

Boletín de la Sociedad Geológica Mexicana ISSN: 1405-3322

Sociedad Geológica Mexicana A.C.

López-Díaz, Jazmin Alaide; Alvira-Serrano, Luis Alberto; Talavera-Mendoza, Oscar; Sarmiento-Villagrana, Alicia; Hernández-Flores, Giovanni
Fraccionamiento químico de metales pesados y metaloides potencialmente tóxicos en lodos generados por la planta de tratamiento de agua residual Taxco de Alarcón, Guerrero, México Boletín de la Sociedad Geológica Mexicana, vol. 74, núm. 2, A121221, 2022, Mayo-Agosto Sociedad Geológica Mexicana A.C.

DOI: https://doi.org/10.18268/BSGM2022v74n2a121221

Disponible en: https://www.redalyc.org/articulo.oa?id=94375432003

Número completo

Más información del artículo

Página de la revista en redalyc.org

abierto

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

RESUMEN

Fraccionamiento químico de metales pesados y metaloides potencialmente tóxicos en lodos generados por la planta de tratamiento de agua residual Taxco de Alarcón, Guerrero, México

Chemical fractionation of potentially toxic heavy metals and metalloids in residual mud obtained from the wastewater treatment plant at Taxco de Alarcón, Guerrero, Mexico

Jazmin Alaide **López-Díaz**¹, Luis Alberto **Alvira-Serrano**¹, Oscar **Talavera-Mendoza**¹, Alicia **Sarmiento-Villagrana**², Giovanni **Hernández-Flores**^{3,*}

- ¹ Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Exhacienda San Juan Bautista s/n, Taxco el Viejo, 40323, Guerrero, México.
- ² Facultad de Ciencias Agropecuarias y Ambientales, Universidad Autónoma de Guerrero, Periférico Poniente s/n Frente a la Colonia Villa de Guadalupe, Iguala de la Independencia,40040, Guerrero, México.
- ³ CONACYT, Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex hacienda San Juan Bautista s/n, Taxco el Viejo, 40323, Guerrero, México.
- * Autor para correspondencia: (G. Hernández-Flores) ghernandez@conacyt.mx

Cómo citar este artículo:

López-Díaz, J.A., Alvira-Serrano, L.A., Talavera-Mendoza, O., Sarmiento-Villagrana, A., Hernández-Flores, G., 2022, Fraccionamiento químico de metales pesados y metaloides potencialmente tóxicos en lodos generados por la planta de tratamiento de agua residual Taxco de Alarcón, Guerrero, México: Boletín de la Sociedad Geológica Mexicana, 74 (2), A121221. http://dx.doi.org/10.18268/BSGM2022v74n2a121221

Manuscrito recibido: 11 de Marzo de 2021 Manuscrito corregido: 20 de Octubre de 2021 Manuscrito aceptado: 15 de Diciembre de 2021

La revisión por pares es responsabilidad de la Universidad Nacional Autónoma de México.

Este es un artículo de acceso abierto bajo la licencia CCBY-NC-SA (https://creativecommons.org/licenses/by-nc-sa/4.0/)

RESUMEN

Los objetivos de este trabajo fueron: i) identificar y cuantificar metales pesados y metaloides potencialmente tóxicos presentes en los lodos residuales generados por la planta de tratamiento de agua residual "Taxco de Alarcón" en Guerrero, México; ii) determinar el potencial de geodisponibilidad de los metales pesados y metaloides potencialmente tóxicos mediante una extracción química secuencial, y, iii) proporcionar una metodología detallada para realizar una digestión total y extracción química secuencial empleando lodos residuales. La metodología principal consistió en realizar una digestión total y una extracción química secuencial empleando lodos residuales. El análisis de los metales pesados y metaloides potencialmente tóxicos se realizó mediante espectroscopía de emisión atómica por plasma acoplado inductivamente. A partir de la digestión total se logró identificar y cuantificar a Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Sr, V y Zn. Siete metales pesados y metaloides potencialmente tóxicos analizados y considerados por la NOM-004-SEMARNAT-2002 están presentes en los lodos en concentraciones de 51, 50, 38, 752, 153, 190 y 3,134 mg/kg (base seca) para As, Cd, Cr, Cu, Pb, Ni y Zn, respectivamente. Sin embargo, únicamente la concentración de As, Cd, y Zn superan el límite máximo permisible establecido por la norma para poder clasificarlos como lodos de excelente calidad. Por otro lado, el análisis de las diferentes fracciones analizadas obtenidas mediante extracción química secuencial mostró que la mayor concentración de As, Cd y Zn se encuentra principalmente asociada a las fracciones de mayor geodisponibilidad (fracción intercambiable y asociada a carbonatos). Estas concentraciones fueron 34, 34 y 1,723 mg/kg de lodos (base seca) para As, Cd y Zn, respectivamente. Finalmente, en función de los siete metales pesados y un metaloide potencialmente tóxicos analizados y de su concentración total en los lodos residuales de la planta de tratamiento de agua residual de Taxco de Alarcón, los lodos se clasifican como de buena calidad. Esto significa que los lodos residuales tienen potencial para ser aprovechados en uso urbano sin contacto público directo durante su aplicación, en usos forestales, mejoramiento de suelos o uso agrícola en la región.

Palabras clave: digestión ácida, geodisponibilidad, metales pesados y metaloides potencialmente tóxicos, extracción química secuencial, lodos residuales.

ABSTRACT

The goals of this work were: i) to identify and quantify the potentially toxic heavy metals and metalloids in sewage sludge generated by "Taxco de Alarcón" wastewater treatment plant; ii) to determine the potentially toxic heavy metals and metalloids speciation through sequential chemical extraction, and iii) to provide a detailed methodological procedure for total digestion and sequential chemical extraction to sewage sludge. The methodology was a total digestion and sequential chemical extraction using sewage sludge. Analysis of potentially toxic heavy metals and metalloids was performed by inductively coupled plasma atomic emission spectroscopy. From total digestion Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Sr, V, and Zn were identified and quantified. Seven potentially toxic heavy metals and metalloids analyzed and considered by NOM-004-SEMARNAT-2002 were found in sewage sludge at the following concentrations: 51, 50, 38, 752, 153, 190, and 3,134 mg/kg (dry basis), for As, Cd, Cr, Cu, Pb, Ni, and Zn, respectively. However, the concentration of As, Cd, and Zn exceeds the maximum allowable limit set by the standard to be classified as excellent quality sludge. On the other hand, the analysis of the different fractions obtained by sequential chemical extraction exhibited that the highest concentrations of As, Cd, and Zn are mainly associated with the most geo-available fractions (exchangeable fraction and bound to carbonates). The total concentrations in these fractions were 34, 34, and 1,723 sewage sludge mg/kg (dr) basis) for As, Cd, and Zn, respectively. Finally, in function of the seven potentially toxic heavy metals and metalloids analyzed as well as their total concentrations determined in the sewage sludge from the Taxco de Alarcón wastewater treatment plant, the sewage sludge are classified as a good quality sludge. In other words, the sewage sludge have the potential to be used for urban handling without direct contact during its application in forest use or as agricultural soil improvers in the region.

Keywords: acid digestion, geodisponibility, potentially toxic heavy metals and metalloids, sequential chemical extraction, sewage sludge. INTRODUCCIÓN

1. Introducción

A partir del siglo XV la minería en México ha jugado un papel importante para el crecimiento social y económico del país (Armienta et al., 2003). En Guerrero, al igual que en el resto del país, la minería se convirtió en una de las actividades más importantes con la llegada de los españoles (Miret, 2012). En la actualidad, el distrito minero Taxco se reconoce como uno de los distritos mineros más importantes del continente (Bustamante et al., 2003; SGM, 2016; Sánchez-Montoya et al., 2019). La economía de una gran cantidad de pobladores depende de la elaboración y venta de joyería y artesanías a base de plata. Dentro de la mancha urbana existen talleres artesanales en donde se realizan trabajos de orfebrería. Como consecuencia de esta actividad, se generan residuos sólidos y líquidos de los cuales no existe información precisa sobre su estrategia de disposición final. Algunos de estos residuos podrían ser vertidos e incorporados a la red de alcantarillado del agua residual municipal (ARM) e incorporar metales pesados y metaloides potencialmente tóxicos (MPMPT) y alterar la composición del ARM (Ramirez-Nava et al., 2022). Posteriormente, a través de la red de drenaje municipal es conducida hacia la planta de tratamiento de aguas residuales (PTAR) Taxco de Alarcón para su tratamiento. La PTAR es una planta relativamente nueva que inició operaciones en el año 2016 con una capacidad máxima instalada para tratar un caudal de 100 L de AR/s (CONAGUA, 2017).

Uno de los principales problemas a los que se enfrentan las *PTAR*s es la gran cantidad de lodos residuales (*LR*) que generan como consecuencia de la depuración del *ARM* (Ortíz-Hernández *et al.*, 1995; Tchobanoglous *et al.*, 2003). La Norma Oficial Mexicana "NOM-004-SEMARNAT-2002" establece las especificaciones y límites máximos permisibles de contaminantes presentes en *LR* para poder decidir sobre su disposición final de acuerdo con una clasificación. Uno de los parámetros más importantes considerados por la norma para establecer una primera clasificación

entre excelentes o buenos es la presencia y concentración de 8 MPMPT: Cd, Cr, Cu, Pb, Hg, Ni, Zn y As. La NOM-004-SEMARNAT-2002 separa los residuos sólidos producidos por una PTAR en lodos y biosólidos. Los biosólidos son definidos como "lodos que han sido sometidos a procesos de estabilización y que por su contenido de materia orgánica, nutrientes y características adquiridas después de su estabilización, pueden ser susceptibles de aprovechamiento". Por otro lado, los lodos se definen como "sólidos con un contenido variable de humedad, provenientes de desazolve de los sistemas de alcantarillado urbano o municipal, de las plantas potabilizadoras y de las plantas de tratamiento de aguas residuales, que no han sido sometidos a procesos de estabilización" (SEMARNAT, 2003). El manejo y disposición de estos residuos se ha convertido en un problema general a nivel mundial. La incineración o disposición en rellenos sanitarios son las primeras opciones de tratamiento para los LR (Cardosa Vigueros y Ramírez Camperos, 2002; Limón Macías, 2013). Sin embargo, los LR se caracterizan por poseer un elevado contenido de humedad, elevado contenido de materia orgánica (hasta 50%), microorganismos, macronutrientes como C, N, P y K en concentraciones de 30, 1-6, 0.8-6.1 y <1%, respectivamente, y micronutrientes como Ca+2, Fe+2, Mg+2, Mn+2 y Zn+2 en diferentes concentraciones (Ortíz-Hernández et al., 1995; Campos Medina et al., 2009). Estas características confieren un valor agregado a estos residuos y los convierte en una propuesta interesante para ser aprovechados como fuente de carbono y nutrientes para suelos erosionados o desgastados nutricionalmente (Campos Medina et al., 2009; Limón Macías, 2013; Carreto-Morales et al., 2021). Por las características físicas, químicas y biológicas que presentan los LR han sido ya empleados en varias partes del mundo (USA, Francia, Reino Unido y varios países latinoamericanos) para mejorar las propiedades físicas de los suelos de cultivo (Castro et al., 2007). Los LR mejoran la porosidad, el drenaje, la retención de agua, evitan la erosión y también aportan una gran cantidad de nutrientes esenciales para el crecimiento de las plantas, al enriquecer suelos arenosos.

Entre los cultivos que se han evaluado usando *LR* o una combinación de suelo con *LR* se encuentran: maíz, nopal, lechuga, zanahoria, otros cultivos hortícolas, pasto forrajero, plantas de ornato y cultivos frutícolas (Woo Reza, 2003; Campos Medina *et al.*, 2009; Carreto-Morales *et al.*, 2021). Sin embargo, algunos estudios han evidenciado la presencia de *MPMPT* que no forman parte del grupo considerado como micronutrientes y podrían representar un factor de riesgo y contaminación para el medio ambiente si los *LR* contaminados con *MPMPT* son dispersados en el suelo (Cuevas *et al.*, 2006; Salcedo-Pérez *et al.*, 2007; Limón Macías, 2013; Vélez-Pérez *et al.*, 2020).

Una de las propuestas para la disposición de los LR generados por la PTAR Taxco de Alarcón por las características nutricionales que en general presentan es usarlos como mejoradores del suelo y dispersarlos en los suelos agrícolas de la región. Sin embargo, por las actividades de orfebrería y otras actividades antrópicas que se realizan dentro de la ciudad de Taxco de Alarcón, existe la probabilidad de que el ARM tratada por la PTAR esté contaminada con MPMPT y en consecuencia los LR presenten un contenido importante de estos elementos tóxicos. Hasta lo mejor de nuestro conocimiento, no existe un estudio sobre la presencia y concentración de MPMPT presentes en los LR generados por la PTAR "Taxco de Alarcón". Sin embargo, la presencia de estos elementos no siempre representa un riesgo para el ambiente, específicamente sobre el recurso hídrico, suelo, flora, fauna o para la salud de la sociedad. Esto dependerá de la geodisponibilidad, i.e., del potencial de liberación o movilidad que presenten los MPMPT en función de su asociación a diferentes fases minerales y de los diferentes procesos mecánicos, químicos o biológicos a los que son expuestos que puedan conducir a su liberación o movilidad (López Julián y Mandado Collado, 2002; González Flores et al., 2009; Rodríguez Pacheco, 2011; Martínez-Alva et al., 2020). Por lo anterior, los objetivos de esta investigación fueron: *i)* identificar y cuantificar *MPMPT* presentes en los LR generados por la PTAR "Taxco de Alarcón" en Guerrero, México; *ii*) determinar el potencial de geodisponibilidad de los *MPMPT* mediante una extracción química secuencial (*EQS*) y *iii*) proporcionar una metodología detallada para realizar una digestión total (*DT*) y *EQS* empleando *LR*.

2. Descripción del sitio de estudio

En el suroeste de México se ubica el estado de Guerrero donde Taxco de Alarcón es uno de los municipios más importantes localizado en la región Norte del estado (Campa-Uranga et al., 2012). La PTAR de Taxco de Alarcón se localiza al sureste del poblado de Taxco de Alarcón. Se encuentra limitada por las coordenadas 437964 m E y 2050086 m N y está dentro de la carta topográfica Taxco Escala 1: 50,000 (E14-A68) publicada por el INEGI. La principal vía de acceso al sitio de estudio es mediante la carretera federal No. 95 México-Acapulco, por la carretera de cuota o la libre. Aproximadamente, a 176 km de la ciudad de México se encuentra una desviación a la altura del poblado "Cerro Gordo" con dirección a la comunidad de Xochula. A partir de esta desviación, el sitio de estudio se encuentra aproximadamente a 4.9 km. La PTAR da tratamiento a descargas urbanas provenientes de la cabecera municipal del municipio de Taxco de Alarcón. La PTAR tiene una capacidad instalada de 100 L de ARM/s, i.e., cuenta con una capacidad para tratar 8,640 m³ de ARM/día y el proceso de tratamiento empleado es mediante lodos activados (CONAGUA, 2017).

Sin embargo, en el año 2020, los operadores de la PTAR Taxco de Alarcón reportaron que esta planta trata un caudal promedio real de $\sim 60~\rm L$ de $ARM/\rm s$. Tchobanoglous et~al.~(2003) reportaron que por cada $3.78~\rm m^3$ de ARM tratada se producen $ca.~0.94~\rm kg$ de LR (en base seca). Es decir, si la PTAR Taxco de Alarcón trabajara a su máxima capacidad y tomará como base de cálculo el valor promedio reportado por Tchobanoglous et~al.~(2003), la cantidad de LR producidos estimada sería $ca.~2.16~\rm Ton$ de $LR/\rm día$ (en base seca), i.e., $788.4~\rm Ton$ de $LR/\rm año$ (en base seca).

MATERIALES Y MÉTODOS

Sin embargo, considerando como base de cálculo el caudal promedio real (~60 L de ARM/s), la PTAR Taxco de Alarcón produce en promedio ca. 1.30 Ton de LR/día (en base seca) que se traducen en 474.5 Ton de LR/año (en base seca). Lodos que hasta el momento son deshidratados y almacenados en un área dentro de la misma PTAR. Por otro lado, el agua tratada es vertida hacia el arroyo Cacahuatepec que funciona como cuerpo receptor y que posteriormente se convierte en Río Taxco (CONAGUA, 2019). Este río presenta una orientación N-S y es una fuente importante de agua superficial para las comunidades aledañas (Méndez-Ramírez y Armienta Hernández, 2012).

3. Materiales y métodos

3.1. MUESTREO

La recolección de los LR se llevó a cabo directamente en la PTAR "Taxco de Alarcón, Guerrero" de acuerdo con lo establecido en la NOM-004-SEMARNAT-2002. Se colectó una masa de 2 kg de lodos pre-deshidratados divididos en dos bolsas de polietileno. Las bolsas fueron selladas herméticamente y se transportaron inmediatamente al Laboratorio de Geoquímica de la Escuela Superior de Ciencias de la Tierra perteneciente a la Universidad Autónoma de Guerrero (UAGro). Adicionalmente, directamente de la tubería de descarga de los lodos residuales líquidos se tomó aproximadamente 1 L de muestra en una botella de polipropileno lavada con HNO₃ 8M y agua desionizada. In situ y a partir de los LR líquidos se les determinó el pH, Eh, conductividad eléctrica y temperatura empleando un equipo Orion Versa Star.

3.2. PREPARACIÓN DE LOS LODOS RESIDUALES

Las muestras fueron colocadas en recipientes de aluminio con las siguientes dimensiones 45.8 X 33.8 X 6.5 cm y fueron cubiertos con una tela que permitiera la evaporación del agua, pero evitará

la entrada de polvo. El proceso de secado se llevó a cabo a temperatura ambiente (28 ± 3 °C) durante un mes. Durante este tiempo, los LR en proceso de deshidratación fueron mezclados constantemente para evitar la formación de grandes agregados y exponer zonas de mayor humedad con la superficie externa. Una vez deshidratados se empleó el método del cuarteo para definir la fracción de la muestra a pulverizar. Este método consistió en dividir la muestra total en 4 partes iguales. Posteriormente, 3/4 partes de la muestra se eligieron como muestra testigo y se almacenaron en laboratorio en un lugar fresco y seco, libre de contaminación. La fracción complementaria fue empleada para triturar y pulverizar durante ~60 min usando un molino de rotor marca Restcsh.

Finalmente, los *LR* pulverizados fueron cribados empleando un tamiz de acero inoxidable No. 230 para separar las partículas finas y muy finas (<63 µm). Un tamaño de partícula muy fino presenta una mayor solubilidad que cristales de mayor tamaño y esto se traduce en un aumento en la eficiencia de extracción (Krauskopf y Bird, 2003; González-Flores *et al.*, 2011). La fracción recuperada fue colocada en un frasco de plástico sellado herméticamente y almacenada en un lugar fresco y seco libre de contaminación para posteriores análisis.

3.3. IDENTIFICACIÓN DE FASES MINERALES EN LOS LODOS RESIDUALES MEDIANTE DIFRACCIÓN DE RAYOS X

Una masa de 1 g de muestra previamente tamizada con la malla No. 230 se colocó en un porta muestras de polimetilmetacrilato. Posteriormente, la mineralogía se analizó empleando un difractómetro de rayos X (*DRX*) Bruker AXS D8 Advance con detector LINXEYE SSD160-2 dentro de la Escuela Superior de Ciencias de la Tierra de la *UAGro*. Las condiciones empleadas para la determinación fueron un voltaje 40 kV y una corriente de 15 mA. El análisis de los difractogramas se realizó por comparación con la base de datos EVA de manera automatizada.

3.4. ANÁLISIS DE LA COMPOSICIÓN QUÍMICA DE LOS LODOS RESIDUALES POR MICROSCOPÍA ELECTRÓNICA DE BARRIDO Y ESPECTROSCOPÍA DE DISPERSIÓN DE ENERGÍA DE RAYOS X

Una masa de ~10 mg de LR con tamaño de partícula <63 µm se colocó en un porta muestras de aluminio con cinta de grafito de doble cara y se recubrió con grafito mediante evaporación térmica de carbón. Para este proceso se usó una recubridora de la marca Denton Vaccum modelo Desk Carbon Accessory. Posteriormente, la muestra preparada fue analizada mediante un microscopio electrónico de barrido (SEM, por sus siglas en inglés) marca JEOL IT300-LV. Este equipo cuenta con un detector de espectroscopía de dispersión de energía de rayos X (EDS, por sus siglas en inglés) marca Bruker, Quantax: Xflash 6 | 30. El ángulo de escape se fijó a 35° y todos los análisis se hicieron a 20 keV y WD 10 mm. El área de excitación de los electrones fue de entre 1 y 2 um de diámetro, dependiendo de la composición e irregularidades de la superficie de las partículas. La técnica SEM-EDS identifica todos aquellos elementos que presenten una abundancia relativa >0.5%, *i.e.*, aquellos elementos que se encuentren en una cantidad >0.5% en proporción de la muestra completa. El conteo total de partículas para hacer los análisis de EDS estuvo en el rango de 10 mil cuentas por 5 s, lo que se considera un resultado preciso para concentraciones mayores al 1%.

3.5. DIGESTIÓN TOTAL

La *DT* también conocida como digestión ácida se realizó por triplicado empleando *LR* con un tamaño de partícula <63 μm (Tessier *et al.*, 1979). En un vaso de digestión Savillex (*VDS*) de 20 mL se pesaron 250 mg de *LR*. Posteriormente, se agregaron 5 mL de H₂O desionizada + 5 mL de HNO₃ grado reactivo. Enseguida, empleando una plancha térmica (~90 °C), se evaporó la solución del *VDS* hasta casi sequedad. Después, se agregaron 9 mL de HCl + 3 mL de HNO₃ grado reactivo y se cerró el *VDS* para llevar a calentamiento durante 12 horas (h) a ~90 °C. Concluido

el tiempo de calentamiento, se dejó enfriar y se llevó a evaporación durante ~15 h a ~90 °C. Posteriormente, se agregó al VDS 1 mL de HNO₂ grado reactivo + 9 mL de HF (48%). A continuación, se calentó durante 43 h a una temperatura ~50 °C. Al finalizar este periodo de calentamiento, la solución fue evaporada empleando una temperatura de ~90 °C. Este proceso se repitió tres veces, sin embargo, la muestra no se solubilizó. Se decidió aumentar la temperatura y se hicieron tres rondas al añadir HNO₃ y HF en la proporción establecida, durante 24 h a una temperatura ~200 °C. Posteriormente, la solución fue evaporada hasta casi sequedad a una temperatura ~250 °C durante ~6 h. Debido a que aún persistía material sólido como parte de la muestra, una nueva combinación de ácidos fue establecida. Se agregó al VDS 9 mL de HNO₃ grado reactivo + 1 mL de HClO₄ (70%) y se procedió a su calentamiento durante 18 h a una temperatura de ~120 °C. Enseguida, se evaporó la solución hasta casi sequedad a una temperatura ~200 °C durante ~5 h; este proceso se realizó dos veces. Posteriormente, se agregó 5 mL de H₂O desionizada + 5 mL de HNO₃ 8M dentro del VDS. Se calentó nuevamente durante 20 h a una temperatura de ~120 °C. Enseguida, se evaporó la solución hasta casi sequedad a una temperatura ~200 °C alrededor de 4 h. Se dejó enfriar y se agregó 10 mL de HNO₃ (2%) y se calentó nuevamente durante 18 h a una temperatura de ~60 °C. Por último, se dejaron enfriar los VDS y la mezcla obtenida fue filtrada con papel filtro Whatman No. 42. El filtrado fue colectado en un matraz volumétrico de 25 mL y aforado con agua desionizada. La solución final se transfirió a una botella de polipropileno de alta densidad (Nalgene) y las muestras fueron almacenadas a una temperatura de ~4 °C hasta su análisis mediante Espectroscopía de Emisión Atómica por Acoplamiento de Plasma Inducido (ICP-AES). El equipo utilizado fue un Perkin Elmer Optima 3200 DV. El contenido de MPMPT soluble fue verificado empleando cuatro estándares para agua residual certificados de alta pureza de acuerdo con Talavera Mendoza et al. (2005) y Vélez-Pérez et al. (2020): CWWTM-A, CWW-TM-D, CWW-TM-E y CWW-TM-H. Las concentraciones más bajas

/ Boletín de la Sociedad Geológica Mexicana / 74 (2) / A121221 / 2022

MATERIALES Y MÉTODOS

determinadas en los estándares certificados fueron (mg/L): Ag y Cd, 0.005; Co, Cu, Fe, Mn, Pb, V y Zn, 0.025; As, Ba, Mo, Sb, y Se, 0.010. Estas concentraciones fueron consideradas como los límites de detección del método utilizado.

3.6. EXTRACCIÓN QUÍMICA SECUENCIAL

La EQS se desarrolló tomando como base la metodología original establecida por Tessier et al., (1979) y la modificación propuesta por Loring y Rantala (1992) donde la fracción intercambiable (FI) es dividida en dos fracciones: la fracción soluble (FS) y la fracción adsorbida (EA). El procedimiento para realizar la EQS de MPMPT a partir de los LR de la PTAR de Taxco de Alarcón se realizó por triplicado y consistió en ir separando un sobrenadante que se solubiliza con ciertas soluciones, de una fracción sólida que no se solubiliza. Así, la fracción sólida será el sustrato para la siguiente reacción. Al final, la suma de todas las fracciones debe ser aproximadamente igual a los valores obtenidos de la DT.

La fracción residual (FR), la fracción asociada a sulfuros y materia orgánica (FS MO) y la fracción de oxihidróxidos de Fe – Mn (FO Fe-Mn) fueron analizadas empleando ICP-AES y los estándares previamente descritos. Por otro lado, la concentración asociada a la fracción de carbonatos (FC) y FI fue estimada algebraicamente mediante la ec. 1 y 2 (Tessier et al., 1979; López Julián y Mandado Collado, 2002; González-Flores et al., 2011).

$$FI = FA + FS \tag{1}$$

donde FI representa la fracción intercambiable, FA la fracción adsorbida y FS la fracción soluble.

$$FC + FI = DT - [FR + FSMO + FO Fe-Mn]$$
 (2)

donde FC+FI representa la suma total de la concentración de cada MPMPT asociado a la FC y a la FI, DT representa la concentración total en la muestra de cada MPMPT, FR la fracción residual, FS MO la fracción asociada a sulfuros y materia orgánica, y FO Fe-Mn la fracción de oxihidróxidos de hierro y manganeso.

3.6.1. FRACCIÓN INTERCAMBIABLE (FI)

Fracción soluble (FS). La extracción de los MPMPT se desarrolló pesando 1 g de LR con un tamaño de partícula <63 µm en un tubo para centrífuga de 50 mL. Se agregaron 8 mL de agua desionizada y se agitó vigorosamente durante 15 s con ayuda de un vortex. Una vez homogenizada la muestra, se centrifugó 5 min a 6,000 rpm. Nuevamente, se agitó 15 s en vortex y 1 h a 350 rpm en un agitador orbital. Se centrifugó 30 min a 6,000 rpm. Se filtró el sobrenadante empleando papel filtro Whatman No. 42 en un matraz volumétrico de 25 mL. Nuevamente, al residuo sólido le fueron agregados 8 mL de agua desionizada y agitado 30 s en vortex y 5 min a 350 rpm en un agitador orbital. Se centrifugó durante 20 min a 6,000 rpm y el sobrenadante se filtró en el mismo matraz volumétrico de 25 mL. Finalmente, el volumen total recuperado fue acidificado con 5 gotas de HNO3 ultrex II y se aforó a un volumen final de 25 mL. La solución final se transfirió a una botella de polipropileno de alta densidad (Nalgene) y se mantuvo a una temperatura de ~4 °C hasta su análisis.

Fracción adsorbida (FA). Al residuo sólido generado de la FS se agregaron 8 mL de acetato de sodio (CH₂COONa) 1 M, se agitó por 15 s en vortex y se centrifugó durante 5 min a 6,000 rpm. Se agregaron 2 gotas de fenolftaleína. Si la solución adquiere un color rosa (pH > 8), se ajusta el pH a 8 agregando CH₃COOH 1 M hasta que la solución queda transparente. Por otro lado, si la solución se torna amarilla (pH < 8), como sucedió con los LR, se agrega una gota de NaOH 1 M (para obtener una coloración rosa) y nuevamente se agrega CH₂COOH 1 M hasta obtener una coloración transparente. La solución de pH 8 se agitó por 15 s en vortex y después durante 1 h a 350 rpm en un agitador orbital. Se centrifugó 30 min a 6,000 rpm y el sobrenadante se filtró empleando un papel Whatman No. 42 en un matraz volumétrico de 25 mL. Nuevamente, al residuo sólido se le agregaron 8 mL de CH₃COONa 1 M y se agitó 30 s en vortex y 5 min a 350 rpm en un agitador orbital. Se centrifugó durante 20 min a 6,000 rpm. Por

MATERIALES Y MÉTODOS

segunda vez, se recuperó y filtró el sobrenadante en el mismo matraz. El volumen total recuperado se acidificó con 5 gotas de HNO₃ ultrex II y se aforó a 25 mL. La solución final se manejó como se indica en el proceso de extracción de la *FS*.

3.6.2. FRACCIÓN ASOCIADA A CARBONATOS (FC)

El residuo sólido obtenido después de realizar la FA fue empleado para obtener los MPMPT asociados a la FC. Un volumen de 8 mL de CH₃COONa 1 M fue agregado dentro del tubo de centrífuga y se agitó 30 s en un vortex. Se centrifugó 5 min a 6,000 rpm. Posteriormente, se determinó el pH agregando 3 gotas de rojo de metilo. Si el sobrenadante se torna rosa se continúa el procedimiento.

Por otro lado, si el sobrenadante se torna ligeramente amarillo al agregar rojo de metilo (como sucedió con la muestra de LR), se agrega CH₂COOH 1 M cuidadosamente hasta obtener una tonalidad ligeramente rosa. En estas condiciones, el color rosa indica un pH ~5, condición necesaria para continuar el procedimiento. A continuación, se agitó por 5 h a 350 rpm en un agitador orbital. Posteriormente, se centrifugó 30 min a 6,000 rpm y el sobrenadante se filtró con papel filtro Whatman No. 42 en un matraz volumétrico de 25 mL. Nuevamente, al residuo sólido del tubo se le agregaron 8 mL CH₂COONa 1 M. Se agitó 15 s en vortex y 5 min a 350 rpm en un agitador orbital. Se centrifugó durante 20 min a 6,000 rpm. El sobrenadante se filtró con el mismo filtro y la solución fue recuperada en el mismo matraz. La solución se acidificó con 5 gotas de HNO₃ ultrex II y se aforó a 25 mL. La solución final se manejó como se indica en el proceso de extracción de la FS.

3.6.3. FRACCIÓN ASOCIADA A OXIHIDRÓXIDOS DE Fe-Mn (FO Fe-Mn)

Al residuo sólido generado de la FC se agregó un volumen de 20 mL de cloruro de hidroxilamina (NH₂OH•HCl) 0.04 M en 25% (v/v) de CH₃COOH. La muestra se agitó 30 s en un vortex y fue transferida a un vaso de precipitado de 250 mL el cual se cubrió con una película de parafilm.

Posteriormente, el vaso se calentó durante 6

h en una plancha térmica ~95 °C con agitación manual a intervalos de 30 min. Transcurrido el calentamiento, se dejó enfriar a temperatura ambiente y se regresó la muestra al tubo de centrífuga. Empleando 12 mL de agua desionizada, el vaso fue enjuagado y el agua recuperada en el tubo de centrífuga. Se centrifugó durante 30 min a 6,000 rpm y el sobrenadante se recuperó en un matraz volumétrico de 50 mL filtrando con papel Whatman No. 42. Al residuo sólido se le agregó nuevamente 10 mL de NH₂OH•HCl 0.04 M y se agitó 30 s en vortex y 15 min a 350 rpm en un agitador orbital. Se centrifugó durante 5 min a 6,000 rpm y nuevamente se filtró la solución. El volumen recuperado se acidificó con 5 gotas de HNO₃ ultrex II y se aforó a 50 mL. La solución final se manejó como se indica en el proceso de extracción de la FS.

3.6.4. FRACCIÓN ASOCIADA A SULFUROS Y MATERIA ORGÁNICA (FS MO)

Una vez más se usó el tubo para centrífuga con el residuo sólido de la FO Fe-Mn para extraer los MPMPT asociados a esta fase. Inicialmente, se agregó un volumen de 3 mL de una solución diluida de HNO₃ 0.02 M + 5 mL de H₂O₂ al 30%. Posteriormente, la mezcla se llevó a agitación por 30 s en vortex. Enseguida, la mezcla fue transferida a un vaso de precipitado de 250 mL. Adicionalmente, con la finalidad de arrastrar residuos de la pared del tubo para centrífuga, se utilizó la cantidad mínima posible de solución de HNO₃ + H₂O₃ en la misma proporción empleada inicialmente y se depositó en el vaso de precipitado de 250 mL. Una gota de HNO3 ultrex II fue usada para ajustar el pH a 2. El vaso se cubrió con una película de parafilm y se llevó a calentamiento durante 2 h en una plancha térmica a ~85 °C.

Durante el calentamiento el vaso de precipitado se agitó a intervalos de 20 min. Se dejó enfriar y se adicionaron 3 mL de ${\rm H_2O_2}$ al 30%. Nuevamente, el contenido del vaso se ajustó a pH 2 y se sometió a calentamiento de ~85 °C durante 3 h, con agitación a intervalos de 15 min. Se dejó enfriar y se depositó el contenido del vaso en el mismo tubo de centrífuga que se había estado usando. Con la

| Boletín de la Sociedad Geológica Mexicana | 74 (2) | A121221 | 2022

MATERIALES Y MÉTODOS / RESULTADOS Y DISCUSIÓN

finalidad de arrastrar residuos del vaso de precipitado, empleando 12 mL de agua desionizada, se dio un lavado al vaso de precipitado y este volumen fue incorporado al tubo de centrífuga. Después, 5 mL de CH₃COONH₄ 3.2 M (acetato de amonio) en 20% (v/v) de HNO₃ fueron agregados al tubo de centrífuga y se llevó a agitación durante 30 min a 350 rpm en un agitador orbital. Al finalizar el periodo en agitación se centrifugó durante 30 min a 6,000 rpm. El sobrenadante obtenido fue filtrado empleando papel filtro Whatman No. 42 y fue recuperado en un matraz volumétrico de 50 mL.

Posteriormente, el sedimento del tubo fue homogenizado con 10 mL de ${\rm H_2O}$ desionizada más 3 gotas de ${\rm HNO_3}$ ultrex II y se agitó durante 30 s en vortex. Nuevamente, el tubo fue agitado durante 5 min a 350 rpm empleando un agitador orbital. Se centrifugó durante 20 min a 6,000 rpm y se filtró en el mismo papel filtro empleado para la recuperación de la primera fracción de sobrenadante. Finalmente, se acidificó la solución con 5 gotas de ${\rm HNO_3}$ ultrex II y se aforó a un volumen final de 50 mL. La solución final se manejó como se indica en el proceso de extracción de la FS.

3.6.5. FRACCIÓN RESIDUAL (FR)

El residuo sólido de la FS MO fue transferido a un VDS utilizando 5 mL agua desionizada. Posteriormente, se agregaron 5 mL de HNO_3 grado reactivo y se desarrolló el procedimiento descrito con ácidos y diferentes temperaturas establecidas para la DT.

4. Resultados y discusión

4.1. CARACTERÍSTICAS FISICOQUÍMICAS Y MINERALOGÍA DE LOS LODOS RESIDUALES

In situ, los LR generados por la PTAR Taxco de Alarcón presentaron un pH de 7.1, un Eh de +7.50 mV, una conductividad eléctrica de 2,350 μS/m y una temperatura de 25.1 °C. Las condiciones encontradas indican un pH cercano a la neutralidad con un ambiente ligeramente oxidante. El

valor de conductividad eléctrica es muy elevado y podría ser un factor negativo que limite la propuesta de uso de LR como mejoradores de la calidad de los suelos agrícolas debido a que este valor podría estar dado por la presencia de iones que afecten la calidad de los suelos agrícolas. Carreto-Morales et al., (2021) emplearon LR de la PTAR Taxco de Alarcón para evaluar el crecimiento de pasto mombaza y observaron que el pasto cultivado en LR mostró mejor rendimiento que pasto cultivado en un suelo composta comercial. A pesar de este estudio, es recomendable realizar un análisis para descartar que el elevado valor de conductividad observado no se deba a la presencia de iones que puedan afectar negativamente la calidad de los suelos agrícolas. Por otro lado, mediante la técnica de DRX se pudo determinar que la mineralogía de los LR es simple y reducida en número de fases (Figura 1).

En general, de acuerdo con el análisis realizado mediante DRX, cuatro fases minerales fueron identificadas en los LR provenientes de la PTAR "Taxco de Alarcón, Guerrero": oligoclasa ((Na, Ca)(Si, Al)₄O₈), muscovita (KAl₂(AlSi₃O₁₀)(OH)₂), cuarzo (SiO₂) y calcita (CaCO₃). Oligoclasa es la fase mineral predominante (46.6%), enseguida muscovita y cuarzo con 26.1 y 21.1%, respectivamente, mientras que calcita fue la fase mineral encontrada en menor proporción con solo 4.3% (Figura 1). De las cuatro fases minerales identificadas, tres de ellas son parte del grupo de los silicatos. En suma, representan un porcentaje superior al 95% de la composición relativa de los LR. Por otro lado, oligoclasa y muscovita presentan en su composición química Al, un elemento clasificado como MPMPT. Además, la concentración relativa de estos dos minerales representa ca. de 3/4 partes de la composición de los LR.

4.2. COMPOSICIÓN QUÍMICA DE LOS LODOS RESIDUALES MEDIANTE MICROSCOPÍA ELECTRÓNICA DE BARRIDO ACOPLADO A ESPECTROSCOPÍA DE DISPERSIÓN DE ENERGÍA DE RAYOS X

La tabla 1 muestra los elementos identificados mediante SEM-EDS en los LR. Estos elementos

fueron Al, Ca, Cu, Fe, K, Na, Mg, Mn, O, P, S, Si, Ti y Zn de los cuales Al, Cu, Fe, Mn, Ti y Zn forman parte del grupo de los MPMPT (Mathuriya y Yakhmi, 2014). Por otro lado, la presencia y concentración relativa de O, Si y Ca coincide con los análisis de DRX donde silicatos y carbonatos son los dos grupos predominantes identificados (Figura 1). Sin embargo, existen otros elementos que pueden conducir a la formación de otros minerales que no fueron identificados mediante DRX. Además, se logró identificar la presencia de P y S, elementos considerados como esenciales para el crecimiento de las plantas de acuerdo con Campos Medina et al. (2009). Por otro lado, la tabla 1 presenta una elevada concentración relativa de Al. Un valor esperado de acuerdo con los resultados obtenidos mediante DRX. Además, este resultado guarda relación con un análisis realizado por Sánchez-Montoya et al. (2019) sobre la calidad del agua potable en el municipio de Taxco de Alarcón, Gro. En este estudio se encontró que la concentración de Al presente (2.680 mg/L) en el agua potable que se distribuye en el municipio rebasa el valor establecido por la NOM-127-SSA1-1994 (0.20 mg/L) hasta por 13 veces. En función de estos resultados, se puede atribuir que el agua potable es una de las fuentes más importantes de Al para los LR generados por la PTAR de Taxco de Alarcón, Gro. El agua potable es usada y convertida en el agua residual por los habitantes del municipio y posteriormente enviada a la PTAR para ser tratada. La elevada concentración de Al en el agua potable y en los LR podría atribuirse al proceso de tratamiento que se lleva a cabo en la planta potabilizadora de agua donde emplean Al₉(SO₄)₃ como reactivo floculante. Por otro lado, Ca, O, P y Si, respectivamente, son los otros elementos que parecen estar en mayor concentración con respecto a los demás elementos identificados (Tabla 1). Además, la presencia de estos elementos en los LR no representa un riesgo de contaminación. En la tabla 1 se puede observar la composición relativa como cationes de los elementos químicos encontrados en la muestra

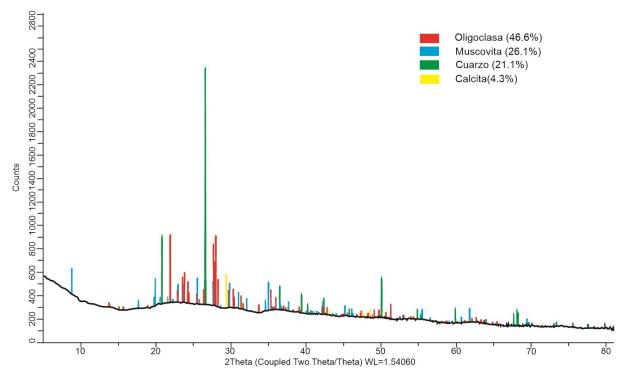


Figura 1 Difractograma de lodos residuales de la planta de tratamiento de agua residual de Taxco de Alarcón, Gro.

/ Boletín de la Sociedad Geológica Mexicana / 74 (2) / A121221 / 2022

Tabla 1. Composición relativa de elementos químicos como cationes y como óxidos en los lodos residuales.

Elemento	Masa normalizada (%)	Óxidos	Sto. Norm. (%)	
Silicio	21.01	SiO ₂	44.95	
Aluminio	9.49	Al_2O_3	17.93	
Calcio	6.91	CaO	9.67	
Hierro	5.86	FeO	7.54	
Fósforo	2.56	P ₂ O ₅	5.87	
Potasio	2.59	K ₂ O	3.12	
Azufre	1.19	SO ₃	2.97	
Magnesio	1.31	MgO	2.17	
Sodio	1.53	Na ₂ O	2.06	
Titanio	0.70	TiO ₂	1.17	
Zinc	0.94	ZnO	1.16	
Manganeso	0.60	MnO	0.78	
Cobre	0.61	ND^{a}	NA^{b}	
Oxígeno	44.70	NA	NA	
^a No detectado; ^b No ap	lica.			

y los posibles óxidos formados por los elementos presentes. Campos Medina *et al.* (2009) realizó un estudio similar a esta investigación donde se emplearon *LR* referidos como biosólidos generados por la *PTAR* de la ciudad de Toluca, en el Edo. de México. Sin embargo, su metodología no contempló la realización de *DRX* y sus resultados fueron obtenidos principalmente a través de un estudio de *SEM-EDS*. Sus resultados mostraron una abundancia relativa de *Ca*.

Sin embargo, su abundancia se atribuye a que estos *LR* fueron previamente sometidos a un proceso de estabilización alcalina empleando Ca(OH)₂. Otros elementos identificados en los *LR* de esa región fueron Al, Fe, K, Mg, Mn, Na, P y Si, elementos que fueron identificados en los *LR* generados por la *PTAR* Taxco de Alarcón. Sin

embargo, *SEM-EDS* y *DRX* son técnicas que no permiten cuantificar la concentración de cada elemento identificado.

4.3. METALES PESADOS Y METALOIDES POTENCIALMENTE TÓXICOS IDENTIFICADOS EN LOS LODOS RESIDUALES MEDIANTE ESPECTROSCOPÍA DE EMISIÓN ATÓMICA POR PLASMA ACOPLADO INDUCTIVAMENTE

4.3.1. CONCENTRACIÓN TOTAL DE METALES PESADOS Y METALOIDES POTENCIALMENTE TÓXICOS PRESENTES EN LOS LODOS RESIDUALES

Para lograr solubilizar completamente los *LR* fue necesario aplicar varios ciclos con ácidos fuertes y temperaturas elevadas como se describe en la sección de metodología. Esto se debe esencialmente a la composición mineralógica de los *LR*,

Tabla 2. Metales pesados y metaloides potencialmente tóxicos identificados y cuantificados en los lodos residuales de la planta de tratamiento de agua residual Taxco de Alarcón, Gro., a partir de una digestión total.

MPMPT ^a identificados en los LR ^b	Concentración (mg/kg)			
Ba	443±16			
Ca	24,102±950			
Cd	50±2			
Со	9±0.4			
Cr	38±2			
Cu	752±27			
K	12,088±566			
Mg	5,561±197			
Mn	1,826±69			
Ni	190±6			
Pb	153±4			
Sr	159±7			
V	50±2			
Zn	3,134±105			
Fe	19,384±832			
Al	43,781±1,457			
As	51±2			
^a Metales pesados y metaloides potencialmente tóxicos; ^b Lodos residuales. Los datos de concen-				

^a Metales pesados y metaloides potencialmente tóxicos; ^b Lodos residuales. Los datos de concentración se presentan como la media ± error estándar; n = 3.

principalmente silicatos (Figura 1). Una vez que se solubilizaron los LR, se analizaron mediante ICP-AES mostrando una mayor diversidad que los MPMPT identificados mediante DRX y SEM-EDS. Además, se logró determinar con exactitud la concentración de cada MPMPT detectado (Tabla 2).

Los datos obtenidos permiten generar dos grupos de *MPMPT*. El primer grupo se caracteriza por presentar concentraciones elevadas del orden de g/kg. Entre ellos se encuentra el Al, Ca, Fe, K, Mg, Zn y Mn con concentraciones de 44, 24, 19, 12, 6, 3 y 2 g/kg de *LR*, respectivamente. En el segundo grupo, los *MPMPT* presentan concentraciones relativamente bajas, del orden de mg/kg.

Entre ellos se encuentran el Cu, Ba, Ni, Sr, Pb, Cd, V, Cr, As y Co (Tabla 2). Como primera aproximación, el análisis de la concentración total obtenida a partir de la *DT* de los *LR* ayuda a estimar el potencial de contaminación por *MPMPT* hacia el ambiente por parte de los *LR* de la *PTAR* Taxco de Alarcón, Gro.

4.3.2. ANÁLISIS DE LOS METALES PESADOS Y METALOIDES POTENCIALMENTE TÓXICOS ENCONTRADOS EN LOS LODOS RESIDUALES RESPECTO A LA NOM-004-SEMARNAT-2002

Siete de los ocho *MPMPT* considerados por la norma fueron analizados e identificados en los *LR* generados por la *PTAR* Taxco de Alarcón.

/ Boletín de la Sociedad Geológica Mexicana / 74 (2) / A121221 / 2022

Tabla 3. Análisis de la calidad de los lodos residuales de la *PTAR* "Taxco de Alarcón, Gro." en función del contenido de metales pesados y metaloides potencialmente tóxicos analizados.

MPMPT ^a	Concentración en <i>LR</i> ^b (mg/kg)	Límites máximos establecidos por la NOM-004-SEMARNAT- 2002 (mg/kg)		<i>LE-USEPA</i> ° 503 (mg/kg)		<i>LE-CEC</i> ^d (mg/kg)	
		EC ^e	BC^f	$LG^{ m g}$	EC	pH <7	pH >7
As	51 ± 2	41	75	75	41	NCN^{h}	NCN
Cd	50 ± 2	39	85	85	39	20	40
Cr	38 ± 2	1,200	3,000	NCN	NCN	1,000	1,500
Cu	752 ± 27	1,500	4,300	4,300	1,500	1,000	1,750
Pb	153 ± 4	300	840	840	300	750	1,200
Ni	190 ± 6	420	420	420	420	300	400
Zn	$3,134 \pm 105$	2,800	7,500	7,500	2,800	2,500	4,000

^a Metales pesados y metaloides potencialmente tóxicos; ^b Lodos residuales; ^c Límites establecidos por United States Environmental Protection Agency; ^d Límites establecidos por Council of the European Communities; ^e Excelente calidad; ^f Buena calidad; ^g Límite general; ^h No considerado por la norma. Los datos de concentración son presentados como la media ± error estándar; n = 3.

En el caso del Hg (elemento no analizado en este trabajo), no se han encontrado antecedentes que demuestren la presencia de este metal en la zona de estudio. Además, el análisis mineralógico mediante *DRX* y químico mediante *SEM-EDS* tampoco presentaron indicios de la presencia de metal. Por esta razón, en función de la presencia de los *MPMPT* analizados, la concentración determinada para cada uno de ellos y los valores establecidos por la norma, se realizó un análisis para determinar el potencial de riesgo hacia el medioambiente.

En la tabla 3 se muestran las concentraciones determinadas de los *MPMPT* analizados y considerados por la norma encontrados en los *LR* de la *PTAR* "Taxco de Alarcón, Gro.". Los valores se comparan contra los límites máximos permisibles establecidos en materia de disposición de *LR* y/o biosólidos por la NOM-004-SEMARNAT-2002 (SEMARNAT, 2003). Esta norma clasifica a los *LR* en excelentes o buenos de acuerdo con la presencia

y concentración de MPMPT. Los LR clasificados como excelentes son aquellos lodos que manejan una concentración menor que la concentración definida para lodos como de buena calidad. En este trabajo, se observa que los elementos considerados por la NOM-004-SEMARNAT-2002, analizados y cuantificados en los LR generados por la PTAR Taxco de Alarcón Gro., se encuentran por debajo de los valores máximos permisibles para poder considerar a los lodos como de buena calidad. Es decir, los LR generados por la PTAR son considerados lodos de "buena calidad" (Figura 2a). Solamente la concentración de As, Cd y Zn supera los valores máximos contemplados por la norma para clasificarlos como lodos de excelente calidad (Figura 2b). En el caso del As y Cd exceden por un 25 y 29%, respectivamente, mientras que el Zn excede solo por un 12%.

Adicionalmente, se realizó un análisis de los valores determinados en los *LR* analizados contra dos regulaciones internacionales (Tabla 3): la *United*

States Environmental Protection Agency (USEPA, 1995) y Council of the European Communities (CEC, 1986). Se observó que los valores del límite de concentración para MPMPT considerados por la NOM-004-SE-MARNAT-2002 son iguales a los valores establecidos por la USEPA 503, con excepción del Cr. Este metal no se encuentra considerado por la USEPA 503 como un elemento potencialmente peligroso. Esta regulación internacional también hace una doble clasificación del tipo de LR de acuerdo con su concentración de MPMPT. La

primera clasificación es hecha en base a un valor equivalente a lodos de buena calidad en el caso de la norma mexicana (Límite General, *LG*) y la segunda clasificación es análoga a lodos de excelente calidad (Calidad Excelente, *CE*) contemplada en la norma oficial mexicana. Con base en lo anterior, los *LR* analizados cumplen con la *USEPA* 503 y entran dentro de los valores de la clasificación de límite general. Por otro lado, la regulación de la comunidad europea es, en general, la regulación más estricta con respecto a las dos legislaciones

Figura 2 Análisis de la concentración de los metales pesados y metaloides potencialmente tóxicos encontrados en los lodos residuales generados por la planta de tratamiento de agua residual Taxco de Alarcón y su comparación con los valores límite establecidos por la NOM-004-SEMARNAT-2002 para clasificarlos como: a) lodos de buena calidad o b) lodos de excelente calidad. Las barras verticales indican el error estándar; n=3.

anteriormente analizadas. Los valores límite que se toleran son valores de concentración más bajos que los valores permitidos por las otras dos legislaciones. Sin embargo, esta regulación no contempla al As. Clasifica a los LR de acuerdo con su valor de pH como alcalinos (pH >7) y ácidos (pH<7), y de acuerdo con la concentración de MPMPT que presenten. Los LR generados por la PTAR Taxco de Alarcón presentaron un pH de 7.1, por lo que se consideran alcalinos de acuerdo con la comunidad europea. Al tomar como base el pH de los LR para seleccionar los valores límite que se deben considerar, los LR generados por la PTAR Taxco de Alarcón no cumplen con los valores establecidos por la comunidad europea debido a que el Cd sobrepasa el límite permisible. Es decir, de acuerdo con la comunidad europea los LR son considerados como peligrosos.

La finalidad de caracterizar y clasificar a los *LR* es para proponer estrategias de disposición para este tipo de residuos sin que representen un riesgo ambiental. Una de las estrategias propuestas para disposición y/o uso para los LR es como mejorador de las características fisicoquímicas del suelo, es decir, como abono orgánico (Salcedo-Pérez et al., 2007; Campos Medina et al., 2009; González-Flores et al., 2011; Carreto-Morales et al., 2021). Sin embargo, previo a su uso, uno de los principales contaminantes que es necesario descartar es la presencia y concentración peligrosa de MPMPT mediante un estudio como el que se presenta en esta investigación y otros parámetros considerados por la NOM-004-SEMARNAT-2002 (SEMAR-NAT, 2003).

Salcedo-Pérez et al. (2007) analizaron los LR generados por una PTAR sanitaria de una empresa dedicada a la manufactura electrónica, ubicada en la zona sur de Guadalajara, Jalisco, México. El análisis de metales pesados mostró concentraciones menores a las reportadas en este estudio y menores a las consideradas por la NOM-004-SE-MARNAT-2002. Las concentraciones fueron 0.026, 1.08, 22.16, 383.4, 9.69, 117.22 y 539.9 mg/kg (base seca) de As, Cd, Cr, Cu, Ni, Pb y Zn, respectivamente. Estos valores encontrados, permitieron clasificar a los LR como de excelente

calidad a diferencia de los lodos analizados en este estudio. Con base en el estudio realizado, propusieron disponer de los *LR* empleándolos como abono orgánico y evaluaron el uso de los *LR* de esta *PTAR* como abono orgánico en suelos volcánicos con la finalidad de mejorar la producción agrícola y forestal. El uso de los *LR* como abono orgánico incrementó significativamente la producción de maíz y forraje en un 18 y 22%, respectivamente, comparado con una fertilización química analizada dentro del mismo estudio.

Por otro lado, la diferencia encontrada en los resultados entre los *LR* de la *PTAR* en Guadalajara, contra los *LR* generados por la *PTAR* Taxco de Alarcón, puede atribuirse a una posible influencia por la actividad minera, específicamente actividades de orfebrería. Sin embargo, la presencia y concentración total de *MPMPT* no es concluyente para determinar si existe riesgo potencial de liberación o movilidad de estos elementos hacia los ecosistemas. Para determinar si existe la posibilidad de efectos negativos hacia el ambiente, es necesario determinar el grado de geodisponibilidad (Martínez-Alva *et al.*, 2020).

4.3.3. GEODISPONIBILIDAD DE LOS METALES PESADOS Y METALOIDES POTENCIALMENTE TÓXICOS ENCONTRADOS EN LOS LODOS RESIDUALES GENERADOS POR LA PLANTA DE TRATAMIENTO DE AGUA RESIDUAL DE TAXCO DE ALARCÓN

Una serie de tratamientos fisicoquímicos y térmicos usando agua desionizada, ácidos débiles y ácidos fuertes como HCl, HNO3, HF y HClO4 permitió simular diferentes condiciones ambientales para los MPMPT presentes en los LR. A través de estos tratamientos, se determinó la movilidad de los diferentes MPMPT presentes en los LR en función de su grado de solubilidad. Es decir, se estimó la concentración de MPMPT presentes en los LR que se podrían liberar al ambiente hacia agua y/o suelo o la cadena trófica (Tessier et al., 1979; López Julián y Mandado Collado, 2002; González-Flores et al., 2011). En este estudio, se pudo observar que la concentración total de los MPMPT identificados a partir de la DT en los LR estudiados se encuentra distribuida en las diferentes fracciones analizadas: FR, FS MO, FO Fe-Mn, FC y la FI.

Metales pesados y metaloides potencialmente tóxicos asociados a la fracción residual. El análisis de las concentraciones de MPMPT asociados a la FR mostró concentraciones bajas comparado con la concentración total de MPMPT determinada a partir de la DT (Tabla 4). Esto significa que la diferencia de concentración se encuentra distribuida en las fracciones restantes (Figura 3). En el caso particular del As, Cd y Zn (MPMPT con valores superiores a los establecidos por la NOM-004-SEMARNAT-2002 para poder clasificar a los lodos como de excelente calidad), el % de la concentración asociada a la FR es de 0.20, 0.12 y 1.03% para As, Cd y Zn, respectivamente. Es decir, representan concentraciones muy bajas asociadas a la FR. Por otro lado, otros MPMPT asociados a esta fracción (de interés por su asociación con problemas de salud) se encontraron en concentraciones elevadas, e.g., Ba, Co, Mg, Sr, V, Fe y Al con 27, 30, 41, 18, 36, 45 y 32%, respectivamente. Sin embargo, la presencia de cualquier elemento asociado a esta fracción es un resultado positivo, debido a que los MPMPT asociados a esta fracción representan el menor potencial de riesgo de liberación y/o movilidad. Su liberación al medio está condicionada por ambientes extremos y poco comunes en la naturaleza (Tessier et al., 1979). En esta fracción, los MPMPT cuantificados se encuentran enlazados a formas químicas muy estables, e.g., silicatos. En el caso de los LR generados por la PTAR Taxco de Alarcón presentan una mineralogía donde ca. 95% corresponde al grupo de los silicatos (Figura 1). Por esta razón, para hacer la extracción de los MPMPT asociados a la FR que se muestran en la tabla 4 se necesitaron varios ciclos de tratamiento a temperaturas elevadas y empleando ácidos fuertes.

Metales pesados y metaloides potencialmente tóxicos asociados a la fracción de sulfuros y materia orgánica. En la tabla 4, se muestra la concentración de los MPMPT asociada a la FS MO. Comparado con la concentración de MPMPT encontrados en la FR, la concentración de MPMPT asociados a la FS MO fue mayor (Figura 3). Sin embargo, aún es una concentración baja comparada con la concentración total determinada a partir de la DT. Nuevamente, al hacer un análisis de los MPMPT

de interés por la NOM-004-SEMARNAT-2002 que sobrepasan los límites para clasificar a los LR como de excelente calidad, se encontró que la concentración asociada a esta fracción es del orden del 15, 14 y 22%, para As, Cd y Zn, respectivamente. Por otro lado, Ba, Cr, Cu, Pb, Fe, Co y Ni presentaron una asociación importante en esta fracción 20, 21, 52, 43, 32, 21 y 28%, respectivamente. La elevada concentración de Cu en esta fracción (392 mg/kg) se debe a la elevada afinidad que tiene este elemento con la materia orgánica (Han y Thompson, 1999; Zhou y Wong, 2001; Azevedo et al., 2003). Además, el Pb, un elemento considerado altamente peligroso para la salud, se encuentra asociado a esta fracción ca. 50% de la concentración total. A pesar de que en la DT se encontró que el valor del Pb no supera los valores establecidos por la norma, es importante hacer notar que este elemento presente en los LR se encuentra principalmente asociado a la FS MO. Similar a la FR, los MPMPT presentan un elevado grado de estabilidad en condiciones normales, i.e., su grado de geodisponibilidad es bajo. En esta fracción, los MPMPT cuantificados se encuentran enlazados a especies químicas de sulfuros y materia orgánica. Su liberación al medio requiere condiciones o agentes oxidantes extremos, e.g., peróxido de hidrógeno.

Metales pesados y metaloides potencialmente tóxicos asociados a la fracción de oxihidróxidos de Fe – Mn. En la tabla 4 se muestra la concentración de los MPMPT asociados a la FO Fe-Mn. En general, la concentración de los MPMPT asociados a esta fracción fue baja (Figura 3). En el caso del As, Cd y Zn (MPMPT que exceden los límites máximos permisibles establecidos por la norma para clasificar a los LR como de excelente calidad), se observa un patrón de aumento en la concentración hacia las fracciones que se consideran de mayor geodisponibilidad. El porcentaje de concentración asociado a la FO Fe-Mn para As, Cd y Zn fue de 19, 19 y 22%, respectivamente. El porcentaje de concentración acumulado para estos tres elementos tóxicos considerados por la norma dentro de las fracciones más estables (FR, FS MO y FO Fe-Mn) es de 34, 33 y 45% para As, Cd y Zn, respectivamente. El

resto de la concentración de estos *MPMPT* se ubica dentro de las fracciones que representan un mayor riesgo ambiental por su potencial de movilidad: la *FC* y la *FI*. Sin embargo, a pesar de que la concentración acumulada en las fracciones químicas más estables representa un riesgo ambiental bajo, esta concentración es parte de la concentración total considerada por la NOM-004-SEMARNAT-2002 para establecer una clasificación del tipo de calidad de los *LR*. Considerar la suma de la concentración asociada a fracciones que representan un grado de

estabilidad elevado o un bajo potencial de geodisponibilidad como parte de la concentración total establecida en la NOM-004-SEMARNAT-2002 puede marcar la diferencia entre clasificar a los *LR* como de buena o excelente calidad. El potencial de geodisponibilidad de la concentración de los *MPMPT* asociados a la *FO Fe-Mn*, se representa de la siguiente manera: *FO Fe-Mn>FS MO>FR*. Es decir, los *MPMPT* asociados a la fracción *FO Fe-Mn*, presenta un menor grado de estabilidad en comparación con los *MPMPT* asociados a la *FS MO y FR*.

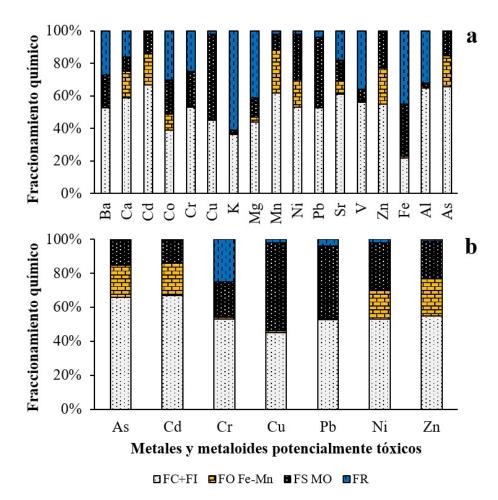


Figura 3 Distribución porcentual de la concentración total en las diferentes fracciones estudiadas en: a) todos los metales pesados y metaloides potencialmente tóxicos identificados en los lodos residuales y b) los metales pesados y metaloides considerados por la NOM-004-SEMARNAT-2002. FC+FI representa la suma de las concentraciones porcentuales asociadas a la fracción carbonatos con intercambiable; FO Fe-Mn representa la concentración porcentual asociada a la fracción asociada a oxihidróxidos de Fe y Mn; FS MO representa la concentración porcentual asociada a la fracción de sulfuros y materia orgánica y FR representa la concentración porcentual asociada a la fracción residual.

Tabla 4. Distribución de la concentración de los metales pesados y metaloides potencialmente tóxicos en las diferentes fracciones analizadas mediante extracción química secuencial.

Boletín de la Sociedad Geológica Mexicana / 74 (2) / A121221 / 2022 /

DT^{a}		FR^{b}		FS MC)c	FO Fe-	Mn ^d	FC+	FI ^e
Concentración									
(mg/kg)	(%)	(mg/kg)	(%)	(mg/kg)	(%)	(mg/kg)	(%)	(mg/kg)	(%)
443±16	100	119±27	27	89±7	20	2±0.02	0.43	234	53
24,102±950	100	3,802±669	16	2,187±426	9	3,928±196	16	14,185	59
50±2	100	0.06±0.01	0.12	7±1	14	10±1	19	34	67
9±0.4	100	3±1	30	2±1	21	1±0.3	10	4	39
38±2	100	10±2	25	8±1	21	0.40±0.03	1	20	52
752±27	100	17±3	2	392±68	52	8±1	1	335	45
12,088±566	100	7,345±1,467	61	211±39	2	84±5	0.7	4,448	37
5,561±197	100	2,284±475	41	670±197	12	162±5	3	2,446	44
1,826±69	100	36±8	2	181±33	10	466±23	26	1,143	63
190±6	100	4±1	2	53±11	28	32±3	17	101	53
153±4	100	6±3	4	65±9	43	0.27±0.1	0.18	81	53
159±7	100	29±6	18	21±4	13	13±1	8	96	60
50±2	100	18±3	36	4±1	7	0.42±0.1	1	28	56
3,134±105	100	32±9	1	688±118	22	691±24	22	1,723	55
19,384±832	100	8,679±1,654	45	6,248±1,176	32	128±52	1	4,321	22
43,781±1,457	100	14,019±2,747	32	1,439±385	3	9±1	0.02	28,315	65
51±2	100	0.10±0.01	0.20	8±2	15	10±1	19	34	67
	(mg/kg) 443±16 24,102±950 50±2 9±0.4 38±2 752±27 12,088±566 5,561±197 1,826±69 190±6 153±4 159±7 50±2 3,134±105 19,384±832 43,781±1,457	(mg/kg) (%) 443±16 100 24,102±950 100 50±2 100 9±0.4 100 752±27 100 12,088±566 100 5,561±197 100 1,826±69 100 190±6 100 153±4 100 159±7 100 50±2 100 3,134±105 100 19,384±832 100 43,781±1,457 100	(mg/kg) (%) (mg/kg) 443±16 100 119±27 24,102±950 100 3,802±669 50±2 100 0.06±0.01 9±0.4 100 3±1 38±2 100 10±2 752±27 100 17±3 12,088±566 100 7,345±1,467 5,561±197 100 2,284±475 1,826±69 100 36±8 190±6 100 4±1 153±4 100 6±3 159±7 100 29±6 50±2 100 18±3 3,134±105 100 32±9 19,384±832 100 8,679±1,654 43,781±1,457 100 14,019±2,747	(mg/kg) (%) (mg/kg) (%) 443±16 100 119±27 27 24,102±950 100 3,802±669 16 50±2 100 0.06±0.01 0.12 9±0.4 100 3±1 30 38±2 100 10±2 25 752±27 100 17±3 2 12,088±566 100 7,345±1,467 61 5,561±197 100 2,284±475 41 1,826±69 100 36±8 2 190±6 100 4±1 2 153±4 100 6±3 4 159±7 100 29±6 18 50±2 100 18±3 36 3,134±105 100 32±9 1 19,384±832 100 8,679±1,654 45 43,781±1,457 100 14,019±2,747 32	(mg/kg) (%) (mg/kg) (%) (mg/kg) 24,102±950 100 3,802±669 16 2,187±426 50±2 100 0.06±0.01 0.12 7±1 9±0.4 100 3±1 30 2±1 38±2 100 10±2 25 8±1 752±27 100 17±3 2 392±68 12,088±566 100 7,345±1,467 61 211±39 5,561±197 100 2,284±475 41 670±197 1,826±69 100 36±8 2 181±33 190±6 100 4±1 2 53±11 153±4 100 6±3 4 65±9 159±7 100 29±6 18 21±4 50±2 100 18±3 36 4±1 3,134±105 100 32±9 1 688±118 19,384±832 100 8,679±1,654 45 6,248±1,176 43,781±1,457 100	(mg/kg) (%) (mg/kg) (%) (mg/kg) (%) 443±16 100 119±27 27 89±7 20 24,102±950 100 3,802±669 16 2,187±426 9 50±2 100 0.06±0.01 0.12 7±1 14 9±0.4 100 3±1 30 2±1 21 38±2 100 10±2 25 8±1 21 752±27 100 17±3 2 392±68 52 12,088±566 100 7,345±1,467 61 211±39 2 5,561±197 100 2,284±475 41 670±197 12 1,826±69 100 36±8 2 181±33 10 190±6 100 4±1 2 53±11 28 159±7 100 29±6 18 21±4 13 50±2 100 18±3 36 4±1 7 3,134±105 100 32±9	(mg/kg) (%) (mg/kg) (%) <th< td=""><td>(mg/kg) (%) (mg/kg) (%) (%) (mg/kg) (%) <t< td=""><td>(mg/kg) (%) (mg/kg) (%) <th< td=""></th<></td></t<></td></th<>	(mg/kg) (%) (%) (mg/kg) (%) <t< td=""><td>(mg/kg) (%) (mg/kg) (%) <th< td=""></th<></td></t<>	(mg/kg) (%) (mg/kg) (%) <th< td=""></th<>

^a Digestión total; ^b Fracción residual; ^c Fracción asociada a sulfuros y materia orgánica; ^d Fracción asociada a oxihidróxidos de Fe-Mn; ^c Sumatoria de la fracción asociada a carbonatos e intercambiable. Los datos de concentración total, fracción residual, fracción asociada a sulfuros y materia orgánica y fracción asociada a oxihidróxidos de Fe y Mn son presentados como la media ± error estándar; n = 3.

Metales pesados y metaloides potencialmente tóxicos asociados a la fracción asociada a carbonatos e intercambiable (fracción soluble y adsorbida). En este estudio, se encontró que la mayor concentración de la mayoría de los MPMPT se encuentra asociada a la FC+FI, con excepción del Cu y Fe (Figura 3). La mayor concentración del Cu y Fe se encuentra asociada a la FS MO y FR, respectivamente (Tabla 4). Para As, Cd y Zn (elementos que exceden la concentración total establecida en la NOM-004-SEMAR-NAT-2002 y no permite clasificar a los LR como

de excelente calidad) se encontraron concentraciones asociadas a las *FC+FI* de 34, 34 y 1,723 mg/kg de *LR*, respectivamente. Sin embargo, a pesar de que la mayor concentración de la mayoría de los *MPMPT* se encuentra asociados a la *FC+FI*, si la NOM-004-SEMARNAT-2002 considerara la concentración de estas fracciones en lugar de la concentración total, las concentraciones de los *MPMPT* cuantificados en los *LR* generados por la *PTAR* Taxco de Alarcón permitiría clasificarlos como *LR* de excelente calidad (Tabla 5).

18

Tabla 5. Comparación de la concentración de los metales pesados y metaloides potencialmente tóxicos analizados y asociados a mayor grado de geodisponibilidad presentes en los lodos residuales de la *PTAR* "Taxco de Alarcón, Gro." contra los valores establecidos por la NOM-004-SEMARNAT-2002.

MPMPT a	Concentración geodisponible en los <i>LR</i> ^b	Límites máximos establecidos por la NOM-004-SEMARNAT-2002 (mg/kg)			
	(mg/kg)	LR de excelente calidad	LR de buena calidad		
As	34	41	75		
Cd	34	39	85		
Cr	20	1,200	3,000		
Cu	335	1,500	4,300		
Pb	81	300	840		
Ni	101	420	420		
Zn	1,723	2,800	7,500		
8 M-4-1					

^a Metales pesados y metaloides potencialmente tóxicos; ^b Lodos residuales

Este análisis se realiza tomando en consideración que la FC+FI son las fracciones que representan el mayor potencial de geodisponibilidad o movilidad. La concentración total de MPMPT determinada a partir de una DT no refleja el potencial de movilidad hacia fases solubles. Se podrían encontrar muestras problema donde a partir de una EQS se demuestre que la concentración total sea igual o similar a la concentración de fracciones con bajo potencial de geodisponibilidad, e.g., la FR. Sin embargo, la muestra no cumpliría con la NOM-004-SEMARNAT-2002 a pesar de que los MPMPT asociados a la FR no representan desde el punto de vista geoquímico ningún riesgo medioambiental. Esta propuesta de análisis, que toma en cuenta las fracciones de mayor grado de geodisponibilidad para clasificar a los LR en la NOM-004-SEMARNAT-2002, se fundamenta en que los MPMPT asociados a la FC y FI representan en conjunto el mayor potencial de riesgo de movilidad hacia el ambiente y de mayor interés para la sociedad (Tessier et al., 1979; López Julián y Mandado Collado, 2002; González-Flores et al., 2011).

La presencia de *MPMPT* en elevadas concentraciones en las *FC* y *FI* tienen mayor probabilidad de ser dispersados hacia las diferentes matrices: agua, suelo y cadena trófica. Los *MPMPT* asociados a la *FC* y *FI* no necesitan de condiciones

medioambientales extremas para su movilidad. La condición fisicoquímica "extrema" para favorecer la dispersión de los *MPMPT* hacia una fase acuosa en estas fracciones solo requiere un ligero cambio de pH (6.5-7.5). Este ligero cambio puede ser ocasionado por un fenómeno de lluvia ácida (Krauskopf y Bird, 2003). Otros elementos que presentaron una concentración mayor al 50% asociada a la *FC+FI* son Ba, Ca, Sr, V y Al, de los cuales Ba, Sr, V y Al no están considerados por la norma, sin embargo, representan un riesgo ambiental por estar presentes en estas fracciones (Tabla 4).

5. Conclusión

El análisis mineralógico realizado mediante *DRX* a los *LR* generados por la *PTAR* Taxco de Alarcón, Gro., mostró un elevado porcentaje (95%) de minerales pertenecientes al grupo de los silicatos (oligoclasa, muscovita y cuarzo). Por otro lado, mediante la *DT* y *EQS* se logró identificar y cuantificar la concentración de *MPMPT* presentes en los *LR* de la *PTAR* Taxco de Alarcón: Ba, Ca, Cd, Co, Cr, Cu, K, Mg, Mn, Ni, Pb, Sr, V, Zn, Fe, Al y As. La concentración total determinada para los 7 *MPMPT* analizados y considerados por la NOM-004-SEMARNAT-2002 (As, Cd, Cr, Cu,

CONCLUSIÓN / NOTACIÓN

Pb, Ni y Zn) permite clasificar a los *LR* como lodos de buena calidad. Esto significa que los LR tienen potencial para ser aprovechados en uso urbano sin contacto público directo durante su aplicación, en usos forestales, mejoramiento de suelos o uso agrícola en la región. Sin embargo, es necesario determinar la "clase" de acuerdo con la NOM-004-SEMARNAT-2002, en la que se ubican los LR para proponer el tipo de aprovechamiento final al que pueden ser susceptibles. La "clase" es otra clasificación que se establece en función del contenido de coliformes fecales, Salmonella spp y huevos de helmintos (parámetros no evaluados en este estudio). El As, Cd y Zn presentaron concentraciones de 51, 50 y 3,134 mg/kg, respectivamente, concentraciones que no permitieron clasificar a los LR como lodos de excelente calidad. Por otro lado, la EQS evidenció que la mayor concentración de los MPMPT analizados y contemplados por la NOM-004-SEMARNAT-2002, se encuentra asociada a las fracciones consideradas de mayor geodisponibilidad (FC+FA+FS), con excepción del Cu y Fe. Las concentraciones de estos últimos elementos se encuentran asociadas principalmente a las fracciones más estables desde el punto de vista geoquímico, FS MO y FR, respectivamente. Sin embargo, a pesar de que el mayor porcentaje de la concentración total se encuentra asociado a las fracciones de mayor geodisponibilidad (FC y FI), la concentración real asociada a ese porcentaje en el caso del As, Cd y Zn fue de 33, 34 y 1,723 mg/kg de LR, respectivamente.

Contribuciones de los autores

(1) Conceptualización: GHF, LAAS, JALD, OTM; (2) Análisis o adquisición de datos: GHF, LAAS, JALD, OTM; (3) Desarrollo metodológico/técnico: GHF, LAAS, OTM, JALD; (4) Redacción del manuscrito original: GHF, JALD, ASV, OTM, LAAS; (5) Redacción del manuscrito corregido y editado: GHF, JALD; (6) Diseño gráfico: GHF, JALD; (7) Trabajo de campo: GHF, LAAS, JALD; (8) Interpretación: GHF, LAAS, OTM, JALD; (9) Financiamiento: GHF, LAAS, OTM, JALD.

Notación

ARM	Agua residual municipal
CE	Calidad excelente
DRX	Difractómetro de rayos X
DT	Digestión total
Eh	Potencial redox
EQS	Extracción química secuencial
FA	Fracción adsorbida
FC	Fracción de carbonatos
FI	Fracción intercambiable
FO Fe-Mn	Fracción oxihidróxidos de Fe – Mn
FR	Fracción residual
FS MO	Fracción asociada a sulfuros y materia orgánica
FS	Fracción soluble
ICP-AES	Espectroscopía de emisión atómica de plasma acoplado inductivamente
LE-CEC	Límites establecidos por Council of the European Communities
LE-USEPA	Límites establecidos por United States Environmental Protection Agency
LG	Límite general
LR	Lodos residuales
MPMPT	Metales pesados y metaloides potencialmente tóxicos
NA	No aplica
PTAR	Planta de tratamiento de aguas residuales
SEM-EDS	Scanning Electron Microscopy with X-ray
	Energy Dispersion Spectroscopy
VDS	Vaso de digestión Savillex

Financiamiento

No se contó con una fuente de financiamiento externa. La investigación se llevó a cabo con recursos propios de los autores.

Agradecimientos

Los autores agradecen el apoyo técnico brindado por el M. en C. Mauro Esteban García Salas y la M. en C. Analine Berenice Vázquez Bahéna para la realización de esta investigación. Finalmente, se hace un agradecimiento especial a los revisores anónimos de la revista, quienes a partir de sus comentarios y sugerencias lograron una significante mejora de este artículo. Adicionalmente, se agradece al Laboratorio de Microscopía Electrónica de Barrido y Microanálisis de la Universidad

Fraccionamiento de metales pesados y metaloides potencialmente tóxicos en lodos residuales

Autónoma de Guerrero (LMEByM-UAGro). Se agradece a CONACyT, proyecto 231511: con el cual se adquirió el EDS y WDS, para fortalecer el LMEByM-UAGro.

Conflicto de intereses

Los autores manifiestan no presentar ningún tipo de conflicto de interés.

Referencias

- Armienta, M. A., Talavera, O., Morton, O., Barrera, M., 2003, Geochemistry of metals from mine tailings in Taxco, Mexico: Bulletin of Environmental Contamination and Toxicology, 71, 387–393. https://doi.org/10.1007/s00128-003-0176-0
- Azevedo, M. L., Ferracciú, L. R., Guimaraes, L. R., 2003, Biosolids and heavy metals in soils: Scientia Agricola, 60, 793-806. https://doi.org/10.1590/S0103-90162003000400029
- Bustamante, G. J., Ramírez, E. J., Miranda H. A., 2003, Carta geológico-minera Taxco E14-A68, escala 1: 50, 000: Pachuca, Hidalgo, México, Convenio del Consejo de Recursos Minerales-Universidad Autónoma de Guerrero, 1 mapa.
- Campa-Uranga, M. F., Torres de León, R., Iriondo, A., Premo, W. R., 2012, Caracterización geológica de los ensambles metamórficos de Taxco y Taxco el Viejo, Guerrero, México: Boletín de la Sociedad Geológica Mexicana, 64 (3) 369-385. http://dx.doi.org/10.18268/BSGM2012v64n3a3
- Campos Medina, E., García Rojas, N., Velázquez Rodríguez, A., García Fabila., M., 2009, Análisis básico del reúso de lodos residuales en suelos de pradera del parque nacional nevado de Toluca: Quivera, Revista de Estudios Territoriales, 11, 35-51.
- Cardosa Vigueros, V., Ramírez Camperos, E., 2002, Vermicomposting of sewage sludge: a new technology for México: Water Science

- and Technology, 46(10), 153-158. https://doi.org/10.2166/wst.2002.0316
- Carreto-Morales, E. Y., López-Díaz, J. A., Martínez-Castrejón, M., Talavera-Mendoza, O., Hernández-Flores, G., 2021, Sewage sludge from Taxco de Alarcón wastewater treatmentplantas substrate to cultivate *Panicum maximum*: Revista Mexicana de Ciencias Geológicas, 38(3), 164-177. http://dx.doi. org/10.22201/cgeo.20072902e.2021.3.1617
- Castro, C. P., Henríquez, O., Freres, R., 2007, Posibilidades de aplicación de lodos o biosólidos a los suelos del sector norte de la Región Metropolitana de Santiago: Revista de Geografía Norte Grande, 37, 35-45. http://dx.doi.org/10.4067/S0718-34022007000100003
- CEC (1986). Directive concerning sludge amendments. Council of the European Communities: Official Journal, June, 12, L181-6.
- Comisión Nacional del Agua (CONAGUA), 2017, Situación del subsector agua potable, drenaje y saneamiento: Ciudad de México, Secretaría de Medio Ambiente y Recursos Naturales, reporte técnico.
- Comisión Nacional del Agua (CONAGUA), 2019, Inventario nacional de plantas municipales de potabilización y de tratamiento de aguas residuales en operación, reporte técnico.
- Cuevas, B., Seguel, O. S., Ellies, A. Sch., Dörner, J. F., 2006, Efectos de las enmiendas orgánicas sobre las propiedades físicas del suelo con especial referencia a la adición de lodos urbanos: Revista de la Ciencia del Suelo y Nutrición Vegetal, 6, 1-12. http://dx.doi.org/10.4067/S0718-27912006000200001
- González Flores, E., Tornero Campante, M. A., Ángeles Cruz, Y., Bonilla y Fernández, N., 2009, Concentración total y especiación de metales pesados en biosólidos de origen urbano: Revista Internacional de Contaminación Ambiental, 25, 15-22.
- González-Flores, E., Tornero-Campante, M. A., Sandoval-Castro, E., Pérez-Magaña, A., Gordillo-Martínez, A. J., 2011,

REFERENCIAS

- Biodisponibilidad y fraccionamiento de metales pesados en suelos agrícolas enmendados con biosólidos de origen municipal: Revista Internacional de Contaminación Ambiental, 27, 291-301.
- Han, N., Thompson, M. L., 1999, Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids: Journal of Environmental Quality, 28, 939-944. https://doi.org/10.2134/jeq1999.00472425002800030026x
- Krauskopf, K. B., Bird, D. K., 2003, Introduction to geochemistry: USA, McGraw Hill, 348p.
- Limón Macías, J. G., 2013, Los lodos de las plantas de tratamiento de aguas residuales ¿problema o recurso?: Guadalajara, Jalisco, México, Universidad Autónoma de Guadalajara, Tesis de Licenciatura, 45p.
- López Julián, P. L., Mandado Collado, J. M., 2002, Extracciones químicas secuenciales de metales pesados. Aplicación en ciencias geológicas: Estudios Geológicos, 58, 133-144. https://doi.org/10.3989/egeol.02585-6118
- Loring, D. H., Rantala, R. T. T., 1992, Manual for the geochemical analyses of marine sediments and suspended particulate matter: Earth Science Reviews, 32, 235-283. https://doi.org/10.1016/0012-8252(92)90001-A
- Martínez-Alva, G., Gheno-Heredia, Y. A., Vieyra-Reyes, P., Martínez-Campos, A. R., Castillo-Cadena, J., López-Arriaga, J. A., Manzur-Quiroga, M. A., Arteaga-Reyes, T. T., 2020, Geodisponibilidad de elementos potencialmente tóxicos en suelos agrícolas que representan riesgo para el ambiente y la salud de la población del nevado de Toluca, México: Revista Internacional de Contaminación Ambiental, 36, 847-856. https://doi.org/10.20937/RICA.53614
- Mathuriya, A. S., Yakhmi, J. V., 2014, Microbial fuel cells to recover heavy metals: Environmental Chemistry Letters, 12, 483-494. https://doi.org/10.1007/s10311-014-0474-2
- Méndez-Ramírez, M., Armienta-Hernández, M.A., 2012, Distribución de Fe, Zn, Pb, Cu, Cd y As originada por residuos mineros

- y aguas residuales en un transecto del Río Taxco en Guerrero, México: Revista Mexicana de Ciencias Geológicas, 29 (2), 450-462.
- Miret, M. F., 2012, Minería y medio ambiente: México, Impresora Apolo S.A. de C.V, 50p.
- Ortíz-Hernández, L. M., Gutiérrez-Ruíz, M. E., Sánchez-Salinas, E., 1995, Propuesta de manejo de los lodos residuales de la planta de tratamiento de la ciudad industrial del valle de Cuernavaca, estado de Morelos, México: Revista Internacional de Contaminación Ambiental, 11, 105-115.
- Ramírez-Nava, J., López-Díaz, J. A., Talavera-Mendoza, O., Martínez-Castrejón, M., García-Mesino, R. L., Salgado-Souto, S. A., Ramírez-Guzman, A. H., Sarmiento-Villagrana, A., Hernández-Flores G., 2022, Acid mine drainage treatment using chicken eggshell waste: Revista Internacional de Contaminación Ambiental, 38.
 - Rodríguez Pacheco, R. L., 2011, Informes de geodisponibilidad, biodisponibilidad y evaluación y análisis de riesgo para el medioambiente; Zona de Calingasta, Provincia de San Juan, Argentina: Technical Report, 1-86. https://doi.org/10.13140/RG.2.2.11146.16321
- Salcedo-Pérez, E., Vázquez-Alarcón, A., Krishnamurthy, L., Zamara-Natera, F., Hernández-Álvarez, E., Rodríguez Macías, R., 2007, Evaluación de lodos residuales como abono orgánico en suelos volcánicos de uso agrícola y forestal en Jalisco, México: Interciencia, 32, 115-120.
- Sánchez-Montoya, G., Talavera-Mendoza, O., Hernández-Flores, G., Díaz-Villaseñor, E., Ramírez-Guzmán, A. H., Galarza-Brito, Z., 2019, Potentially toxic elements determination and chemical-microbiological analysis of potable water in Taxco de Alarcón, Guerrero: Revista Mexicana de Ciencias Geológicas 36, 147-158. https://doi.org/10.22201/cgeo.20072902e.2019.2.927
- Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT), 2003, Protección ambiental.

22 | Boletín de la Sociedad Geológica Mexicana | 74 (2) | A121221 | 2022

- Lodos y Biosólidos. Especificaciones y límites máximos permisibles de contaminantes para su aprovechamiento y disposición final (NOM-004-SEMARNAT-2002): México, D.F., Diario Oficial de la Federación, viernes 15 de agosto del 2003, 37p.
- Servicio Geológico Mexicano (SGM), 2016, Panorama minero del Estado de Guerrero: México, D.F., Secretaría de Economía, 43p.
- Talavera Mendoza, O., Yta, M., Moreno Tovar, R., Dótor Almazán, A., Flores Mundo, N., Duarte Gutiérrez, C., 2005, Mineralogy and geochemistry of sulfide-bearing tailings from silver mines in the Taxco, Mexico area to evaluate their potential environmental impact: Geofísica Internacional, 44 (1), 49-64. https://doi.org/10.22201/igeof.00167169p.2005.44.1.552
- Tchobanoglous, G., Burton, L. F., Stensel, H. D., 2003, Wastewater engineering: Treatment and reuse: New York, USA, American Water Works Association, 201p.
- Tessier, A., Campbell, P. G. C., Bisson, M., 1979, Sequencial extraction procedure for the speciation of particulate trace metals: Analytical Chemistry, 51, 844-851. https://

- doi.org/10.1021/ac50043a017
- United States Environmental Protection Agency (US-EPA), 1995, Standard for the use and disposal of sewage sludge; Washington, D.C., 40 CRF Parts 430 and 503: United States Environmental Protection Agency Publication.
- Vélez-Pérez, L.S., Ramirez-Nava, J., Hernández-Flores, G., Talavera-Mendoza, O., Escamilla-Alvarado, C., Poggi-Varaldo, H.M., Solorza-Feria, O., López-Díaz, J.A., 2020, Industrial acid mine drainage and municipal wastewater co-treatment by dual-chamber microbial fuel cells: International Journal of Hydrogen Energy, 45, 13757-13766. https://doi.org/10.1016/j.ijhydene.2019.12.037
- Woo Reza J. L., 2003, Estudio de viabilidad en la aplicación de lodos activados en suelo para los cultivos de maíz (*Zea mays L.*) y nopal (*Opuntia ficus-indica*): Marín, Nuevo León, México, Universidad Autónoma de Nuevo León, Facultad de Agronomía, Tesis Doctoral, 94p.
- Zhou, L. X., Wong, J. W. C., 2001, Effect of dissolved organic matter from sludge and sludge compost and soil copper sorption: Journal of Environmental Quality, 30, 878-883. https://doi.org/10.2134/jeq2001.303878x