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ABSTRACT

Debris flows, lahars, avalanches, land-
slides, and other geophysical mass flows
can contain material in the order of
0(10°-10") m* or more. These flows com-
monly consist of a mixture of soil and
rocks with a significant quantity of inter-
stitial fluid. They can be tens of meters
deep, and their runouts can extend many
kilometers. The complicated rheology of
such a mixture challenges every constitu-
tive model that can reasonably be applied:
The range of length and timescales
involved in such mass flows challenge
the computational capabilities of existing
models. This paper extends recent efforts
to develop a depth averaged “thin layer”
model for geophysical mass flows that
contain a mixture of solid material and
fluid. Concepts from the engineering
community are integrated with phenome-
nological findings in geoscience, resulting
in a theory that accounts for the principal
solid and fluid forces as well as interac-
tions between the phases, across a wide
range of solid volume fractions. A prin-
cipal contribution here is to present drag
and phase interaction terms that conform
with the literature in geosciences. The
Titan2F program predicts the evolution
of the volumetric concentration of solids
and dynamic pressure. The theory is
validated with data from one-dimensional
dam break solutions and with data from

artificial channel experiments.

Keywords: lahar, modeling, depth
averaging, two phase flow, debris
flow, dynamic pressure.

RESUMEN

Los flyjos de escombros, lahares, avalanchas,
deslizamientos y otros flujos de masa geofi-
sicos, pueden contener material del orden de
O(10°~10") m® o mds. Estos flujos consisten
comiinmente en una mezcla de sélidos y rocas,
con una cantidad significativa de fluido inters-
ticial. Pueden tener decenas de metros de espesor
y un alcance de muchos kilémetros. La reologia
complicada de esta mezcla desafia cualquier
modelo constitutivo que pueda ser aplicado con
solidez. El rango de longitudes y escalas de
tiempo involucrados en estos flujos de masa desa-
Jia también las capacidades computacionales
de los modelos existentes. Este trabajo extiende
esfuerzos recientes para desarrollar modelos de
“capas delgadas™, integrados en profundidad,
para flyjos de masa que contienen una mezcla
de material sélido y fluido. Se integran concep-
tos ingenieriles con hallazgos fenomenoldgicos
en las geociencias, que resultan en una teoria
que tiene en cuenta las principales fuerzas de
particulas y fluidos, asi como las interacciones
entre las fases a través de un amplio rango de
Jracciones volumétricas de sélidos. La principal
contribucidn aqui, es presentar términos para el
arrastre y la interaccion entre fases, los cuales
concuerdan con la literatura de las geociencias.
El programa Titan2F predice la evolucion de la
concentracion y presion dindmica. La teoria es
validada con datos de soluciones unidimensiona-
les para ruptura de presas y vertficada con datos
de experimentos de canales artificiales.

Palabras clave: lahar, modelado,
profundidad promedio, flujo de
dos fases, flujo de escombros,
presion dinamica.
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1. Introduction

Among debris flows, the most devastating phenom-
ena are volcanic flows known as lahars. The name
comes from Indonesia and describes flows whose
solid phase mostly consist of material of volcanic
origin (Tilling, 1996). Lahars are regarded as the
second largest destructive volcanic hazard (Baxter,
1983; Blong, 1984; Tilling, 1989). During the past
century, tens of thousands of people have been
killed by volcanic flows and hundreds of thousands
forced from their homes (Tilling, 1996; National
Research Council, 1991, 1994). These two-phase
mass flows containing water and solid particles are
common in volcanic regions. They can be initiated
by several mechanisms. For example, a volcanic
explosion can be accompanied by large plumes
and pyroclastic flows consisting of rock and gas
that race along the surface of the mountain at
speeds as high as 100 m/s (Sheridan, 1979). The
hot ash can melt snow, creating a muddy mixture
that knocks down trees and entrains rocks and
boulders into the flow. Cotopaxi volcano in Ecua-
dor is an example of a volcano that has produced
many large lahars by this process (Pistolesi et al.,
2013). Crater lakes on volcanoes can be another
source of lahars; a recent example is the 2007
lahar of Ruapehu in New Zealand (Procter e
al., 2010). An additional mechanism for initiat-
ing lahars is intense rainfall on hillsides that are
devoid of vegetation with material like clay soils
or volcanic ash exposed. An example of this type
of lahar is the 1998 mudflow at Casita Volcano in
Nicaragua that occurred during Hurricane Mitch
and caused hundreds of deaths (Sheridan et al.,
1999). Lahars can carry constituent particles that
typically range from clay to boulder size and can
propagate tens of kilometers before coming to rest
(Procter et al., 2010). As the solid particle compo-
nent becomes deposited, the resulting deposits can
be up to 100 m thick (Legros, 2002). However, the
typical deposits left after a debris flow passes are
on the scale of meters.

Models that assume one phase, like pure fluid
(Chow, 1959) or pure frictional models (Savage
and Hutter, 1989), cannot represent the complex
behavior of these kinds of flows (Iverson et al.,
2010; Iverson, 2014). In order to develop a com-
plete mathematical model of debris flows, two
principal challenges must be overcome: rheology
and scale. First, relations among granular material
must be developed to describe granular material
including clays, sands, pebbles and rocks, with
interstitial water. Second, a computational method
must be developed that extends over six orders of
magnitude, as clay diameters are of the order of
O(10°%) m and boulders are O(1) m. Neither of
these challenges can be fully met at this time. This
paper tries to strike a balance between fidelity to
the physics of mass flows and computational fea-
sibility. We describe a modeling effort that draws
on innovation from engineering and geoscience,
which postulate constitutive theory and fluid-solid
interaction effects, and, through a depth averaging
process, results in a system of equations that is
computationally tractable.

The modeling effort here has its origins in the
pioneering work of Savage and Hutter (1989).
They began with mass and momentum balance
laws based on a Coulomb constitutive description
of dry granular material. By scaling and depth
averaging, they developed a “thin layer” model for
granular flows down inclines. Flow over general
topography was addressed in Gray et al. (1999),
Patra et al. (2005), and Pudasaini and Hutter
(2003). Comparison of thin-layer model results
to historic flows was presented for example in
Sheridan et al. (2005), Charbonnier and Gertisser
(2009), and Sulpizio et al. (2010). In Hutter e al.
(2005), the appropriateness of these thin layer
models was considered for several different types
of geophysical flows. Much of the modeling effort
in this direction was summarized in Pudasaini and
Hutter (2007).

Iverson (1997) and Iverson and Denlinger (2001)
argued that the presence of interstitial fluid funda-
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mentally alters the behavior of geophysical flows,
and fluid effects should be included in the consti-
tutive behavior of the flowing material. Starting
with equations of mixture theory (Bedford and
Drumbheller, 1983) and through a careful exam-
ination of experiments, past studies developed a
system of mass and momentum balance laws for
the mixture. Unfortunately, in this development
a balance equation for the motion of pore fluid
was not readily available. Instead, based on exper-
imental data, a transport equation for the fluid was
postulated.

A different approach, based on a fully three-di-
mensional model of two-phase flows, can be found
in Dartevelle (2004) and Meruane et al. (2010).
Another approach to modeling mud flows employs
visco-plastic constitutive assumptions (Coussot,
1997; Balmforth and Craster, 1999; Mei et al.,
2001; Ancey, 2007). The choice of a visco-plas-
tic flow model drives the subsequent derivation,
as well as the parameter fitting necessary for the
constitutive relationship. The process of depth
averaging a visco-plastic flow is always difficult.
The interface between yielding and non-yielding
material is itself a free surface that must be deter-
mined. This attribute requires the use of multiple
layers in the model system, with all the resulting
complexity.

Pitman and Le (2005) developed a two-phase
thin-layer model of fluid and granular material.
They began with a fully three-dimensional model
of two-phase flows, based on model equations in
engineering (Jackson, 2000). The model equations
arc scaled and depth averaged. The resulting
system of equations is not complete, and closure
assumptions are required. With these assumptions,
the mathematical system is shown to be hyperbolic
under common conditions, and thus well posed
(Pelanti et al., 2008). The model of Pitman and
Le (2005) includes a drag term, which is the only
term describing the interaction of the two phases;
this coeflicient must then be fitted to experiments.
That model assumes the fluid is not viscous, and
that there is no frictional dissipation in the fluid
phase at the basal surface. Both of these assump-

tions, which are reasonable in bench-scale fluid-
ized bed experiments, are difficult to determine for
large mass flows. The Pitman and Le (2005) model
over-simplifies the physics of the fluid phase.
When applied to real-scale topographies it only
works for constant solid-particle concentrations
well above the dilute flow limit, where the physics
of two phase flows are mainly governed by pure
fluid dynamics. Particle-particle interactions are
unimportant for volumetric particle concentra-
tions less than 10% (Bagnold, 1962; Winterwerp,
1999; Dartevelle, 2003). In order to address some
of the shortcomings of the Pitman and Le (2005)
model, this paper reconsiders the model equations
proposed by them and proposes a revision of the
model equations that better represents two-phase
geophysical flows. For example, the proposed
model accounts for the friction at the wall of the
fluid phase and no longer assumes a constant
volumetric fraction of solids, as in Valentine and

Wohletz (1989) and Dobran (1991).

2. Model derivation

The Titan2F model uses a similar framework to
that developed in Pitman and Le (2005). However,
a complete set of model equations for a granular
phase and for a fluid phase is written. Phase inter-
action terms are modeled, and scaling of all terms
suggests simplifications that can be made. Depth
averaging and closure assumptions complete the
derivation.

A note on sign convention: in soil mechanics it is
common to consider compressive stresses as posi-
tive; by contrast, in fluid mechanics, as an increase
in pressure results in a reduction of the volume,
compression is negative. We caution the reader
to observe the sign convention in the equations
below.

2.1 FUNDAMENTAL ASSUMPTIONS

All symbols used in this paper are described in
Table 1, Appendix A. The fundamental theory of
two-phase flows used here can be found in Dobran
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(1991) and Jackson (2000). In two-space dimen-
sions we consider a thin layer of granular material
(s) and interstitial fluid (f), each of constant spe-
cific density p* and p/, respectively, flowing over a
smooth basal surface, 6. Erosion and deposition
are neglected. Along the basal surface, we define
a Cartesian coordinate system Oxpz, with origin O
defined so the Oxy is tangent to the basal surface,
with x in the downstream direction, and Oz in the
normal direction. Writing ¥ , % for the velocities
of the solid and fluid constituents, respectively, ¢
for the solid volume fraction and ¢ for the fluid
volume fraction. We assume the mass is fully sat-
urated, so the sum of the solid and fluid volume
fractions adds to one (¢ / = I - ¢). When writing
equations in component form, we use subscripts to
denote the component of the vectors, and super-
scripts the phase of the flow (either solids or fluid).
Mass conservation for the two constituent phases
may be written as in Anderson and Jackson (1967):

0050 + V- (pSp?¥) =0 ()
0p"1-—@)+V-p*A-—@))=0 (2

The momentum equations are:

0 (p5pD) + V- (pSpid) =V T+ f5 + ppg (3)

%0 A - @)+ V- (pf (L —@)ai) =V-T/ + f/ +p/ (1 — )G (4)

Here T° and 77 are the stress tensors for the solid
and fluid, respectively, and /* and /* are the inter-
action forces between the solid and fluid phases,
respectively. We must postulate constitutive rela-
tions and an equation for the interphase force
to close the system. Jackson (2000) presented an
argument for separating buoyancy from other
interphase force terms (such as drag or virtual
mass), and for properly accounting for buoyancy
in a field with fluid pressure variations. Similar
modeling can be found in Valentine and Wohletz
(1989), Dobran et al. (1993), Dobran (2001), and
Neri et al. (2003, 2007).

Pitman and Le (2005) accounted only for the drag
in evaluating the interaction force, unlike them,
from Dobran (1991), (neglecting capillarity, virtual
mass, and lift) we account for the total fluid stress
as well:

f$=—@VT' + D% — 1)
fr=~f°

Here, the total fluid stress is 7/= -P/+7//, where
P/is the fluid pressure and 7/is the viscous contri-

(%)

bution to the fluid stress. The drag term exchanges
momentum between the phases, with a coeflicient
D that is phenomenological. Ergun (1952), Wallis
(1969), Gidaspow (1994), Fan and Zhu (1998),
Dobran (2001), Mazzei and Lettieri (2007) and
Panneerselvam et al. (2007), among other sources,
suggested values. When ¢ — 0, the drag vanishes.
Following Mazzei and Lettieri (2007), we set

where d is the mean particle diameter and f3 is a
constant related to the constant n in the Richard-
son—Zaki equation (Khan and Richardson, 1989).
According to Mazzei and Lettieri (2007), this con-
stant equals 2.80 either when R—0 or =, thus we
use 3 = 2.80 in Equation 6. Finally, by assuming
smooth spherical particles on the inertial regime,
the drag coeflicient is approached as constant
C,= 1, which holds for particle Reynolds number
up to 500 (Sparks et al., 1997).

2.2 SCALING

The characteristic thickness of the flowing gran-
ular material is /7 and the characteristic length is
L. We scale x and y by L, and z by H, the time by
the free fall time \/Lg. And we scale the x, y and 2
velocities by \/Lg and (H/L)\/(Lg), respectively. The
stresses are scaled by p'gH for the solids phase and
p/gH for the fluid phase. After scaling, the mass
balance equations are unchanged. Several terms
in the momentum equations contain the factor

e = H/L, which is small; values of € from 0.01
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to 0.001 are not uncommon (Iverson and Den-
linger, 2001). Writing x, », z for x, x,, x,, the solid
momentum balance equations become (showing
here just the x momentum),
at((pvx) + ax((vaVx) + ay((pvxvy) + 62((p17x172)

(7)
— s s s of f 4D
7ax€Txx + ayeTxy + aszz - €F¢62Tzz + F (vx - ux) + PYGx
Note that components of gravity have been scaled
by the magnitude |g|,so (g, g, g )is a unit vector.
With the same scaling, the fluid momentum bal-
ance equations become

at(l - (p)ux + ax((l - (p)uxux) + ay ((1 - (p)uxuy)

+az((1 - (p)uxuz)

; ; (8)
=0,e(1— )Ty + aye(l - Qo)Txy

D
+0,e(1 — @)T), — 7 (e —w) + (1= 0

Equation 8 shows an important advance in mod-
eling the physics of the flow related to Pitman and
Le (2005) as we do not neglect the effect of the
volumetric fraction of fluids.

In summary, the proposed equation system con-
sists of the solid volume fraction @, the three solid
velocities ¥, and three fluid velocities 7. These
variables evolve according to the six momentum
balance laws for the species, and the mass conser-
vation relations for each species.

2.3 CONSTITUTIVE ASSUMPTIONS AND BOUNDARY
CONDITIONS

The upper surface of the flowing mass at F (x,
y, t) = 0 1s assumed to be a material surface and
stress free. At the base of the mass, material is
assumed to flow tangent to the basal surface, and
to satisty a sliding friction law. For the solid constit-
uent, this friction relation specifies that the shear
traction and the normal stress are proportional:

Fap = 2

Sy = —SGnVINp, tan(@peq). where g, is the
basal friction angle and the —sgn() specifies that
the shear traction opposes motion.

We now will discuss constitutive relations. A
Coulomb constitutive relation (Coulomb, 1776)
is postulated for the material. The Coulomb law
is a nonlinear relation among the components
of T5 and stipulated that material deforms
when the total stress reaches yield, which means
V dev(T®) v= ktr(T*), where dev(T%) = T5= Yo tr
(T 1s the stress deviator, & (T®) is the trace of the
stress (the sum of the diagonal components), I is
the identity tensor, and «x is a material parameter,
and that as deformation occurs, the stress and
strain-rate tensors are aligned. That is, the align-
ment condition specifies dev(1*) = A dev(V), where
the strain-rate V.= —1/2 (V0+V0) and # denotes
the transpose. To avoid a switching between plas-
tic and non-plastic behavior, we assume the solid
material is everywhere in plastic yield.

The full Coulomb relations are too complex to
be used here. Two simplifications are proposed.
First, at the basal surface, the boundary condition
ensures proportionality and alignment of the tan-
gential and normal forces. We assume the same
proportionality and alignment holds throughout
the thin flowing layer of material. Written in
components 7, this implies 73" = v;7_*, where the
proportionality constant v is a function of ¢, .
Second, following Rankine (1857) and Terzaghi
(1936), an earth pressure relation is assumed for
the diagonal stress components, v, =k _, or T _*=
k T 5 where

ap "~ zz

L% [1 = cos () [1 + tan(dpea)]]? 1 9
co8%(Pint) '

Here ¢, is the internal friction angle and the

choice of the plus or minus sign depends on
whether flow is locally contracting (the pas-
sive state, with V- ¥ < 0, and the plus sign), or
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expanding (the active state, with V% > 0, and
the minus sign).

For the fluid, the stress terms in Equation 8 should
be such that in case of ¢ — 0 the equations agree
with the pure fluid depth-averaged equations.

For pure water, the shear stress at wall can be

approached by (Chow, 1959)

Tw = p gRuS;

where S, is the slope friction and R, is the hydrau-
lic ratio. Note that for shallow-water problems,
this assumption could be considered a rough
approximation in case the shallow-water theory’s
condition is not met. There are several approaches
for approximating both the slope friction and the
shear stress at wall. For example, Pan et al. (2006)
use the empirical Manning approach, whereas
Liu and Leendertse (1978) and Zhou and Stansby
(1999) use the Chezy equation. Both the Manning
and Chezy approaches pose numerical problems
when £ = 0. Thus we use the Darcy equation
(Zhou, 1995; Xu, 2006):

Tur = —p Cpui?
where
Cp =L (10)
is the Chezy coefficient. The friction coeflicient

depends on the Reynolds number and the rough-
ness of the channel (k).

B

3. Depth averaging

The final step in the derivation is a depth averaging
of the mass and momentum balance equations.
In this and the following sections we will use the
same notation used by Savage and Hutter (1989).
If A(x, 3 1) 1s the unsteady surface of the flow and
b(x, ») 1s the terrain surface, for some function f, we
compute

1 h{z,y.t)

flz,y,z,t)dz = f.

“L - b’ b(x,y)

Where /& — b 1s the flow depth at a point (x, y) and
time £ As the function f contains partial deriva-
tives, repeated use of the Leibniz rule is made to
interchange integration and diflerentiation, and
boundary conditions are employed to evaluate
terms at b and /4. In addition, several approxima-
tions must be made during the depth averaging
process. In what follows, we only briefly sketch the
depth averaging process, noting as appropriate
those places where approximations are made. Pit-
man and Le (2005) provided an estimation of the
errors typically made by these assumptions.

The terms of order e are assumed small and
we hope to drop all such terms from the model.
However, Savage and Hutter (1989) argued that
diagonal contributions to the solid stress must
be retained. Because there is no preferential
downslope direction in our applications, and the
flow direction may change during a flow, we retain
the stress terms in both the x and y directions,
dropping only O(e) terms in the z direction. See
the discussion in Iverson and Denlinger (2001).

3.1 MASS BALANCE EQUATION

As p* and p" are constants, Equation 1 can be
reduced to:

V-{ot+(1—p)i)=0.

Which says that the volume-weighted mixture
flow is divergence free. This equation is integrated
fromz=btoz="h:

h
/b V- (oti+ (1 —p)i)dz = 0. (11)

The upper free surface F, = 0 is a material surface
for the mixture. So, following Savage and Hutter
(1989) and Pitman and Le (2003), at z = A(x, £,

O(ph+ (1= @)h) + (g + (1 — @)ug)Oxh (12)
+ (pvy + (1 = 9)uy)Oyh — (oo + (1 = @Juz) = 0.
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At the basal surface F, = 0, the flow is tangent to
the fixed bed, and the bed is fixed in time. Thus,
we can drop in Equation 12 the terms in 0, taking
into account that at the surface z = b(x, ») (Pitman
and Le, 2005):

(e + (1 — p)u,)0.b
+ (pvy + (1 — p)uy)9yb (13)
— (o, + (1 —p)u,) = 0.

Like in Pitman and Le (2005), at this point, we
have ignored sedimentation, entrainment, and
infiltration of fluid into the bed.

Using Equation 13 and after algebraic manipu-
lation, the depth averaged equation for the total
mass of the solid and fluid can be written

Ot + 0. (h(FT7 + (1 — ¢)u,)) n
=0.

+ 0, (7T + (1 — 9)uy))

In writing this equation, the depth averaged veloc-
ities are
h

flv_x=fvxdz
b

with a similar expression for the volume fraction
of solids @ and the other velocity components,
and as in Savage and Hutter (1989), 1 =/ - b.

An additional equation is needed to solve
for ¢. After depth averaging Equation 1, we
arrive at the mass balance equations for the solid
and fluid phases:

8:hs + 6, (V) + 6,(h°V,) = 0
(15)
§:hT + 8,(Wty) + 8, (W) = 0

Where BS =h@ and hf =A@ . From the satura-
tion condition

h="h+h (16)

3.2z MOMENTUM

Note that as e = 0 in the fluid z momentum equa-
tion, the fluid tends to be hydrostatic:

0. 1%, = gs. (17)

Depth averaging Equation 17:

1 .
T..(e,y) = = 59:h. 19

In the same manner, for the solid z momentum we
find the equation for an effective stress:

f
a.T, + %waz'r; — 0g.. (19)

Substituting Equation 17 in 18 and solving for

aZTSZZ,
f
0.1, = (1 - p—) g=p
p

Thus the normal solid stress in the z direction at
any height is equal to the reduced gravity times the
volumetric fraction of solids.

In scaling these equations, the z velocities have
been dropped. Of course neglecting motion in
the z direction is a central component of a thin
layer theory. Furthermore, any contribution to
the z momentum from fluid shearing —terms such
as T! , T' — are dropped due to scaling. Thus,
only pressure contributions to the fluid stress are
important, which is an assumption we will make
below, albeit with a modification at the basal
surface.

3.3 x AND yMOMENTUM

The nonlinearity of these equations presents dif-
ficulties in formulating a depth averaged theory,
and complicates the derivation, and in several
places it is necessary to take the depth average of
products of terms. When necessary, we approxi-
mate the required closure relation; for example, as

O
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2 1 1 1
10 15 20 25 30
Bed friction

m Effect on k_, due to changes in ¢, and @ x ¢, , given a
fix ¢p. The black line shows the changes on k,, related with ¢,,,

for any fixed 0. The doted line shows the relation ¢ x ¢, , with
kap’ used within the program.

of ~ f (Savage and Hutter, 1989; Pitman and
Le, 2005).

Considering first the equation for the motion of
the solid phase, the left-hand side of the solids x

momentum Equation 7 can be written

LHSg = at(govx) + 6x(<p179?) + 6y(§017x17y) + az((pvxvz)

Depth averaging and using boundary conditions,

we find

h h
/ LHS,dz = Ot/ U, dz
b b
h h
+(7T/ apr:i df;—i—(?y/ Pra vy, dz
b b

Now the depth average of the right hand side of
Equation 7 becomes:

(20)

h

h
RHS;dz = — / (€0, T, + €0, Ty, + 0.T;,) dz
Jb b

® . 21)
——/ epd, TE dz + = ( —um)+/b 0y, dz .

(ii) (iii)

In order to proceed, the following assumptions are
made:

* This equation governs the motion of the solid
phase and we assume the upper free surface for the
mixture 18 a free surface for both of the individual
phases.
¢ The drag term D is highly nonlinear and a cor-
rect depth average is all but impossible to calculate.
We postulate that experiments could fit an aver-
aged phenomenological drag of a similar form. As
seen in Equation 6, we assume a drag coeflicient
C,= 1. In addition, as the range of particle sizes
of lahars is huge, at present, tracking all of the
particles or even a representative sample of them,
1s intractable. Nevertheless, the lahar mean class
size 1s about coarse sand (Pareschi, 1996), thus we
use a typical mean particle diameter for lahars
d =1 mm (Schmid, 1981).
* The earth pressure relation for the solid phase
is employed. That is, the basal shear stresses are
assumed to be proportional to the normal stress
17, = ||4|| tan(due) 17, = @17,
Where ¢ can be either x or y, and the velocity ratio
enforces that friction opposes motion in the desig-
nated direction (Savage and Hutter, 1989; Patra et
al., 2003). The a notation will provide a convenient
shorthand that we use in other places. Likewise the
diagonal stresses are taken to be proportional to
the normal solid stress

/I]zsz - l” Tzz - O‘”Tsz .

Finally, following Iverson and Denlinger (2001),
¥y shear stresses are determined by a Coulomb
relation

T,, = —sgn(0yvz) sin(dint ) kap T, = gy T,

Where the sgn function ensures that friction
opposes straining in the (x, y) plane.

+ TFor the fluid phase, the basal shear stresses are
assumed to be proportional to the square of the
depth averaged velocities (Zhuo, 1995; Xu, 2006)

= p'Cruilld] |
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Model, ho=3m

———— Theoretical, ho=1.5m

| N (e Theoretical, ho=3m |
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Distance (m)

m Dam-break 1-D problem. Evolution of the flow-front
depth with distance. The figure shows the result of the theoretical
solution and the results from the numerical model for two initial
conditions (1.5 m and 3 m). The statistical t-test shows that there
is no statistically significant difference between the analytical
solution and the predictions of Titan2F.

Where C is the Chezy coefficient, which depends
on the frlctlon coeflicient (see Equation 9). A phys-
ical approach for this coeflicient is the Colebrook—
White equation (Colebrook and White, 1937),
which for rough channels can be approximated as

1 i
ﬁ = —2logyy <14—8Rh> -

Where £ is the roughness of the channel and R,
is the hydraulic radius, which for shallow-water
problems can be approached as the depth of the
flow (R, =%). Equation 22 is logarithmic, thus large
uncertainties in £, result only in small variations in
C, (Swaffield and Bridge, 1983). In the Transport
& Road Research Laboratory (1976) guide, values
of k _are proposed for different materials and chan-
nel types. From that guide, we choose £=1 mm
for channels in volcanic environments (as TltaHZF
is open source software, the user can modify this
value). Therefore, here €, will depend on the flow
depth h, p/, and the fluid Velomty u,.Note that this
is a physical approach for T whlch does not
depend on empirical approaches.

From Leibniz’s rule and the stress computations
above, we find

(23)

Now using the fluid and solid stress relation
f 0
: P
Tzsz = <1 - E) (pTzz

term (i) is approximated as

h
= *s[(’)w/b O TS, dz — T, | i Ozh (24)

h

+ 0o T |o0sb) — €[0, / g, T2, dz
b

= gy T2 |o=nOyh + y T7, | =40, b)]

— Qg [Tszz|z:h - Tszz|z:b] .

The upper free surface is stress free, so all terms
involving T, | ,=p, vanish. The expression for (i)
becomes

£
N P P
(l) = c (1 pb) a:)" (ha.T/J?sz)
f
P 25
(Dl
i h
+ (1 — E) (—€u:Opb — €y 0yb + vy ) (— g2 ) WD

Note that the factor ( — g ) originates in the eval-
uation and depth a\reragiflg of the fluid stress; in
typical flows, this factor is positive.

Combining all terms yields a solids x momentum
equation

O
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Graphic comparison of the predictions of Titan2F with the experiments performed by Liu (1996). The results for several initial

volumes compare (a) the width of the deposit and (b) the length of the deposit. The circles show data from the experiments, and the

aster

isks show the predictions of Titan2F.

O, (hgaw) + 0, (AL(,D’UT’Ux) + 0, (fALSDU—ny)
( - p—f> Or(Qaah®B(—gz))

- (1 - Z_) 0, (b7 (=g.) 26)

f ~
+ (1 — %) (—€0ry0sb — €00y 0,0 + 00, ) HP(— g2 )

£ £

= 5 P0u07(=9.)) — - hp(~g)0:b

+ (g) (T — ) + higg”.

The y solid momentum equation can be derived in
a similar fashion.
Tor pure fluids, the diagonal stresses and shear
stress are zero. Thus, depth averaging the equation
for the fluid motion presents fewer difficulties.
The depth averaged x momentum equation takes
the form

o (W) + 0, (o) + 0, (W'
= —%fa,-i'l‘za(—g;) - (g) (T — 7)) (27)

+ hiotg, 4+ oHCu,||i)].

Where @f =1—§. Again, the fluid y momen-
tum equation has a similar form. Note that unlike
Pitman and Le (2005), if (p,f — 1 Equation 27
becomes the typical shallow-water approach of
hydraulics (Chow, 1959). Kowalski (2008) describes
how debris flows become reduced to a shallow-wa-
ter flow as solid volume fraction vanishes.

As noted above, we solve for volume fractions (¢ ),
thus the bulk density can be calculated from

p=pe+p(1—) (28)
Then, we obtain the dynamic pressure p from
1 —

Where % is the mixture averaged velocity of the

flow (Fan and Zhu, 1998)

= _ pTo+p'ua(l — o)
p

where v = /v§+v§ and u = /u§+u§, are the

speeds of each phase.

~
s

(30)

The use of the impacting dynamic pressure infor-
mation on structures and living beings allows us to
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m Verification of the accuracy of the Titan2F predictions
for the time evolution of the flow depth and arrival of the front
at 32 m distance from the lock. The black line represents the
Titan2F results. The gray shadowed interval represents the
confidence interval of the experiments performed by Iverson and
co-workers (lverson et al., 2010).

estimate levels of damage, as in Valentine (1998),
Valentine et al. (2011), and Jones (2013), which is
useful for vulnerability analysis.

4. Numerical solution

This system of equations (14, 15, 16, 26, 27) is
then solved using the finite volume method, whose
solution provides results of the velocity field, flow
depth, and the volumetric concentration of solids
at the center of each finite volume computational
grid.

To solve the balance laws, we use the Godunov
solver developed by Davis (1988) already imple-
mented in Patra ef al. (2005) and Pitman and Le
(2005). The adaptive meshing is used as well,
which allows us to have very fine grids where
indicators show high gradients, and coarser grids
where low gradients are detected. The time step is
adjusted from the Courant condition (Courant et
al., 1967). The complexity of the equation system

results in typical time steps of the order of 10 s.
As consequence of this small time step, Titan2F
becomes a computationally expensive tool.

The numerical solution of the above set of
equations presents strong numerical sensitivity
to Digital Elevation Model (DEM) errors and
the quality of those maps. The DEMscan have
regions where elevations are not well defined; they
can have crossed contour levels or even infinite
holes (Wechsler, 2007; Dalbey et al., 2008). Abrupt
terrain changes, both actual or DEM artifacts,
cause computations of gradients and curvatures to
become unstable. In order to avoid such numerical
problems, patching and intelligent smoothing of
the DEMs are needed.

Based on the hyperbolicity analysis done by Pit-
man and Le (2003), we try to ensure it , imposing
a minimum Ay, = 1075 m, a maximum ¢ =
®, corresponding to a maximum packing con-
centration of 0.65, and a minimum ¢ = = 10°
that ensured stability. This constraint makes the
program stable if’ a smooth DEM is used.

The needed initial conditions are the location of
the pile of material, its geometry, the volumetric
solid concentration, and initial velocity. There
is no inflow condition implemented yet. Inflow
hydrograph can be approached using several piles,
cach one with different initial depths. The bed
and internal friction are set internally to the fixed
values of ¢, = 40° and ¢, = 42° respectively.
Those values correspond to the bed and internal
friction of dry smooth spheres moving on the
assumed bed roughness size £_(see Kirchner et al.,
1990; Miller and Byne, 1966; Webb, 2004). Nev-
ertheless, both of these parameters can affect £ .
The doted line in Figure 1 shows how £ changes
with ¢,  for any fixed value of ¢ (Note that
Williams et al. (2008) shows that Titan2D results
are not strongly affected by £ , see Equation 9).
¢, 18 a function of /%, which is directly related
to @ , as shown by Kowalski (2008). The black line
in Figure 1 shows how £ evolves when the fixed
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m Verification of the accuracy of the Titan2F predictions

for the time evolution of the flow depth and arrival of the front
at 66 m distance from the lock. The black line represents the
Titan2F results. The gray shadowed interval represents the
confidence interval of the experiments performed by Iverson et
al. (2010).

value of ¢, , is multiplied by 0 < ¢ < 0.65. Thus,
in the evaluation of /fap we use the result of the
multiplication ¢ X ¢, and

J

R

instead of the user defined ¢, , and

J

¢
used by Pitman and Le (2005). In this way, the
range of resulting values of £ —are within the
ranges used for modeling lahars with Titan2D
(Sheridan et al., 2005; Williams et al., 2008; Procter
etal., 2010, 2012).

5. Differences with Pitman and Le
model

There are six major differences between the pres-
ent paper and Pitman and Le (2005):

1. In Pitman and Le (2005), mass and momentum
conservation laws are derived for the solid mate-

rial and for the phase averaged mixture of solid
and fluid, whereas here, the Titan2F model uses
mass and momentum equations for both individ-
ual phases.

2. Any two-phase model system must incorpo-
rate several phenomenological functions, such
as an interphase drag coeflicient. In the present
derivation these functions are better adapted to
geophysical flows whose fluid phase corresponds
to water and the solid phase are rounded solid par-
ticles. The drag is calculated from an expression
valid for the whole range of Reynolds numbers. It
only needs the mean particle diameter of the flow
as a parameter. We use a typical mean particle
diameter of lahars. As Titan2F is open source, the
user can modify the assumed value of the mean
particle diameter.

3. The volumetric particle concentration is no
longer a fixed parameter, which in our approach is
calculated for every time step and grid point. This
means that instead of having constant P like in
Equations (3.2) in Pitman and Le (2005) or simply
not accounted for, like in the depth averaged fluid
mass and momentum balance equations (3.27)
and (3.28) in Pitman and Le (2005), we include the
variable P within all derivatives and depth aver-
aged equations. Thus, in regions where the parti-
cle concentration vanishes, the solid phase role in
the equation system vanishes as well. In that way,
the equation system becomes the typical hydraulic
shallow-water approach, which does not happen
in Pitman and Le (2005).

4. We account for the fluid stresses at wall. We use
a physical approach that only needs the roughness
of the channel and the flow depth. The last term
is calculated by the program at every time step,
whereas the former is set as a fixed value.

5. The interaction forces between the phases now
depend on both the drag and the fluid stress. The
pressure is no longer the only term in the fluid
stress model. Instead, we use the physical Dar-
cy-Weisbach hydraulic approach that accounts for
the full fluid stress. This approach allows us to have
a more realistic model for the fluid phase than in

Pitman and Le (2005).
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m Longitudinal distribution of the particle concentration
(in %) after 14 s. The volumetric particle concentration at the
upper part of the channel is very low, whereas at the end, the
front of the flow becomes very concentrated, as noted by Iverson
et al. (2010).

6. The only input parameters needed by the pro-
gram are the location of the pile of material, its
volume, and the volumetric solids concentration.
The friction coeflicients are no longer needed as
input as they are automatically adjusted according
to the evolution of the volumetric fraction of solids
across the grid and time. The bed and internal fric-
tion are set in such a way that when the volumetric
fraction of solids tends to an assumed maximum
packing concentration (¢ = 0.65), both internal
and bed frictions have a tendency to correspond
to the values used in those cases in Titan2D. See
Sheridan et al. (2005) and Williams et al. (2008) for

ranges of values.

6. Validation and verification

Validation of the accuracy of the code was done
with analytical solutions of the Dam Break prob-
lem and with several experimental results (eg
Dressler, 19545 Ancey et al., 2008). Among them,
we check the deposited pattern predicted by the
program with the results shown by Liu (1996). The
prediction of the arrival time and the flow-depth

profile was compared with the experimental results
shown by Iverson ¢t al. (2010) from his recent work
done on his large-channel facility.

Analytical solutions for shallow-water problems
are scarce. Only one-dimensional analytical
approaches are available in the literature, espe-
cially for the well known Dam Break problem (e.g,
Dressler, 1954; Mangeney et al., 2000; Fernan-
dez-Feria, 2006; Ancey ¢t al., 2008). Unfortunately,
analytical solutions for geo-mass flows are almost
impossible to find due to the complexity of the
nonlinear partial differential equations (Pudasaini
and Hutter, 2007). Such solutions can be obtained
only in special cases like the similarity based solu-
tions proposed by Savage and Hutter (1989) for
dry avalanches. In our test we use the solution
proposed by Fernandez-Feria (2006) for the Dam
Break problem on an incline for pure water. In our
program we assume ¢@° = 0. Figure 2 shows a
comparison of the Titan2F prediction with this
analytical solution. The statistical #-test shows
that there is no statistical difference between the
analytical solutions and the prediction of Titan2F
using the 1D version of the equations. That
test shows that about 70% of the predictions of
Titan2F can explain the analytical solution. At
least for the one dimensional case, the program
successfully reproduces analytical solutions for dif-
ferent initial conditions down to very low particle
concentrations (less than 1%). However, as one
dimensional approaches neglect lateral spreads,
and at the initial parts of the flow evolution H /L
is not small, that version of the program tends to
over-estimate the front advance of the flow, as can
be seen in Figure 2.

Liu (1996) performed several experiments for geo-
mass flows in an inclined channel. He modified the
initial volume, the channel slope, and the particle
concentration to find the final size of the debris
flows measured by their resulting maximum width
and length. We reproduced the experimental final
width and length after the simulation reached the
same time corresponding to the duration reported
by Liu (1996). Figure 3 shows the correspondence
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46007

Dynamic pressure (Pa)

e S Y

0 Distance (m) 60

Longitudinal distribution of the predicted dynamic
pressure at 14 s. The peak over-pressure occurs just at the end
of the inclined part of the channel.

of the model with the experiments for (a) the
width of the deposit and (b) the length. A Pearson
correlation shows that 90% of the experimental
data for the deposit length can be explained with
the predictions of Titan2F, whereas 80% of the
data for the deposit width can be explained by the
predictions of the program. This illustrates the
high accuracy of the program in predicting the
deposit characteristics for different initial volumes
(ranging from 2.7 m® to 16 m’) and high initial
solid concentrations (¢ = 0.53 — 0.65). See Liu
(1996) for details about initial conditions of his
experiments.

The experiments performed by Iverson ez al. (2010)
done on a 95 m long artificial channel were used
to verify the accuracy of the predictions of the
flow front arrival time and the temporal evolution
of the flow depth. These flows were unsteady and
nonuniform. Iverson et al. (2010) show time-se-
ries data for several measured properties: flow
thickness, pore pressure, basal normal stress, and
arrival time of the front. Raw data provided to us
was used to test the Titan2T prediction concern-
ing time evolution of the flow depth and arrival
times at the check points located at 32 and 66 m
distance from the lock. As shown in Figures 4 and
5, the arrival time and the temporal evolution of
the predicted depth fits well within the confidence

interval of the experiments. In both of the cases,
Titan2F tends to over-estimate the flow depth just
after the arrival of the front. This is probably an
effect of the slight difference in the shape of the
initial pile, as the free surface of the numerical pile
follows the same slope of the channel, whereas the
actual free surface within the lock is horizontal.
Nevertheless, a Pearson correlation shows that
more than 90% of this experimental data can be
explained with the predictions of Titan2F.

The range of concentrations that the program can
cope with are from %= 10* (almost pure water)
to 5= 0.65 (maximum packing concentration).
Finally, as expected, the program predicts high
particle concentrations at the front of the flow and
low particle concentrations at the tail of the flow
(in some cases, even near pure water concentra-
tions, or @ — 0), as can be seen in Figure 6 where
a longitudinal solids particle distribution predicted
by Titan2F is shown. The predictions fit with the
qualitative observation of Iverson e al. (2010) that
the tail of the flow remains very watery. Using
a predicted concentration of solids, the density
is assessed (Equation 28), and, together with the
speed of the flow, the dynamic pressure distribu-
tion is calculated as well (Equation 29). Despite that
Iverson et al. (2010) do not show information about
the dynamic pressure field, Titan2F does. Figure
7 shows a longitudinal section of the dynamic
pressure after a 14 s simulation. Knowledge of the
dynamic pressure information is of vital impor-
tance in risk analysis as structural damage and risk
for human life can be assessed from it.
Verification with actual mud flows has been done
as well, showing very good fit with field data. For
example, Sheridan et al. (2011) shows that the
Titan2F predictions are within 10% of the data
shown by Procter et al. (2010) for the highly chan-
neled mud flow at Ruapehu, New Zealand. In
addition, the theory was tested against field data
assessed by Williams et al. (2008) for the 2006 Vaz-
cun creek lahar at Tungurahua volcano, Ecuador,
as shown by Coérdoba et al. (2015), where Titan2F
predictions about maximum velocity are within
10% and within 15% for the measured super-el-
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evation. In addition, Rodriguez-Espinosa et al.
(2017) verified the accuracy of Titan2F predictions
as well. They used the velocity measurements of
the 2001 lahar in the Huiloac creek at Popocata-
petl volcano, Mexico, done by Munoz-Salinas ef al.
(2007), to compare Titan2F predictions. Using the
non-parametric Kolmogorov (1933) confidence
test, Rodriguez-Lspinosa et al. (2017) show a sig-
nificance level of 0.01.

7. Conclusions

We present a new computational two-phase tool
for lahar hazard assessment that has no constraints
on initial volumetric particle concentration other
than the maximum packing concentration (%
< 0.65). The program computes space—time evo-
lution of the particle concentration, flow depth,
velocity field, and dynamic pressure at each point
of the computational grid.

The model is valid for two-phase flows whose
phases consist of solids and water. However, the
phenomenological approach used for the inter-
phase drag model assumes an average diameter
of the solids, which means individual boulders
or particles cannot be tracked. In addition, the
model is depth averaged, assuming thin layer
and shallow-water approaches. Thus, our model
correctly predicts the dynamics of gravity-driven
flows providing the depth averaged values for the
particle concentration, flow and phases velocities,
and flow depth in a three dimensional topography.
In order to model other kinds of geophysical mass
flows, adjustments to the code must be done. For
example, pyroclastic flows could be modeled if
the flow density of the fluid phase is appropriately
addressed (e.g, the effect of temperature on air
density using ideal gas law and an additional equa-
tion for temperature).

The proposed mathematical approach allows
for the simulation of a range of flow behaviors.
Regions with almost pure fluid to regions of fric-

tion-dominated flows are correctly described by
the equations. Using this information, dynamic
pressure is deduced, which becomes a useful tool
for risk assessment.

The highly nonlinear coupled-equation system
makes the time step very small. The use of this
new tool on natural terrains or detailed DEMs
requires high computational power. The use of a
high performance work station with multiple cores
is advised.

Important processes that are not addressed by this
tool include the effect of turbulence, incorpora-
tion of solid material from the bed of the channel,
and incorporation of water into the flow from
existing water bodies. Nevertheless, this two-phase
flow 1s an important step forward in forming an
acceptable computational model for simulating
hazardous natural phenomena.
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Appendix A p
Table 1. Symbols used in this paper. E
5
z
ij Subscripts to denote the coordinate directions x, y orz;
sf Superscripts to denote the phase of the flow, either solid or fluid;
p’ Density of the solid phase;
p’ Density of the fluid phase;
p Density of the mixture;
v Solids velocity vector;
u Fluid velocity vector;
T Stress tensor;
T Shear stress at wall;
f Interaction force;
[0) Volumetric fraction of solids;
g Gravity;
D Drag;
Cy, Drag coefficient;
d Mean particle diameter;
Experimental constant related to the constant » in the Richardson-
p Zaki equation;
Re,, Particle Reynolds number;
v, Solids velocity in direction i
u; Fluid velocity in direction i ;
k o Constant of proportionality for the diagonal stress component;
O ine Internal friction angle;
D ped Bed friction angle;
R, Hydraulic radius;
Sy Slope friction;
h(x,y,t) Unsteady surface of the flow;
b(x,y) Bottom surface;
h=h-b Flow depth;
D Depth averaged solids velocity;
u Depth averaged fluid velocity;
@ Depth averaged volumetric fraction of solids;
Cy Chezy coefficient;
1. Friction coefficient for the fluid phase;
ky Roughness of the channel;
P/ Fluid pressure;
p Dynamic pressure; and
174 Mixture averaged velocity of the flow.
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