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Abstract: The development of virtual sensors predicting the desired output requires a careful se-
lection of input variables for model construction. In an industrial environment, datasets contain
many instrumentation system measures; however, these variables are often non-relevant or exces-
sive information. This paper proposes a variable selection algorithm based on mutual information
examination, redundancy analysis, and variable reduction for soft-sensor modeling. A relevance
calculation is performed in the first stage to select important variables using the mutual informa-
tion criterion. Then, the detection and exclusion of redundant variables are carried out, penalizing
undesired variables. Finally, the most relevant variables subset is determined through a wrapper
method using Mallowssans' Cp metric to assess the fitting prediction performance. The approach
was successfully applied to estimate the ethanol concentration for a distillation column process us-
ing an adaptive network-based fuzzy inference system architecture as a non-linear dynamic regres-
sion model. A comparative study was performed considering the application of correlation analysis
and the method proposed in this study. Simulation results show the effectiveness of the proposed
approach in the variable selection providing a reduction in search of suitable models that achieve
faster results for developing soft sensors oriented to industrial applications.
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Un algoritmo de seleccion de variables de enfoque hibrido
basado en informacion mutua para aplicaciones de sensores
blandos industriales basados en datos

Resumen: El desarrollo de sensores virtuales que predicen el resultado o producto deseado requie-
re una cuidadosa seleccion de variables de entrada para la construccion del modelo. En un entorno
industrial, los conjuntos de datos contienen muchas medidas del sistema de instrumentacion; sin
embargo, estas variables suelen ser informacion no relevante o excesiva. Este articulo propone un
algoritmo de seleccion de variables basado en el examen de informacion mutua, el andlisis de re-
dundanciay la reduccion de variables para el modelado de sensores blandos. En la primera etapa se
realiza un calculo de relevancia para seleccionar variables importantes utilizando el criterio de infor-
macion mutua. Luego, se realiza la deteccion y exclusion de variables redundantes, penalizando las
variables no deseadas. Finalmente, el subconjunto de variables mas relevante se determina a traves
de un método de envoltura utilizando la métrica Cp de Mallows para evaluar el rendimiento de la pre-
diccion de ajuste. El enfoque se aplicd con éxito para estimar la concentracion de etanol para un pro-
ceso de columna de destilacion utilizando una arquitectura de sistema de inferencia difusa basada en
red adaptativa como un modelo de regresion dinamica no lineal. Se realizd un estudio comparativo
considerando la aplicacién del analisis de correlacion y el método propuesto en este estudio. Los re-
sultados de la simulacion muestran la efectividad del enfoque propuesto en la seleccién de variables
proporcionando una reduccién en la bdsqueda de modelos adecuados que logren resultados mas
rapidos para el desarrollo de sensores blandos orientados a aplicaciones industriales.

Términos del indice: basado en datos; selecciéon de caracteristicas de la columna de destilacién;
procesos industriales; informacion mutua; Sensor blando



Introduction

In industrial processes, online quality measure-
ments are critical to ensure suitable process pa-
rameters, automatic control of key-variables, and
timely decision-making. The online calculation
of these variables is, in some cases, difficult or
money and time expensive. When hardware sen-
sors are unavailable or unsuitable, data-based in-
ferential estimators called soft sensors or virtual
sensors developed in recent years can be used. The
soft sensor indirectly estimates primary variables
through inference from process observations. In
the industrial sector, the estimation of the desired
process variable is usually based on secondary
easy-to-measure variables, such as temperature,
flow rate, level, among others. Some works show a
complete methodology for soft-sensor design, for
instance in [1], [2].

Thus, each methodology reported considers the
problem of datasets contain many variables, which
are challenging to handle since they often include
redundant and non-relevant information. There-
fore, prediction performance is reduced due to
overfitting and data dimensionality problems. This
situation has been studied, and several works have
been reported to reduce the number of variables by
removing irrelevant information variables. Three
main approaches are used for variable selection in
machine learning. Filtering techniques use statis-
tical metrics to score variables regarding the target
variable [3]. Wrapper methods use a learning mod-
el to select relevant variables, making them more
accurate to fit the particular model through an er-
ror metric for selection. In contrast, they are more
computationally expensive than filtering methods
[4]. A third approach is a hybrid, in which filtering
and wrapper elements are combined to improve
the quality of selection and computational cost re-
duction [5].

Several successful soft sensors have been re-
ported dealing with feature dimensionality prob-
lems through filtering approaches. For instance,
[6] implemented a soft sensor based on artificial
neural networks (ANN), [7] designed a support vec-
tor machines (svMm) to predict the melt index for
a polymer in, and [8] employed fuzzy systems to
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obtain methanol concentration from a simulated
distillation column. These cases provide a filtering
approach based on correlation analysis through
Pearson’s correlation coefficient. Although some
other metrics such as information theory, non-
linear correlation or even expert knowledge have
been reported in soft-sensor design, Pearson’s
correlation analysis is the most used. Likewise,
several soft sensors have been reported using
wrapper methods for variable selection. The wrap-
per approach uses the performance of the learning
technique itself to provide the most representa-
tive subset from several options. For example, [9]
implements a soft sensor for monitoring gases
emission, for which variable selection was carried
out through ANN training using different subsets
of variables. In [10], a soft sensor based on ANN is
implemented to estimate kerosene’s endpoint. The
work reports a wrapper selection of secondary
variables using Mallow’s Cp as the model perfor-
mance metric. Also, [10] uses several ANN archi-
tectures and mean square error (MSE) to select the
most relevant variables for predicting the target
variable.

Recently, hybrid methods have drawn more
attention from soft-sensor designers to achieve a
suitable prediction performance and reduce com-
putational costs employing combined filtering
and wrapper methods. Thus, filtering scores such
as correlation coeflicient, Spearman coefficient,
among others, show linear dependence between
two variables. However, industrial processes pres-
ent strongly non-linear relationships between their
variables. Therefore, more powerful techniques us-
ing information theory-based metrics such as mu-
tual information (m1) and gain information (GI)
have been used. These are entropy-based metrics;
thus, the dependency is measured through the
quantity of information computing. In [11]-[13],
the authors show soft-sensor selecting variables
through mr as filtering metric and regression tech-
niques such as principal component analysis (pca)
or partial least squares (PLS), to obtain a suitable
subset of variables. Although many hybrid algo-
rithms have been proposed to detect the relevance
of variables of a dataset, scarce attention has been
paid to non-linear dependencies between variables
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of industrial datasets considering the redundancy
and model performance measurement.

In [14], [15] the authors present a complete re-
view of feature selection techniques for industri-
al processes soft sensors. They have considered
application cases of industrial soft sensors where
filtering, wrapper and hybrid approaches were ap-
plied. Although many of these approaches have
been used on successful soft-sensor applications,
the more recent works explore hybrid method due
to its balance between accuracy and computation-
al cost. Also, M1 has been drawing attention from
researchers, since it deals with nonlinear datasets
and low computational cost. Lastly, soft-sensor
researchers have focused on performance metrics
regarding machine learning technique; howev-
er, the prediction performance may be strongly
affected by redundant variables in the dataset.
Therefore, redundancy should be measured and
involved in the feature selection algorithm.

This work proposes a hybrid selection variable
algorithm based on the M1 coefficient, followed by
redundancy analysis and reduction, for industrial
processes soft sensors. The approach’s effectiveness
lies in the variable selection, decreasing the search
for suitable models that achieve consistent and ac-
curate results for developing soft sensors oriented
to industrial applications. The proposed method
starts by computing the relevance for each process
variable using the M1 coeflicient. The variables are
then scored by a redundancy coefficient, and final-
ly, the subset of the suitable variables is reduced
using Mallow’s Cp coefficient as the performance
metric. Moreover, a study case demonstrates the
algorithm’s use and results applied to a distilla-
tion column process for water-ethanol mix sepa-
ration. The soft sensor has been designed using an
adaptive neuro-fuzzy inference system (ANFIS)
to estimate ethanol concentration at the top of the
column. A comparative study was performed to
show the results of applying correlation analysis
and the proposed method in developing a soft sen-
sor for the distillation column dataset.

This paper is organized as follows: The second
section introduces the mutual information coeffi-
cient and the model performance metric’s math-
ematical basis and presents the proposed variable
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selection algorithm. The third section describes
the study case’s simulation results for applying a
soft sensor based on ANFIS. Finally, the fourth
section gives concluding remarks.

Materials and methods

Mutual information coefficient
Industrial processes often require finding the
best subsets of easy-to-measure variables to esti-
mate the hard-to-measure variable regarding the
available dataset. Several soft sensors have been
proposed, including feature selection techniques
based on correlation and collinearity, for instance
[16]. These methods were designed for linear be-
havior datasets; however, industrial systems are
non-linear processes. Hence, correlation metrics
are not a suitable choice for feature selection. Re-
cently, information theory metrics have been used
to solve non-linear feature selection problems such
as entropy (E), M1, and GI, among others.

Mutual information is a non-linear dependen-
cy metric between two variables of a system. It
can be calculated through information entropy as
follows:

H(x) = — [ f(x) log(fe (x)) dx 1)

HOI) = [ [ foyColog GE29dxdy ()

Entropy is the measure of uncertainty of a
random variable [17]. Equ. (1) shows the entro-
py calculation for a continuous random variable,
where fx is the probability density function for a
random variable x. Equ. (2) shows the conditional
entropy calculation for two continuous random
variables, where fxy is the conditional probability
density function for variable y given variable x.
Although Equs. (1) and (2) allow entropy calcula-
tion for continuous variables, these density prob-
ability functions are hard to obtain.

Because of this, assuming x and y as discrete
random variables, it is necessary to obtain the en-
tropy as follows:

J. Cote-Ballesteros m V. Grisales m J. Rodriguez



H(x) = = %;p(x;)log,(p(x;)) (3)

H@lx) = =%; 3ip(y, x:) log, p(v;|x:) 4)

In this manner, M1 can be calculated as

MI(x,y) = H(y) + H(x) — H(y|x) ®)

p(yjxi) ©)

where i and j represent the input and output
variables to analyze respectively.

Greater MI means greater dependency between
x and y. MI is more relevant for describing the re-
lation between variables, valid for both linear and
non-linear cases.

Measure for predicting

performance

Filtering methods on industrial datasets may not
be accurate by themselves, since variables are
not being considered as part of a whole model.
Wrapper selection methods deal with input vari-
able selection by model performance measure-
ment through several metrics such as MSE, RMSE,
R2, Mallow’s Cp, among others. The soft-sensor
model’s predictive performance is frequently
measured through error metrics, such as MSE or
root mean squared error (RMSE), among others,
expressed by

MSE =137 (v, - %)’ %)

where Yj are the observations, #, predicted val-
ues of a variable, and n the number of observations
available for analysis. However, the minimal error
model is not necessarily optimal since high dimen-
sional models might result in biased error metrics
by overfitting [2] . Therefore, to deal with this prob-
lem, it is common to use a measurement that pe-
nalizes overfitting. For example, Mallow’s Cp [18]
allows determining the optimal tradeoff between
model size and model performance by penalizing
those overfitted models. Mallow’s Cp can be calcu-
lated as
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where y; (k) are outputs obtained by using a
subset of p variables, ¥; are the predicted values, n
is the number of samples and 03 are the residuals
for the full trained dataset. Thus, Cp-value mea-
sures the relative bias and variance of a model with
p variables. Therefore, the unbiased model’s value
will be p so that the optimal model will have the
Mallow’s Cp number closest to p [1].

Proposed variables
selection algorithm

This subsection presents a new variable selection
algorithm based on the mi1 coefficient and a wrap-
per technique to obtain a suitable subset of vari-
ables for soft sensors with industrial orientation.
The mi-based variable selection method may be
considered as filtering, where the mr coefficient is
used to score relevance for each process variable
[19], [20]. Industrial datasets contain a large num-
ber of variables, thus some of these measurements
might provide redundant information and pre-
diction performance degradation. Therefore, re-
dundancy between two random variables may be
calculated as [21]

MI (xl-,x ]) (
Coxs) = ——U2 9)
R(xu x]) H(xl-)+H(xj)
where R takes values between 0 and maximum
valor. Therefore, normalized R can be written as [21]

MI (x,;,xj)

min{H(x;),H(x;)} (10)

ﬁ(xi, x]) =

The stages of the proposed algorithm are as fol-
lows. First, the selection of essential variables is
performed using the mutual information criterion.
Then detection and exclusion of redundant vari-
ables are carried out, penalizing relevant variables
selected previously. Finally, the subset of the most
suitable variables is determined using the wrapper
method to assess the prediction performance with
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Mallow’s Cp metric as the selection criterion. To
calculate M1, Equ. (6) is employed.

The proposed algorithm’s detailed structure
is presented below; at the final iteration, S is the
selected set of variables for developing the soft
Sensor.

Algorithm 1 Variable Selection Algorithm

1: procedure

//filtering stage

2: Given F={fi} the total variable set and S an

empty set; i=1,2,...,k

3: Compute MI for each feature regarding target

values; MI(xsyj)

4: Adding the first variable to S; si=max{MI(x,y;)}

have the answer if r is 0

5: while Mallow’s Cp decrease:

//Wrapper stage and redundancy computing

6: Compute redundancy for si regarding all re-
maining se€S

7: Selection of next feature/variable by max

{MI(x;, y:) —% 1R}

8: Training and validation by using a machine

learning technique with the obtained subset

9: Compute Mallow’s Cp performance prediction

10: end while

11: end procedure

High redundancy variables are strongly penal-
ized by using average redundancy and possibly re-
moving them, otherwise, the variables are selected
for the S subset.

The Hill climbing method is used as the wrap-
per and consists of an iterative trial and error
technique, starting with an empty variables sub-
set and progressively incrementing one variable by
one until the best performance subset is complete.
Lastly, Cp-value is chosen as the prediction perfor-
mance index. The Mallow’s Cp will be degraded
if high dimensionality affects soft-sensor perfor-
mance prediction.

Result and discussions

The proposed study case is a distillation column
process that is broadly used for petrochemical
and food factory industries. Much work has been
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reported with successful applications of distillate
product soft sensors [10], [11], [22].

Simulation dataset

A distillation process consists of separating two or
more compounds by applying energy to lead vapor
toward the column’s top. The remaining liquid is
transported to the bottom of the column. This pro-
cess is repeated until the separation is completed.
Fig. 1 shows a distillation column scheme.

Fig. 1. Distillation Column Scheme.

Condenser
‘i
Reflux Pis‘tilla!e
rate low
Rectifying
Section
Feed
Flowrate Column
Stripping
Section

Source: The authors

This work considers a non-linear simulated
mathematical model of a binary distillation with
12 trays to separate the water-ethanol mix. A data-
set containing 60 input variables with 4000 obser-
vations (data points) was collected at a sample rate
of 10 samples per hour with no-shutdown phases.
The dataset was contaminated with 10% amplitude
noise, and random 5% of total observations are
outliers, to represent common environmental con-
ditions of industrial conditions. Ethanol distillate
concentration is the dataset output, and the model
inputs are shown in Table 1.

J. Cote-Ballesteros m V. Grisales m J. Rodriguez



Table 1. Labels for distillation column variables

| Label

Variables description

Pressure (at each stage) U_1-U_14
Liquid flowrate (at each stage) Uss-Uazs

Vapor flowrate Uas
Temperature (at each stage) Uso-Us3
Hold on mass (at each stage) Ugs-Us7

Distillate flowrate Usg

Bottom flowrate Uso

Feed flowrate Uso

Source: The authors

Outliers detection

The presence of outliers in industrial datasets is
expected due to environmental issues; therefore,
these observations should be detected and re-
placed, aiming for a suitable training and predic-
tion performance. A Hampel filter is applied to the
dataset to avoid high deviated outliers sensitivity
[1], [14], [23]. Thus, the Hampel filter uses medi-
an absolute deviation (MAD), an outlier-resistant
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metric, and applies the filter through a moving
window with two tuning parameters, threshold,
and width. MAD can be implemented with [19]

MAD = 1.4286 * median{|x; — x*|} (11)

where xi are the values of the data sequence and
x'is the median.

Training and validation

The soft sensor was developed using a five-layer
ANFIS model with gaussian membership func-
tions, N input variables, and Takagi-Sugeno con-
sequent. Fig. 2 shows the considered architecture.
The training was carried out with a hybrid ap-
proach using a back-propagation algorithm for
tuning the membership function parameters and
least squares for adjusting Takagi-Sugeno function
parameters [24], [25].

A first-order, non-linear autoregressive with
exogenous input (NARX) model was considered for
ethanol distillate concentration prediction. MSE and
RMSE were used as training performance metrics.

Fig. 2. Five-layer ANFIS architecture for the industrial soft sensor.

Input Layer1
Layer 4
Layer 2 Layer 3 v
- "'1'I. L ¥
' ' | | Layer 5
L} “'.l H': —
2 [ a [ - L Wy l'l +
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1 2 E B *
{ B,
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I-I L] N W, Vel
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Source: The authors
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The proposed algorithm was applied to the
initial 60 variables dataset from Table 1 to obtain
the most suitable subset for prediction. First, the
ranking stage was performed to determine ethanol
concentration's dependence regarding distillation
column secondary variables; the results are pre-
sented below. Table 2 shows the top ten variables
obtained through mutual information coefficient,
for which ethanol concentration depends on sev-
eral flow-rates and trays temperature. A greater M1
coefficient means greater dependence regarding
ethanol concentration.

Table 2. Top-ten relevant variables regarding ethanol
concentration based on mutual information
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performance degradation if all these temperatures
are considered for the ANFIS model. Additionally,
the correlation method only considers linear rela-
tionships between the variables, therefore it is likely
that at the end of the list there are variables that
represent the ethanol concentration in a non-linear
way. On the other hand, the M1 coefficient presents
very different results regarding the variables with
the highest weight. In this case, the first 10 vari-
ables correspond to some temperatures but also
some flows, which indicates that in these variables
there is information that represents the ethanol
concentration, regardless of whether these relation-

ships are linear or non-linear.

Variable | Label | MI coefficient Table 3. Top-ten relevant variables regarding ethanol
Temperature plate U 3.42 concentration based on correlation analysis
Temperature plate Us: 2.47 Variable | Label | Pearson’s coefficient
Temperature plate Us 2 Temperature plate 1 Uso -0.9903
Temperature plate Uss 1.52 Temperature plate 2 U3t -0.9658
Temperature plate Uss 1.38 Temperature plate 3 Uz -0.9645
Temperature plate Ua 0.98 Temperature plate 4 Us -0.9486

Liquid flowrate Urs- Uzs 0.69 Temperature plate 5 Usq -0.9180
Bottom flowrate us 0.57 Temperature plate 6 Uss -0.8873

Feed flowrate Uso 0.23
Temperature plate 7 Usg -0.8528

Distillate flowrate Uss 0.17
Source: The authors Temperature plate 8 Us7 -0.8134
Temperature plate 9 U3s -0.7714

Table 3 shows the ten highest Pearson cor-

Temperature plate 10 U3g -0.7249

relation coefficients in magnitude, between the
distillation column inputs and the ethanol concen-
tration. It shows that the estimated variable has a
high dependence only on the temperatures in the
column plates. However, Pearson’s coefficient does
not consider a non-linear correlation between the
variables, while the M1 coeflicient does.

The results of this first stage of the algorithm,
after an extensive graphical study, indicate high
dependence between the temperatures in the trays
and ethanol concentration, however, these results
show redundancy between the variables. There-
fore, it is likely that the soft sensor will have a

Source: The authors

Next, the algorithm proposed was applied, aim-
ingforthebest prediction subset to estimate ethanol
concentration. Fig. 3 presents the behavior of the al-
gorithm with several groups of variables. Training
and validation processes were performed for each
variable’s subset to assess the performance predic-
tion in these cases. Fig. 3 shows a decrease of MSE
with subset size increment, although soft-sensor
performance is degraded with subset size greater
than seven variables.

J. Cote-Ballesteros m V. Grisales m J. Rodriguez



Fig. 3. Training and validation MSE for several subsets
size.
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distillate and feed flowrate affect ethanol concen-
tration. Expert knowledge confirms the results ob-
tained from the proposed algorithm.

Table 5 presents variable selection considering
correlation analysis. Results show subset 6 as the
most suitable regarding Mallow’s Cp value. Af-
ter applying the correlation analysis and wrapper
methodology, subset 6 presents a minimal valida-
tion metric. However, this MSE is higher than the
proposed method because correlation only con-
siders the temperature of trays, and probably in-
formation redundancy exists. In this case, at least
six variables are necessary to obtain an acceptable
performance of the proposed soft sensor

Table 5. Hill climbing metrics results for correlation
analysis

Subset Labels Subset MSE MSE Mallow's
Size Train | Validation Cp
Table 4 shows several candidate groups of vari- 1 Uso 1 00834 08312  8.021x10°
ables and their validation metrics. From Fig. 3 > et 3 00571 00761  3.381x10s
and Table 4 it is possible to conclude that subset 5 R ' ' '
achieves the best balance between subset size and 3 UmUmb 5 00135 00517 7.631x10°
L Uss U
prediction accuracy. B
4 Uso, U3, Usz, 7 0.0021  0.0128  4.131x10°
Table 4. Hill climbing metrics results for m1 coefficient Lllj”’l:f“’
35,U36
Subset Labels Subset MSE MSE Mallow’s
Size Train | Validation cp 5 Uso, U3, Usz, 8 0.0015  0.00461  1.637x10*
Us3,Us4, Uss,
1 U3o 1 0.0964 0.191 5.019x10° Uss, Us7
2 Uso,U31,Usg 3 0.0484  0.0553  1.446x10° 6 Us,Usi,Uuzz, 10 0.0004  0.00137  0.983x10*
5 Us3,Us4, Uss,
3 Uso, Us1, Uss, 5 0.0052 0.0242  6.370x10 Uss, Us7,
Uss, Ugo Uss, U3y
4 Uso,U31,Uss, 7 0.0001 0.0001856 4933 Source: The authors
Ug, Uss,
Uso, U . . .
e After variable selection and NARX model archi-
5 usunun, 8 00003 0.0135  3.637x10°  tecture were applied, an ANFIS-based soft sensor
u::SZ:ZGO was obtained. Thus, it predicts ethanol concen-
tration at the output of a distillation column for
6 Uss, U3, 10 0.0001  0.0002491 6609 . . .
Ui U, water-ethanol mix separation. Several operation
Use, Ua, Uss, points at steady state are considered during 120
Usg, Uso

Source: The authors

From Table 5, an 8-variable subset is selected
from the algorithm; trays 1, 2, 3, 5 and 18 tempera-
tures are highly relevant for prediction. Likewise,

hours, without shutdown phases. The data were
collected at six minutes time-sampling, the noise
of 10% amplitude has been added and 5% of total
samples were contaminated with outliers. These
are typical conditions of industrial instrumenta-
tion systems.

A Hybrid Approach Variable Selection Algorithm Based on Mutual Information

for Data-Driven Industrial Soft-sensor Applications



Fig. 4.a. shows the ANFIS well-trained sys-
tem's validation results with selected subset by
the M1-based proposed method. The vertical axis
represents ethanol concentration at the top of the
distillation column, and the horizontal axis is time.
Fig. 4.b. presents residual error from soft-sensor
validation. Results show an error near 0 for each
time instant.

Table 6 shows a comparison between soft
sensor based on proposed algorithm and other
algorithms reported in literature. Minimal redun-
dancy maximal relevance technique (mrMR) [20]
and Mutual information feature selection algo-
rithm (M1Es) [19] have comparable results with the

Revista Ciencia e Ingenieria Neogranadina m Vol. 32(1)

proposed algorithm, however the proposed algo-
rithm has a lower computational cost.

Table 6. MSE for ANFIS soft sensor based on several fea-
ture selection algorithms

Feature Selection ANFIS MSE
Algorithm
Proposed 0.000207
Correlation Analysis 0.004989
LASSO 0.002485
MRMR (Nonlinear) 0.000358
MIFs (Nonlinear) 0.000317

Source: The authors

Fig. 4. a) Ethanol molar concentration actual and prediction. b) Residual error.
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Fig. 5 shows 50 hours of operation where the red
line represents predicted data, and the blue line
is actual data. After the validation stage, MSE was

obtained, which has suitable accuracy for this type
of measurements.
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Fig. 5. Detailed 50-hour operation of the distillation column and the developed soft sensor.
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Conclusions

This paper has proposed a mutual-information
(m1) based algorithm to select soft-sensor design
variables in an industrial context. This algorithm's
main advantage over previously reported methods
is the ranking of variables by relevance and redun-
dancy before applying the wrapper method. Thus,
the classification of variables reduced the search
in the subsets space and provided relevant results
faster.

The proposed algorithm was applied to a dis-
tillation column to separate a water-ethanol mix
for a data-driven soft-sensor application based on
ANFIS. A comparative analysis was carried out
to explore the best performance between correla-
tion analysis and the proposed m1-based method,
which improves prediction accuracy, showing
suitable performance for industrial environments.

The study case concludes that ethanol concen-
tration depends on eight variables such as 4 tray
temperatures, liquid flowrate, distillation flow-
rate, among others. These results were compared
to expert knowledge; most of the control systems
act over these variables, which shows that it was a
suitable variable selection result.
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