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RESUMEN

En este estudio se investiga la actividad 
depredadora sobre una especie de gasterópodo 
del Holoceno de la Provincia Malacológica 
Argentina. Buccinanops deformis (King, 
1832) es una especie que habita en aguas 
frías en latitudes altas, endémica del 
Hemisferio Sur. Este estudio está basado en 
la evidencia directa de la durofagia tanto en 
daño letal como subletal. El daño subletal 
fue inferido utilizando la evidencia de los 
exoesqueletos reparadas como un proxy 
de este tipo de actividad. Se emplearon 
tres parámetros para la evaluación de la 
depredación durófaga: la frecuencia de depre-
dación, la frecuencia de cicatrices reparadas 
y la efectividad de la presa. Se identificó la 
interacción depredador-presa entre el cangrejo 
Danielethus crenulatus (A. Milne-Edwards, 
1879) y B. deformis durante el Holoceno en 
las costas litorales argentinas. El bajo grado 
de la frecuencia de depredación (0.16) y 
reparación del exoesqueleto (0.06) y el valor 
medio de la efectividad de la presa (0.37) 
se interpretaron como resultado de una baja 
pero efectiva actividad depredadora.

Palabras clave: Depredación, 
reparación de exoesqueletos, 
latitudes altas, gasterópodos, 
Holoceno, SO del Atlántico.

ABSTRACT

In this study investigates the preda-
tory activity on a Holocene gastropod 
from the Argentinean Malacological 
Province. Buccinanops deformis (King, 
1832), endemic in the southern 
hemisphere, is a typical taxon of  
cold-waters and high latitudes. We 
observed direct evidence of  duroph-
agy as lethal and sublethal damage. 
Sublethal damage was studied using 
traces of  repaired shell as an indica-
tor of  activity by durophagous pred-
ators. Three parameters were used 
to evaluate durophagous predation: 
frequency of  predation, repair scar 
frequency and prey effectiveness. A 
predatory-prey interaction was iden-
tified between Danielethus crenulatus 
(A. Milne-Edwards, 1879) and B. 
deformis during the Holocene on the 
Argentinean littoral coast. The low 
value observed for shell repair fre-
quency (0.06), the low frequency of  
predation (0.16), and the intermedi-
ate value for prey effectiveness (0.37) 
may be interpreted because of  a low 
but effective predatory activity.

Keywords: Predation, shell 
repair, high latitude, gastropod, 
Holocene, SW Atlantic.
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1. Introduction

The importance of  predation as the main 
mechanism for metazoan evolution has been 
intensively studied since the 1980s (Skovsted et al., 
2007) based on its role as a putative factor that 
contributes to natural selection (Vermeij, 1987; 
Kelley and Hansen, 1993; Jablonski and Sepkoski, 
1996). Nevertheless, predation is one of  the most 
difficult interspecific interactions to be estimated 
in the fossil record (Stuart and Greenstone, 1990), 
mainly because predators and prey are rarely 
found together (Molinaro et al., 2013). It is only 
possible to find direct evidence of  predation on 
prey organisms possessing a biomineralized skele-
ton (Vermeij, 1987), whereas most predators either 
leave no trace or destroy the hard parts of  their 
prey (Chattopadhyay and Baumiller, 2010). 
Predation on organisms protected by a hard skele-
ton is defined as durophagy (Aronson, 2001).
It is considered that there are four molluscivory 
methods: the ingestion of  the whole organism, 
insertion and extraction, boring followed by 
pre-ingestive breakage, and crushing (Harper and 
Skelton, 1993). The first two methods are unlikely 
to leave preservable evidence (Alexander and 
Dietl, 2003). The last two methods leave traces 
that may be considered as direct evidence and is 
commonly used as an indicator of  durophagous 
predation (Kowalewsky, 2002).
In the fossil records, evidence shows that predation 
on gastropods was mainly by drilling, and there 
are several reports in the literature about that topic 
(see Kelley and Hansen, 2003).
The shell breakage caused by durophagy has been 
overlooked as it has been considered a misinter-
pretation because of  (1) the effects of  the shell’s 
differential resistance towards taphonomic forces 
either before or after burial (Zuschin and Stanton, 
2001; Zuschin et al., 2003; Mapes et al., 2010), 
(2) the destruction of  shells by non-predatory 
action, and (3) shell scattering by currents or other 
mechanical agents (Vermeij et al., 1989).
Unsuccessful predation or sublethal damage is 
interpreted based on the degree of  repair of  the 

damaged shell. Recently this has emerged as a 
frequently used indicator for crushing-predation 
(Stafford and Leighton, 2011). Scars derived 
from repair processes are visible as disruptions of  
growth lines, visible as disruptions of  surface orna-
ments, or as color patterns on the shell (Stafford et 
al., 2015).
Most publications regarding fossil records are 
focused on sublethal damage as they report gas-
tropods’ shell breakage (Vermeij, 1987; Alexander 
and Dietl, 2003; Skovsted et al., 2007; Lindström 
and Peel, 2010). A comprehensive review regard-
ing fossil records of  shell-breaking predation in 
gastropods was published by Alexander and Dietl 
(2003).
The damage inflicted on the external shell lip can 
be used to identify durophagous predation (Oji et 
al., 2003), although the lip may also be damaged 
by other carnivorous gastropods and crabs. This 
type of  evidence has been formally described by 
Stafford et al. (2015) on an ichnofossil assigned to 
the Caedichnus ichnogenera.
Shell breakage caused by crabs is markedly differ-
ent regarding severity, size, and position, and the 
breakage is distinguished by a peculiar pattern 
(Ogaya, 2004; Dietl et al., 2010). 
Information describing repair frequencies is scarce 
for both fossil and recent mollusks located at Boreal 
to arctic latitudes (Alexander and Dietl, 2003). 
Moreover, except for one report (Chattopadhyay 
and Baumiller, 2010), prey effectiveness has not 
been estimated for fossilized repaired gastropods.

2. Location

Samples were collected at the Holocene sand shell 
ridges located at the inner region of  the Bahia 
Blanca estuary, south of  Buenos Aires Province, 
Argentina. Location: 38°45ʹ S, 62°20ʹ W (Figure 
1).
The coastal region of  this estuary is formed by 
a dense net of  tidal channels separated by low 
altitude islands and sand shoals. Several geolo​
gical studies indicate that the Holocene marine 
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 Figure 1   Map of the Bahia Blanca Estuary highlighting the zone characterized by sand-shell ridges and the location of the study area.

transgressive–regressive cycle has imprinted its 
particular features on the Bahía Blanca area 
(Aliotta et al., 2013).
The highest Holocene transgression produced a 
series of  sand-shell ridges observed at heights rang-
ing 8 – 10 m above mean sea level. These ridges 
are mainly found at the estuary’s inner region and 
they are arranged in a narrow sub-parallel strip 
along the coastline (Farinati and Aliotta, 1987).
Sand-shell ridges are composed of  size sands 
which range from medium to fine having a high 
percentage of  whole shells and their fragments 
(approximately 30%) as well as a smaller propor-
tion of  quartzite pebbles, calcrete, siltstone, and 
pumice (Aliotta and Farinati, 1990).

3. Target taxa

In this work we present documented evidence of  
durophagous predation in the Holocene gastropod 
Buccinanops deformis (King, 1832).

The Buccinanops genus (d’Orbigny, 1841) 
(Caenogastropoda, Nassariidae) has a geological 
record comprising the Upper Miocene to the 
Recent (Aguirre, 1993).
This species was selected because it is an abundant 
and conspicuous mollusk found in the sand-shell 
ridges of  the Bahia Blanca estuary, and because 
it is a typical taxon of  high latitudes endemic to 
the SW Atlantic Ocean, spanning from Espiritu 
Santo, Brazil to Golfo San Matías, Patagonia, 
Argentina (Nuñez and Narosky, 1997). 
B. deformis possesses a smooth, wide, and thick shell, 
with a low and depressed spire and a subelliptical 
narrow opening. The shell has a well-developed 
siphonal canal. The inner lip is angled having 
a callus in its rear end whereas the outer lip is 
depressed. Shell height is of  intermediate size (24 
– 51 mm) having 5 to 5½ whorls. The body whorl 
is almost five times larger than the spire (Figure 
2A). 
Members of  Nassariidae family have been consid-
ered as carrion feeders, a proposal based on the 
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Figure 2   Buccinanops deformis (King, 1832) A1–A2. Non-preyed shell (PI-UNS 3183). B–K. Failed durophagous predation attempts. B–I. 

Side view showing Caedichnus sp. repaired shell. (PI-UNS 3184 – 3191); J–K. Side view showing punctures (PI-UNS 3192 – 3193). Scale 

bar 5 mm.
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diet of  the Nassarius genus (Harasewych, 1998). 
Nevertheless, the trophic aspects of  this family are 
relatively unknown as data supporting this pro-
posal are scarce and obtained from unpublished 
or undocumented sources (González et al., 2011). 
Only Buccinanops cochlidium (Dillwyn, 1817) has 
been reported as a carnivorous species (scavenger 
and predator) that fed on dead crabs and living 
bivalves (Averbuj et al., 2012). There are no refer-
ences describing the diet consumed by B. deformis 
(King, 1832).
Regarding habitat, Buccinanops dwell in soft bot-
toms on intertidal or infralittoral zones in shallow 
waters (2 – 20 m deep) (Pastorino, 1993). 
It is important to study an endemic genus of  the 
Argentinean Malacological Province as it might 
represent cold water inhabitants, whereas most 
information describing predation on mollusks 
(whether living or fossil) is focused on species liv-
ing in temperate and tropical waters (e.g., Carter, 
1967; Vermeij, 1977a; Kowalewski et al., 1997; 
Kowalewski, 2002). Conversely, mollusks living 
in cool and cold waters have remained largely 
overlooked [exceptions are the studies conducted 
by Cadée (1999) and Bigatti et al. (2009)].

4. Materials and methods

Five bulk field samples were sieved through 4 mm 
mesh sieves. The samples were then washed and 
dried. The assemblages were almost entirely com-
prised by bivalves and gastropods. Other remains 
in this sample were chiton fragments, bryozoans, 
cirripedia, and decapods.
All shells were identified based on the taxonomy 
established by Aguirre (1993) and Farinati (1994). 
Mollusk assemblage includes 23 species of  gastro-
pod and 24 bivalve species (Aliotta et al., 2013). A 
selective sampling of  specimens corresponding to 
the Buccinanops deformis gastropod (King, 1832) was 
carried out.
After cleaning the shells, the evidences of  lethal 
and sublethal predation (repaired scars) were 
examined under a dissecting stereo-microscope.

Only those relatively intact specimens were 
selected for evaluating the effects of  predation. 
Neither extensively abraded nor corroded shells 
were considered as these taphonomic features 
occlude the observation of  scars on repaired shells.
Three parameters were used to evaluate predation: 
frequency of  predation, repair scar frequency, and 
prey effectiveness.
Frequency of  predation was calculated by using 
the Lower Taxon Frequency method (LTF) 
(Kowalewski, 2002), where the number of  spec-
imens displaying evidences of  lethal injury is 
divided by the total number of  specimens in the 
sample (Equation 1).

LTF = Dk / Nk              (Equation 1)

Where: K is the taxon target. D is the number of  
specimens displaying lethal predation evidences. 
N is the total number of  specimens in the sample.
The scar per shell method was used to calculate 
the repair scar frequency (Alexander and Dietl, 
2003) where the total number of  repaired scars is 
divided by the total number of  individuals in the 
sample. This method was preferred over the scar 
per shell method because the latter underestimates 
the frequency of  sublethal attacks within a popu-
lation (Alexander and Dietl, 2003). 
Prey effectiveness, a parameter to measure pred-
ator failure (Kowalewski, 2002), was quantified 
using Equation 2 and by considering the number 
of  punctures and repaired shells. 

PE = TF / TT              (Equation 2)

Where PE is Prey effectiveness. TF is the number 
of  specimens displaying punctures and repaired 
shells. TT is the number of  specimens displaying 
evidence of  predation.
Specimens described in this work are housed in 
the Paleontological Collection of  The Universidad 
Nacional del Sur (PI-UNS), Bahía Blanca, 
Argentina.
A monospecific sample of  the B. deformis gastropod 
that was sampled at 38°45ʹ S, 62°20ʹ W was dated 
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with C14. Radiocarbon dating was performed at 
Laboratorio de Tritio y Radiocarbono (LATYR) 
from Universidad Nacional de la Plata (UNLP).

5. Results

The dating process for the shell indicates a 14C age 
of  5690 ± 70 years BP. 
A total amount of  540 B. deformis shells were 
extracted from five bulk samples. Organisms from 
23 mm to 35 mm of  height are predominant in 
the samples. 

From the 540 shells examined, 89 display preda-
tion evidence, 33 of  the latter show evidence of  
sublethal damages (Figures 2B–K, 4A) whereas 
damage was lethal on 56 (Figures 3, 4B). Most 
of  the observed predation evidence correlates 
with damage on the apertural lip and this kind 
of  trace is identified as Caedichnus isp (Stafford et 
al., 2015) (Figures 2B–I, 3A–D, 4A–B). Very few 
shells exhibit punctures (Figures 2J–K, 3E–F). In 
agreement with the classification of  Ekdale (1985), 
these types of  evidence match the Praedichnia 
trace fossil.

Figure 3   Lethal damage as a consequence of durophagous predation A–D. Caedichnus isp. A1. Side view showing puncture on the body 

whorl and a partial missing shell aperture. A2 shows continuation as an embayment fracture in the body whorl (PI-UNS 3194); B–C. 

Side view shows an embayment fracture on the body whorl (PI-UNS 3495 – 3196); D-F. Side view shows damage by puncture D. Shell 

displaying two punctures located at penultimate (D1) and body (D2) whorl. E–F Side view showing a puncture on the body whorl (PI-UNS 

3198 – 3199). Scale bar 5 mm.
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The frequency of  predation (LTF) is 0.10 (95 % CI 
± 1.17). The observed frequency of  repaired scars 
is 0.06 (95 % CI ± 1.04) whereas prey effectiveness 
(PE) is 0.37 (95 % CI ± 2.58).

5.1. LOCATION AND TYPE OF INJURIES

Shell breakage by durophagy is the main evidence 
within the lethal damage category (Figures 3A–C, 
4B) and punctures are only observed on two shells 
(Figures 3E–F).
Repaired injuries on shells were the most abundant 
evidence within the sublethal damage category 
(Figures 2B–H, 4A) and punctures were observed 
on only two shells (Figure 2I–K). Some of  the 
repaired scars show zigzag-breaking patterns 
(Figure 2D).
Frequently, the location of  injuries is at the outer 
apertural lip region (94.3%) ranging from large 
embayment (Figures 2C, 3A–C, 4A–B) to irregu-
lar fracture (Figures 2B, 2D–F, 2H).
Repairing observed on the shells mostly occur along 
the whole-body whorl near the aperture (96.9%) 

(Figures 2C, 2E–2I) and only one scar (equivalent 
to 3.1%) is observed on the second whorl (Figure 
2D). There is no evidence of  removed apex or 
truncated apical end on the shells.

6. Discussion 

It is recognized that predation is difficult to inter-
pret in fossil record as some effects may mask pre-
dation intensity leading to the misinterpretation 
of  the paleoecology assemblage (Harper et al., 
1998). However, it is possible to distinguish pred-
atory damage on the shell from abiotic damage 
(Alexander and Dietl, 2003). For instance, if  a shell 
possesses a disrupted apertural margin, it is prob-
ably the consequence of  durophagy rather than 
damage caused by water currents and, if  the edges 
are smooth, this indicates transport or rework 
of  the remains. Similarly, the cause of  breakage 
can be distinguished in crushed shells based on 
the criterion of  either a broken or unbroken shell 
aperture (Ogaya, 2004). Compaction may be 
important as well (e.g., Zuschin and Stanton, 2001; 
Klompmaker, 2009).
The B. deformis shells exhibit damage caused by 
predation, including breakage and puncture, 
which correlate with lethal and sublethal attacks.
When shells exhibit sublethal damage caused 
by breakage, the individual’s repair and growth 
continued with the subsequent modification of  
the shell’s thickness. In the repaired area shells are 
thinner than the original and scars are not parallel 
to growth lines.
Apertural breakage is the most common evidence 
of  predation on B. deformis as demonstrated by 
lethal and sublethal injuries. Predators’ site-selec-
tivity on the prey skeletons provides useful infor-
mation on their interaction. In this case it is shown 
that the predator used a method consisting on 
insertion and molluscivory extraction. Thus, the 
predator must possess specialized physical struc-
tures to attack thick shells with a narrow aperture. 

Figure 4   Caedichnus isp. shells exhibiting a large embayment 

fracture as consequence of crab predatory activity A. Side view 

showing deep breakage and repair damage on the body whorl 

(PI-UNS 3200); B. Side view showing a lethal injury observed as 

a deep shell breakage far back from the lip (PI-UNS 3201). Scale 

bar 5 mm.
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6.1. FREQUENCY OF PREDATION

Predation intensity cannot be directly inferred and 
the only indirect approach to carry out its estima-
tion is the predation frequency index. In this study 
a relatively low frequency of  predation is observed, 
implying that almost none of  the gastropods were 
attacked by durophagy. Although, if  we consider 
that some of  the shells were crushed by predators, 
this type of  predation does not have a fossil record.
When studying predation, the frequency of  
repaired scars may also be interpreted because 
of  increased attacks (predation) or decreased 
successful attacks by predators (Kowalewski, 2002; 
Molinaro et al., 2013).
Nevertheless, a low predation frequency is consis-
tent with the generally accepted idea that preda-
tion on gastropods is low in cool and temperate 
waters. It has been suggested that predation pres-
sure is greater in tropics when compared to more 
temperate latitudes (Vermeij, 1983).
The low predation values are also comparable with 
those reported for tropical Paleozoic communities 
(Allmon et al., 1990; Gordillo and Archuby, 2014).

6.2. REPAIR SHELL FREQUENCY AND PREY 
EFFECTIVENESS

The frequency of  repaired scars is a commonly 
used indicator for durophagous predatory activ-
ities (Alexander and Dietl, 2003; Chattopadhyay 
and Baumiller, 2010; Klompmaker, 2011). The 
estimation of  repaired shell frequency within 
an assemblage is a simple means to estimate the 
interaction between gastropods and their preda-
tors (Lindström and Peel, 2010), as it reflects the 
link between predator effectiveness and the prey’s 
defenses.
Repaired shells cannot be used as measure of  
crushing intensity (Vermeij et al., 1980) because 
sublethal damage may be interpreted as failed 
predation or as predation by organisms that par-
tially consume their prey. In this case, predation is 
interpreted as successful (Kowalewski, 2002).
Repaired shell frequency is low, implying either 
that predators were abundant and successful, or 

predators were scarce or ineffective (Schindel et 
al., 1982). Considering the variation of  gastropod 
repair frequencies regarding latitude (the highest 
is observed in the tropics) (Vermeij et al., 1980), we 
suggest that predators were scarce.
Prey effectiveness indicates the shells’ performance 
as anti-predatory mechanism (Vermeij et al., 1980). 
Vermeij (1983) considered that the incidence of  
unsuccessful predation provides a conservative 
measure of  potential anti-predatory selection.
The obtained prey effectiveness value is low (0.37) 
compared to that obtained on field and laboratory 
studies carried out in tropical zones (e.g., Dietl, et 
al., 2010; Paul et al., 2013). This indicates the low 
potential of  B. deformis against its predators. In 
this case, prey effectiveness may be a consequence 
of  the predation frequency. If  predation is low, 
gastropods are not forced to develop a complex 
antipredatory system.
Although it is not possible to confirm this proposal, 
we argue that a low shell repair frequency (0.06) 
and an intermediate value of  prey effectiveness 
(0.37) on B. deformis is predominant at least at the 
Holocene sand shell ridges in Bahia Blanca. This 
may be interpreted as the consequence of  a low 
but effective predatory activity. Alternative expla-
nations for tropical environments were discussed 
extensively by Chattopadhyay and Baumiller 
(2007, 2010).

6.3. CENOZOIC SHELL-BREAKING PREDATORS

Vertebrate shell crushers include specialized tele-
ost fishes, some coastal marine birds, sea otters, 
seal, and walruses. Among the invertebrates are 
palinurid lobsters, brachyuran crabs, pagurid 
crustaceans, stromatopods, and some octopuses 
(Alexander and Dietl, 2003). 
Although the identification of  a predator through 
traces is uncertain (Kowalewski, 2002), and in 
this case the causes of  the shell’s punctures are 
unknown, some of  the observed injuries on the 
Buccinanops shells may be caused by crabs (see 
Vermeij, 1987). Brachyuran crabs have a broad 
diet but their predatory activity on gastropods is 
well known (Vermeij, 1977b). Members of  the 
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Platyxanthidae family are distinguished by marked 
differences in size between the left and right che-
lipeds. The larger one contains a crushing tooth 
as an adaptation to durophagy (Dietl and Vega, 
2008; Schweitzer and Feldman, 2010). Crabs use 
at least three attack methods against gastropods: 
crushing, apertural breakage, and apex removal 
(Lawton and Hughes, 1985).
Predation on gastropod shells by crabs has been 
extensively described (Vermeij, 1977b; Zipser and 
Vermeij, 1978; Bertness and Cunningham, 1981; 
Lawton and Hughes, 1985; Ogaya, 2004; Dietl et 
al., 2010) and injury types and breakage patterns 
caused by them are well characterized and clearly 
distinguishable in fossil records.
Some of  the damage inflicted on Buccinanops 
shells, either lethal (Figures 3A–C, 4A) or repaired 
(Figures 2C, 4B), exhibit apertural lip injuries 
observed as large embayed fracture of  the body 
whorl. This type of  damage has been observed as 
the consequence of  predation by crabs (Dietl et al., 
2010). The presence of  complementary scars on 
opposite sides of  the skeleton suggests that these 
traces were made by a scissor-like weapon, such 
as a crab’s claw (Figures 3D–F) (Kowalewski et al., 
1997).
Another fact supporting predation on Buccinanops 
by crabs is the presence of  crab’s chelipeds 
fragments of  the Danielethus crenulatus (A. Milne-
Edwards, 1879) species (Decapoda, Brachyura, 
Platyxanthidae) along with gastropods in the 
same sample. The cheliped remains correlate with 
dactylus (Figure 5), that display sharp tips and 
molariform teeth typical of  crushing crabs (Dietl 
and Vega, 2008; Schweitzer and Feldman, 2010). 
Nevertheless, portunids and xanthids crabs are 
currently considered as generalist and opportunis-
tic feeders that occasionally eat hard-shelled preys, 
such as mollusks (Walker and Brett, 2002).
Buccinanops possess a particularly thick shell, 
maybe as an evolutionary adaptation against pre-
dation. In recent gastropods, shell thickness and 
defenses against predation by crabs was evaluated 
by Bertness and Cunningham (1981). They con-
cluded that crabs of  smaller size prefer thin shells, 

but larger crabs have no preference. Palmer (1985) 
also reported that small- and middle-size crabs 
preyed on thin shells, whereas the percentage of  
predation by middle-size crabs is low on thick 
shells, and the percentage is similar for predation 
by large-size crabs. A thick shell provides less gas-
tropod vulnerability against small-size crabs, but 
predation is not completely excluded.

7. Conclusions

Apertural breakage is the most common predation 
trace on Buccinanops deformis either for lethal or 
sublethal injuries.
Most injuries, both lethal and sublethal, displayed 
by B. deformis shells are located at the body whorl 
and specifically at the external lip.
The low frequency (0.16) of  durophagous preda-
tion is consistent with proposals suggesting low 
predation pressure at temperate latitudes.
The low value for shell repair frequency (0.06) 
along with the intermediate value for prey effec-
tiveness (0.37) on B. deformis at the Holocene sand 
shell ridges in Bahia Blanca may be interpreted as 
the result of  a low but effective predatory activity. 
The large embayment fractures, corresponding to 
Caedichnus isp., observed on the gastropod’s body 
whorl may be attributed to predatory activity by 
crabs.
A Holocene predatory-prey interaction may be 
distinguished between the Danielethus crenulatus crab 
(predator) and the B. deformis gastropod (prey).
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