain used for the simulation around the
cylinder

The drag coefficient (mean value of the in-line non-
dimensionalized force) and the Strouhal number, S, =
f»D/U,,, are obtained from the frequency of vortex shedding
f,,» which is calculated with the period measured from velocity
time history. At Re = 200 and KC = 10, C, is equal to 1.331
and S, is equal to 0.192, meaning that the vortex natural
frequency shedding is  f; =0.192. Results are in good
agreement with those published in the literature (see Table I).

TABLE I.
Comparison of drag force coefficient (x = 1,307, 95% CI [1.281, 1.332]) and
Strouhal number (¥ = 0,193, 95% CI [0.187, 0.198]) at Re = 200 and KC =

10
Cp S;
Guilmineau and Queutey (2002) 1286  0.195
Cao et al. (2010) 1.300 0.186
Cao and Li (2015) 1.343 0.191
Present work 1331  0.192

Additional support is given by the good agreement of the
numerical based approach presented in this paper with
experimental validation data provided by Riveros et al. [24] and
discussed below.

IV. RESULTS AND DISCUSSIONS

The results of direct numerical simulation are present in this
section considering the effect of KC = 7,9 and Reynolds values
equals to 40, 100, 150, 200, 250, 300, 500 and 1000. In this
work, the regimes are defined from the flow structure and force
behavior.

A. Drag and lift force coefficients

Drag and lift coefficients time histories in an oscillating flow
are estimated using force coefficients function library by
OpenFOAM. Vortex shedding frequencies and Strouhal
numbers obtained for different Reynolds values are shown in
Fig. 4. The time history frequencies are verified for both drag
and lift coefficients in order to obtain the vortex shedding
frequency (f,,), using the Fast Fourier Transform method (FFT)
[29].

06 . . ; ) — . . ; 03
05t o 0.25
04t 7 {02

£ 03 0.0 0.15 &

o
020 o ogeBege B a 811
B
ol 6 0.05
g
5 ; . . ; ; . . . ; 5
0 100 200 300 400 500 600 700 800 900 1000

Re

Fig. 4. Vortex shedding frequencies (circle) and Strouhal numbers (square)
by Reynolds number

The dominant frequency corresponds to the oscillating
frequency. The results are in agreed with the coefficients
behavior shown in Figs. 5-6. The drag force coefficients for
Re = 200 and Re = 1000 are shown in Fig. 5. Notice that both
figures do not present significant change period along the time.

Conversely, the amplitude presents some variations,
specially at higher Reynolds values. The pase lag between the
oscillating flow and drag coefficient for Re = 200 is about 40°
and the behavior is sinusoidal as the oscillatory flow, with
constant period along the time. On the other hand, for Re =
1000 the pase lag is about 20° as show in Fig. 5(b). The
variation of the peaks shape in Fig. 5(b) is related to the pressure
distribution asymmetry in the flow direction. Both, the
oscillatory flow and drag force coefficient frequencies are
similar as can be seen in Fig. 5. It is possible to identify this
behavior in all the evaluated Reynolds in this work.

The variation of drag force coefficient as a function of
Reynolds number is presented in Fig. 6. When the Reynolds
number increases the mean drag coefficients decreases which,
for previous studies, is an expected behavior (e.g. [32]).
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Fig. 5. Drag force coefficient for (a) Re = 200 and (b) Re = 1000
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Fig. 6. Variation of drag force coefficient with Reynolds number for fluid
flow around a circular cylinder.

1000

Lift force coefficients for Reynolds 200 and 1000 are
visualized in Fig. 7. Two positive and two negative peaks along
the time history of lift coefficient for each period of oscillating
flow are identified, meaning that the lift force frequency is
twice the oscillating fluid frecuency. Sometimes is posible to
observe up to 3 positive and negative peaks of lift force
coefficient per oscillating period. The pressure distribution is
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not symmetric in the flow direction because the vortex shedding
are not formed at the same time. Thus, the lowest Reynolds
numbers presents less variation in amplitude and frequency
parameters. Conversely, higher Reynolds showed significant
variations, especially in fluctuation amplitude (Seeing Fig. 7).
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Fig. 7. (a) Lift force coefficient for Re = 200 and (b) Re = 1000

B. Oscillating flow analysis

The flow over a circular cylinder for different Reynolds
values are simulated. The Fig. 8 to 15 show behaviors in
differents times for cases when Re ranges are between 40 and
1000. It is possible to notice that vortices remains with the
acceleration and deceleration of flow. Fig. 8 presents a fixed
pair of vortices in the wake. The vortices are symetric about the
center line of the wake, which fits the Williamson regimen A
description [5]. When the sinusoidal velocity is positive, two
vortices are formed as shown in Fig. 8(a). The flow change its
direcction in Fig. 8(b) and two new vortices developed in the
opposite direction. Four vortices persist during a half vortex
shedding period along the time, one pair for each direction. This
is because the low sinusoidal flow velocity remains attached to
the cylinder, as shown in Fig. 8(d).

Instability develops when Reynolds value is incremented as
shown in Fig. 9(a). Two vortices are developed in the direction
flow, describing a symmetrical \VV-pattern regimen at the cross-



118

flow direction. Here, the last two vortices from the past cycle
persist until the flow change of direction. In Fig. 9(b) the
vortices move in opposite direction describing the same pattern.
Again, the last two vortices from Fig. 9(a) persists. Fig. 9(c)(d)
represent the second half of cycle equal to the first. About three
pair of vortices persists during a half of vortex shedding period.
This case goes according to the Fig. 1 by Tatsuno & Bearman
[13], regimen D behavior.

00000400 074 147 22)
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s

'

(@) (b)

-
-

E @
o

(© (d)

Fig. 8. Vorticity profile for KC=7.9 and Re = 40 at differents times
illustraing a symmetric pattern (a) t=80,62, (b) at t=81,14T, (c) at t=81,66T,
and (d) at t=82,18T. Arrows indicate the vortices convected directions.

@) (b)

(© %)

Fig. 10. Vorticity profile for KC=7.9 and Re = 150 at different times
illustraing a double pair regimen (a) t=76,47T, (b) at t=76,95T, (c) at
t=77,44T, and (d) at t=77,93T. Arrows indicate the vortices convected
directions
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When Reynolds value increase (Re > 100), positive
(anticlockwise) and negative (clockwise) vortex stars to
shedding around the cylinder due to the oscillating flow. The
V-pattern symmetrical regimen persists in Re = 150 case but
with intermittently changes as shown Fig. 10. Fig. 10(a) for
example, describes a transverse street because the vortex moves
in cross-flow direction. In the opposite direction, Fig. 10(b)(d)
present an oblique street. Although V-pattern is present in Fig.
10(c), the predominant vortex tends to move
transversally in negative direction. For this Reynolds value, is

00008400 07 143 214 285t6.00

(@) (b)

(©) (d)

Fig. 9. Vorticity profile for KC=7.9 and Re = 100 at differents times
illustraing a V-pattern (a) t=100.23T, (b) at t=100,73T, (c) at t=101.22T, and
(d) at t=101,71T. Arrows indicate the vortices convected directions

more evident the persistent pair of vortices from the last phase.

=20

(©) (d)

Fig. 11. Vorticity profile for KC=7.9 and Re = 200 at differents times

illustraing a double pair regimen (a) t=90,39T, (b) at t=90,88T, (c) at t=91,38T,
and (d) at t=91,87T. Arrows indicate the vortices convected directions.
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Between three and four pairs of vortices are possible to see in
each half of vortex shedding period for this Reynolds value.

For high Reynolds values, more vortices endure in a cycle.
Vorticity field for the case of Re = 200 are shown in Fig. 11.
Three pair of vortices can visualized in Fig. 11 (a), one pair
from the present half of cycle and the others from the past cycle.
On the rigth cylinder, two pair of vortices are sheddding. This
pattern is known as doble pair regimen of Williamson [5]. The
same situation is shown in Fig. 11(b)-(c), where two pair of
vortices are presented in the direction of flow along the time. Is
important to note that V-pattern are stabilized in this Reynolds
value, where the vortices developed in a symetric way on both
sides of the cylinder.

The regimen F is evident in Fig. 12 for Re = 250 because
the same two pairs of vortices are shedding, and a traverse
vortex street is formed around the cylinder in an oblique street.
About six vortices around the cylinder are visualized every half
of vortex shedding period, as can be seen in Fig. 12(a)-(b).

With the increase in the Reynolds value, a regimen instability
appears during the time history. Fig. 13(a) presents a V-pattern
characteristic of regimen F at Reynolds 300. Later, a drastic
change is observed in Fig. 13(b), where a transverse street is
appearing. At 67,91T V-pattern symmetrical is visualized in
right-left direction. Finally, an oblique street is present at
71,87T. This Reynolds value is classified by Williamson [5] as
regimen G, but transverse street is not the most persistent
behavior. The pattern is chaotic with four different behaviors
visualized.

Vorticity field for Re = 500 can visualized in Fig. 14. Two
well-defined vortices are highlighted in Fig. 14(a) with another
vortex lags from past cycles. Here, a V-patter is visible. Fig.
14(b) shows five vortices around the cylinder. Two of them
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Fig. 12. Vorticity profile for KC=7.9 and Re = 250 at differents times
illustraing a double pair regimen (a) t=60,27T, (b) at t=60,80T, (c) at
t=61,29T, and d) at t=61,84T. Arrows indicate the vortices convected
directions

from the present cycle. In this case, an oblique street is
visualized. A transverse pattern is representative for Fig. 14(c),

where about two pair of vortices can be identified. Six vortices

going in right-left direction, presenting a V-pattern symmetrical
in Fig. 14(d), which is a characteristic of regimen D. The vortex
structure of Re = 500 case corresponds to mode G where
transverse Street is characterized. Nevertheless, this is not a
dominant pattern for the case.

Fig. 15(a) shows two pair of vortices detaching from the
cylinder, two vortices developed in the past cicle and the
traces of others past vortices shedded. A transversal street
characterized is visualized at 90,48T. In Fig. 15b) three pair of
vortices are presented, two of them from the past cycle. A V-
pattern around the transverse axis is visualized here. The flow
goes from the right to the left (negative direction) in Fig. 15(c)

where about five vortices are present. The main two vortices are

shed describing an oblique street at 96,83T. In the same
direction, Fig. 15(d) shown a V-pattern symmetrical in oblique
direction.

Is important to highlight in a half cycle between 9 and 10
vortices staying around the cylinder, a behavior related to the
regime G of Williamson [5] classification. However, a chaotic
slant vortex street is developed left and right of the cylinder
without persistent vortex pattern observed along the time for
this Reynolds value.

C. Temporal force analysis

The semi-empirical equation (3) estimate the in-line force on a
cylinder divided in two forces: 1) The drag force, proportional
to the flow instantaneous velocity square and 2) the inertial flow
coupled with the local flow acceleration [31]. The drag force
coefficient C; and the inertial force coefficient C,, can be
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Fig. 13. Vorticity profile for KC=7.9 and Re 300 at differents times illustraing
a V-pattern a) t=61,48T, transverse street b) at t=63,37T, V-pattern symetrical
c) at t=67,91T, and oblique street d) at t=71,87T. Arrows indicate the vortices
covected directions.
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obtained by last square fifting on the time history of F,,., or
calculated using the equations below [33].
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Fig. 14. Vorticity profile for KC=7.9 and Re 500 at differents times
illustraing a V-pattern a) t=61,48T, oblique street b) at t=63,37T, transverse
pattern c) at t=67,91T, and V-pattern symetrical d) at t=71,87T. Arrows
indicate the vortices covected directions.

Ca=30, 2ot do =3[} Cpsin0 df 4)
20UiTf 21 F 0 UiTr 2
Ci= n31Df fon z;;sf do = nlngfOnCD cos 6 do (5)

Where, Cp, represents the mean drag coefficient.

According to Cao and Li [31], the time history of drag force

can be acceptably approximated by Morrison’s equation. Using
the same equations is possible to obtain the cross-flow force.
Fig. 16 shows an interval of in-line and cross-flow forces for
every Reynolds value studied.
The drag and the inertial forces share a direct relation with the
vortex behavior as shown in Fig. 16. A uniform in-line force
with almost constant frequency and period can visualized in
Fig. 16(a). As presented before, this regimen A does not
exhibits vortex detachment, but it does shows a vortex
formation totally symetric in the direction of the flow. This is
why in-line force predominates and the trasnverse force is
almost null.

A representative regimen D is showed in Fig. 16(b), where
the V-pattern symmetrical starts to dominate and the cross-flow
force becomes important. The symmetric pattern becomes
predominant when the cross-flow force amplitude reduces. The
fluctuation force classify this case of Reynolds value in a
symmetric regime group. The Re = 150 case present and
amplitude instability due the irregular vortex shedding in Fig.
16(c). After a while, the fluctuations tends to become regular
and the in-line force is stabilizes. Here regimen E is
predominant with intermitently changes of direction, related
with the fluctuating amplitude in-line force because the action
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of cross-flow force. When cross-flow force present a peak,
vorticity pattern tends to be transversal street as can be idenified
in Fig. 10(a) at 76,47T.

000e+00

s 46 218 29136402

() QO™

@ (b)

© (d)

Fig. 15. Vorticity profile for KC=7.9 and Re 1000 at differents times illustraing
a transverse pattern a) t=90,48T, V-ppattern b) at t=91,27T, oblique street c) at
t=96,83T, and V-pattern symetrical in oblique direction d) at t=97,95T. Arrows
indicate the vortices covected directions.

For Re = 200, an amplitude stability is presented and
persist at the time (Fig. 16(d)). In the same way, the Re = 250
present a regular fluctuation force (Fig. 16(e)). Also, cross-flow
force present uniform behavior for both Reynolds (200 and
250). As mentioned previously, Reynolds case 200 and 250 are
dominated by regimen F. In-line force for Re = 200 tends to
be more stable in comparison with Re = 250 which means the
first one present vortex shedding more
symmetrical about the cross-flow axis while the second one
tends to be more transversal. In this way, the proximity to the
transition range is a bit evident for Re = 250.

For case of Reynolds 300, 500 and 1000, in-line and cross-
flow forces are chaotic and strong peaks appear (see Fig.
16(f)(g) and (h)). A chaotic behavior is observed here because
there are no persistent vortex pattern. Sometimes, the dominant
harmonic for the case of Re = 1000 are three times the
frequency of oscillating fluid flow, but predominates two times
the oscillating frequency. On the other hand, flow regime is
dominated by the viscous drag component in all the cases.

D. Spectral analysis

Several oscillating fluid flow frequencies peaks that are
integral times the vortex oscillating frequency, are illustrated in
Fig. 17 and Fig. 18. These figures were taking from time history
of drag force and lift force coefficients respectively, using Fast
Fourier Transform (FFT). The oscillating frequencies are
graphed with the magnitude of the Fourier Transform, using the
main peak as indicated Williamson [5]. Spetral analysis of drag
force is shown in Fig. 17 with several peaks at frequencies. The
main frequency are always the oscillating frequency and the
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Fig. 16. In-line and cross-flow forces for a) Re 40, b) Re 100, c) Re 150, d) Re 200, €) Re 250, f) Re 300, g) Re 500 and h) Re 1000.

other peaks has an increment factor, namely 3f;, 5f,, 7f, and in

that way forward (see Fig. 17(a)(b)(c)), for regimes A, D, E and
F. Besides of the main frequency and the 3f, peak, other
frequencies peaks without multiple of f,, appear in regimen G.
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It is possible to note, the oscillating frequencies for Re < 200
(see Fig. 4) are twice the main frequency of lift coefficient. As
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Fig. 17. Spetral analysis of drag force coefficient at a) Re 100, b) Re 150, c) Re 250, d) Re 1000.
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main frequencies occur with an increment of 2f;,.
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Fig. 17. Spetral analysis of drag force coefficient at a) Re 100, b) Re 150, c) Re 250, d) Re 1000.
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Otherwise, the dominant frequency for regimen F (Fig. 18(c))
is three times the oscillating frequency. In this case, the case of
Reynold value 250 presents main frequency at 3f, and the
increment is about 1f; in the other peaks of frequencies. The
same behavior for these regimens is shown by Duclercq et al.
[16]. Again, for Reynolds values higher than 300 the oscillating
frequencies are two times the main frequency of lift coefficient.
Note that the main frequency in Fig. 18(d), is presented around
of 2f,. Them appear other frequencies peaks without a clear
multiple of £, and strong fluctuations is observed, according to
Fig. 16(f)-(h). Williamson [5] concluded that in an oscillating
flow, the dominant frequency of lift force is equal to one plus
the number of vortices shedding in a half period, which is
evidenced in the regimes A, D and F. However, for regimen G
this condition is not fulfilled as proved in this study.

E. Experimental validation

Riveros et al. [24] conducted a series of forced oscillation
experiments for flexible risers where a 20-meter riser model
was tested for different values of Re and KC numbers; their
experimental model case 1 has the same diameter as Re (1000)
and KC (7,9) numbers presented here in Fig. 15. Although good
agreement was reported by Riveros et al. [24], it is still possible
to observe some deviations between the simulation results and
experimental data in the main cross-flow frequency. The model
presented in this paper, as shown in Fig. 18(d), overcomes this
difficulty providing a value of the dominant cross-flow
frequency in good agreement with the experimental value of 1
Hz presented by Riveros et al. [24]. Likewise, the dominant
inline-flow frequency presented in the experimental model by
Riveros et al. [24] is 4,9 Hz, the same visualized in Fig. 17(d)
using the numerical model.

V. SUMMARY

A numerical based approach for predicting the response
cylindrical system considering low mass damping ratio and
under oscillatory flow was presented in this paper. Numerical
simulations of showed a inverse relationship between the
Reynolds number and the mean drag coefficients, an expected
behavior [24], also demostrated that the peaks shape variation
is related with a pressure distribution asymmetry in the flow
direction, due to asinchrony in the vortex shedding. Thus, the
lowest Reynolds number, the less variation in amplitude and
frequency parameters and conversely, the higher Reynolds
numbers produces significant variations, especially in
fluctuation amplitude.

At Reynolds value 40, four vortices, one pair for each
direction, persist during a half vortex shedding period because
the low sinusoidal flow velocity remains attached to the
cylinder. In this way, a uniform in-line force with almost
constant frequency and period is present. This behaviour have
a good agreement to the Williamson regimen with vortex
symmetric formation in the flow direction which explains why
the in-line force predominates and the cross-flow force is
almost null. Instability develops when Reynolds value is
incremented to R, = 100. Two vortices describing a transverse
symmetrical V-pattern regimen develops in the flow direction,

and two vortices from the past cycle persist until the flow
reverses. Three pair of vortices persists during a half of vortex
shedding period. This is conforms to Tatsuno & Bearman
regimen D behavior, where a symmetrical V-pattern began to
develop and the cross-flow force becomes important.

As the Reynolds value increases (R, > 100), positive
(anticlockwise) and negative (clockwise) vortex began to shed
from the cylinder due to the oscillating flow, and more vortex
endures a cycle. The V-pattern symmetrical regimen persists in
the R, = 150 case because changes intermittently from a
transverse street to oblique street vortex. The persistence of the
vortex pairs from the last phase is longer and between three and
four pairs of vortices are visible in each vortex shedding half
period. An amplitude instability is present due irregular vortex
shedding, after a while, the fluctuations becomes regular and
the in-line force stabilizes. Here regimen E is predominant with
intermittently changes of direction, related with the fluctuating
amplitude in-line force because the action of cross-flow force,
this conforms to Tatsuno & Bearman.

The vorticity field for the case of R, = 200 has three pair of
vortex one pair from the present half of cycle and two from the
past cycle, a Williamson double pair regimen develops and the
V-pattern are stabilized. For R, = 250 two pair of vortices are
shedding and a traverse vortex street is formed around the
cylinder in an oblique street. About six vortex around the
cylinder can be seen every vortex shedding half period. Both
Reynolds values show a regular fluctuation force and also, the
cross-flow force present uniform behavior. In-line force for
R, = 200 tends to be more stable in comparison with R, =
250,50 R, = 200 shows vortex shedding more symmetrical
about the cross-flow axis while the second one tends to be more
transversal. In this way, the proximity to the transition range is
evident for R, = 250. Both cases are conform to Tatsuno &
Bearman regimen F behavior.

Regimen instability appears as the Reynolds value increases.
For Reynolds 300, a regimen F V-pattern characteristic is
developed, however drastic changes are observed, where a
transverse street began to appear and later an oblique street is
developed. This Reynolds value is classified by Williamson [5]
as regimen G, but transverse street is not the most persistent
behavior. The pattern is considered chaotic (but may be
transitional F-to-G) and four different behaviors were
visualized.

Two well-defined and several others vortex lagging from
past cycles are visible at R, = 500. A V-pattern is developed
with transformations to oblique street to transverse pattern. The
vortex structure of Re = 500 case was classified by Tatsuno
and Bearman as regimen G where transverse street is
characteristic, however, there is not dominant pattern for this
case. About seven vortex around the cylinder can be seen every
vortex shedding half period.

Two pair of vortices detaching in an oblique street from the
cylinder, two vortices remaining form the past cicle and traces
of several others vortices shredded in previous cycles are visible
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at R, = 1000. Characteristic transversal street and a V-pattern
around the cross-flow axis is evident. At each half cycle,
between 9 and 10 vortices stay around the cylinder, a behaviour
typical of Williamson regime G, however, a chaotic slant vortex
street is developed left and right of the cylinder without
persistent vortex pattern observed along the time. About nine
vortex around the cylinder can be seen every vortex shedding
half period

For the Reynolds cases 300, 500 and 1000, in-line and cross-
flow forces are chaotic and strong peaks appear. This chaotic
behavior is present because there are no persistent vortex
patterns. The dominant harmonic for the case of Re = 1000
sometimes is three times higher than the oscillating fluid flow
frequency, but two times the oscillating frequency. The flow
regime is dominated by the viscous drag component in all these
cases. Finally, the numerical results presented in this paper for
the dominant in-line and cross-flow frequency shows good
agreement with experimental results provided by Riveros et al.
[24].
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