

Civilizar. Ciencias Sociales y Humanas

ISSN: 1657-8953

yadira.caballero@usa.edu.co

Universidad Sergio Arboleda

Colombia

Garcia, Ronaldo A.

Curvature lines on orthogonal surfaces of R3 and Joachimsthal Theorem
Civilizar. Ciencias Sociales y Humanas, núm. 8, junio, 2005, pp. 141-151
Universidad Sergio Arboleda
Bogotá, Colombia

Available in: http://www.redalyc.org/articulo.oa?id=100220343007

Complete issue

More information about this article

Journal's homepage in redalyc.org

Curvature lines on orthogonal surfaces of \mathbb{R}^3 and Joachimsthal Theorem

Ronaldo A. Garcia*†

Instituto de Matemática e Estatística Universidade Federal de Goiás Brazil

Abstract

In this paper is studied, as a complement of Joachimsthal theorem, the behavior of curvature lines near a principal cycle common to two orthogonal surfaces.

keywords: principal cycle, curvature lines. MSC: 53C12, 34D30, 53A05, 37C75

1 Introduction

The local behavior of curvature lines near umbilic points was considered by G. Darboux, [3], for analytic surfaces and by C. Gutierrez and J. Sotomayor, [7], for C^r surfaces.

Near principal cycles, the local behavior of curvature lines was first considered in details by C. Gutierrez and J. Sotomayor, [7]. They obtained the derivative of the first return map $\pi: \Sigma \to \Sigma$ associated to the periodic leaf and showed that generically (open and dense set of immersions) the principal cycles are hyperbolic, i.e, $\pi'(0) \neq 1$.

The Joachimsthal theorem says that two surfaces intersecting at a constant angle along a regular curve γ and this curve is a curvature line of one surface then it is a curvature line of the other.

The main goal of this paper is to describe the local behavior near a principal cycle common to two surfaces intersecting orthogonally.

 $^{^*} ragarcia@mat.ufg.br\\$

[†]The author was partially supported by FUNAPE/UFG and is fellow of CNPq. This work was done under the project PRONEX/FINEP/MCT - Conv. 76.97.1080.00 - Teoria Qualitativa das Equações Diferenciais Ordinárias and had the partial support of CNPq Grant 476886/2001-5.

2 Differential equation of curvature lines

A principal curvature line is a regular curve (parametrized by arc length s) $\gamma:(a,b)\to \mathbb{M}\setminus\mathcal{U}$ such that for all $s\in(a,b)$ we have $\gamma'(s)$ is a principal direction.

The normal curvature at p in the direction $w \in T_p \mathbb{M}$ is $k_n(p; w) = II(p; w)/I(p; w)$, where I and II are, respectively, the first and second fundamental forms of \mathbb{M} .

Therefore, w = (du, dv) is a principal direction, if and only if, there exists $\lambda \in \mathbb{R}$ such that

$$II(p; w) = \lambda I(p; w), \quad I(p; w) = 1.$$

This means that $I \in II$ are proportional in the direction w.

As $I(p; w) = Edu^2 + 2Fdudv + Gdv^2$ and $II(p; w) = edu^2 + 2fdudv + gdv^2$ we have that w = (du, dv) is a principal direction, if and only if,

$$\frac{\partial(I,II)}{\partial(du,dv)} = 0.$$

Or, equivalently by,

$$(Fg - Gf)dv^{2} + (Eg - Ge)dudv + (Ef - Fe)du^{2} = 0.$$
(1)

In the case where M is parametrized as graph (x, y, h(x, y)) we have that

$$E = 1 + h_x^2,$$
 $F = h_x h_y,$ $G = 1 + h_y^2,$ $e = \frac{h_{xx}}{\sqrt{EG - F^2}},$ $f = \frac{h_{xy}}{\sqrt{EG - F^2}},$ $g = \frac{h_{yy}}{\sqrt{EG - F^2}}.$

When M is defined implicitly $\mathbb{M} = \{(x, y, z) : h(x, y, z) = 0\}$ the differential equation of curvature lines is expressed y

$$[dp, \nabla h, d\nabla h] = 0,$$

where dp = (dx, dy, dz), $\nabla h = (h_x, h_y, h_z)$, $d\nabla h = (dh_x, dh_y, dh_z)$ and [., ., .] denotes the mist product of three vectors.

Remark 1. See the books and lecture notes [1], [2], [5], [7], [6], [8], [9], [10], [11] and [12] for more on local and global properties of principal curvature lines on surfaces.

3 General properties of curvature lines

Theorem 1 (Joachimsthal). Let $\mathbb{M}_1 \subset \mathbb{R}^3$ and $\mathbb{M}_2 \subset \mathbb{R}^3$ two regular and oriented surfaces such that $\mathbb{M}_1 \cap \mathbb{M}_2 = \gamma$ is a regular curve and $\langle N_1(\gamma(s)), N_2(\gamma(s)) \rangle = cte$ along γ , where N_1 and N_2 are unitary normal vector fields to \mathbb{M}_1 and \mathbb{M}_2 . Then γ is a principal curvature line of \mathbb{M}_1 if and only if it is a curvature line of \mathbb{M}_2 .

Proof. Suppose that $\langle N_1(\gamma(s)), N_2(\gamma(s)) \rangle = 0$.

Let $T = \gamma'(s)$ and suppose that γ is a principal curvature line, with geodesic curvature $k_{g,1}$, geodesic torsion $\tau_{g,1} = 0$ and principal curvature $k_{m,1}$, for the surface M_1 . See [11]. So,

$$T' = k_{g,1}N_1 \wedge T + k_{m,1}N_1$$

$$(N_1 \wedge T)' = -k_{g,1}T + \tau_{g,1}N$$

$$N'_1 = -k_{m,1}T - \tau_{g,1}N \wedge T$$
(2)

The Darboux frame for γ , as a curve of M_2 , is given by:

$$T' = k_{g,2}N_2 \wedge T + k_{n,2}N_2$$

$$(N_2 \wedge T)' = -k_{g,2}T + \tau_{g,2}N_2$$

$$N_2' = -k_{n,2}T - \tau_{g,2}(N_2 \wedge T)'$$
(3)

where $k_{n,2}$ is the normal curvature, $\tau_{g,2}$ is the geodesic torsion and $k_{g,2}$ is the geodesic curvature of γ as a curve of \mathbb{M}_2 .

Also $N_2 = \pm N_1 \wedge T$, since $\langle N_1, N_2 \rangle = 0$. Suppose $N_2 = N_1 \wedge T$. From the equations (2) and (3), and using that $N_1 = T \wedge N_2$, it follows that:

$$\tau_{g,2} = \tau_{g,1} = 0$$
 $k_{g,1} = k_{m,2}$
 $k_{g,2} = k_{m,1}$,

where $k_{m,2}$ is a principal curvature of \mathbb{M}_2 . Therefore γ is a principal curvature line of \mathbb{M}_2 . The case $\langle N_1, N_2 \rangle = cte \neq 0$ is analogous.

Proposition 1. A closed, simple and biregular curve $c: \mathbb{R} \to \mathbb{R}^3$, |c'(s)| = 1, of length L and torsion τ is a principal curvature line of a surface if, and only if, $\int_0^L \tau(s) ds = 2k\pi, k \in \mathbb{N}$.

Proof. Consider the Frenet frame $\{t, n, b\}$ associated to c.

Let $N = \cos \theta(s)n(s) + \sin \theta(s)b(s)$ be a unitary normal vector to c. So it follows that,

$$N'(s) = -k(s)\cos\theta(s)t(s) + (\theta'(s) + \tau(s))[-\sin\theta(s)n(s) + \cos\theta(s)b(s)].$$

Therefore, $N'(s) = \lambda t(s)$ if and only if $\theta'(s) + \tau(s) = 0$.

So
$$\theta(L) - \theta(0) = -\int_0^L \tau(s)ds$$
 e $N(L) = N(0)$ if and only if $\int_0^L \tau(s)ds = 2k\pi$, $k \in \mathbb{N}$.

Proposition 2. Let $\gamma:[0,L]\to\mathbb{R}^3$ be a principal cycle of a surface \mathbb{M} such that $\{T,N\wedge T,N\}$ is a positive frame of \mathbb{R}^3 . Then the expression

$$\alpha(s,v) = \gamma(s) + v(N \wedge T)(s) + \left(\frac{1}{2}k_2(s)v^2 + \frac{1}{6}b(s)v^3 + \frac{1}{24}c(s)v^4 + o(v^4)\right)N(s), \quad -\delta < v < \delta$$
(4)

where k_2 is the principal curvature in the direction of $N \wedge T$, defines a local C^{∞} chart on the surface $\hat{\mathbb{M}}$ defined in a small tubular neighborhood of γ .

Proof. The map $\alpha(s,v,w)=c(u)+v(N\wedge T)(s)+wN(s)$ is a local diffeomorphism in a neighborhood of the s axis. For each s, the curve $v\to v(N\wedge T)(s)+w(s,v)N(s)$ is the intersection of the surface $\hat{\mathbb{M}}$ with the plane spanned by $\{(N\wedge T)(s),N(s)\}$. Using Hadamard's lemma it follows that

$$w(s,v) = \left[\frac{1}{2}k_2(s)v^2 + v^2A(s,v)\right]N(s)$$

where A(s,0) = 0 and k_2 is the (plane) curvature of the curve in the plane spanned by $\{N \wedge T, N\}$, that cuts the surface $\hat{\mathbb{M}}$. This ends the proof.

According to [11], the Darboux frame $\{T, N \wedge T, N\}$ along γ satisfies the following system of differential equations:

$$T' = k_g N \wedge T + k_1 N$$

$$(N \wedge T)' = -k_g T + 0 N$$

$$N' = -k_1 T - 0 (N \wedge T)$$
(5)

where k_1 is the principal curvature and k_q is the geodesic curvature of the principal cycle γ .

4 Preliminary calculations

Consider the parametrizations α of \mathbb{M}_1 and β of \mathbb{M}_2 in a neighborhood of γ , such that $\{T, N \wedge T, N\}$ is a positive frame of γ as a curve of \mathbb{M}_1 and $\{T, N, T \wedge N\}$ is a positive frame of γ as a curve of \mathbb{M}_2 .

$$\alpha(s,v) = \gamma(s) + v(N \wedge T)(s) + \left[\frac{1}{2}k_2(s)v^2 + \frac{1}{6}b(s)v^3 + O(v^3)\right]N(s)$$

$$\beta(s,w) = \gamma(s) + wN(s) + \left[\frac{1}{2}m_2(s)w^2 + \frac{1}{6}B(s)w^3 + O(w^3)\right](T \wedge N)(s).$$
(6)

4.1 Immersion α

The coefficients of the first fundamental form of α are given by:

$$E_{\alpha}(s,v) = 1 - 2k_g v + [k_g^2 - k_1 k_2] v^2 + O(v^3)$$

$$F_{\alpha}(s,v) = O(v^3)$$

$$G_{\alpha}(s,v) = 1 + k_2^2 v^2 + O(v^3)$$
(7)

The unitary normal vector field $\mathcal{N}_{\alpha} = (\alpha_s \wedge \alpha_v)/|\alpha_s \wedge \alpha_v|$ is given by:

$$\mathcal{N}_{\alpha}(s,v) = \left[-\frac{1}{2}k_{2}'v^{2} + O(v^{3})\right]T(s) - \left[k_{2}v + \frac{1}{2}b(s)v^{2} + O(v^{3})\right](N \wedge T)(s) + \left[1 - \frac{1}{2}k_{2}^{2}v^{2} + O(v^{3})\right]N(s)$$
(8)

The coefficients of the second fundamental form of α are given by:

$$e_{\alpha}(s,v) = k_{1} - (k_{1} + k_{2})k_{g}v + \frac{1}{2}[k_{2}'' - (k_{1} + k_{2})k_{1}k_{2} - k_{g}b(s) + 2k_{g}^{2}k_{2}]v^{2} + O(v^{3}) f_{\alpha}(s,v) = k_{2}'v + \frac{1}{2}[k_{g}k_{2}' + b'(s)]v^{2} + O(v^{3}) g_{\alpha}(s,v) = k_{2} + b(s)v + \frac{1}{2}(c(s) - k_{2}^{3})v^{2} + O(v^{3})$$

$$(9)$$

The functions $L_{\alpha}=(Fg-Gf)_{\alpha}, M_{\alpha}=(Eg-Ge)_{\alpha}$ and $N_{\alpha}=(Ef-Fe)_{\alpha}$ are given by:

$$L_{\alpha}(s,v) = -k_{2}'v - \frac{1}{2}(k_{g}k_{2}' + b'(s))v^{2} + O(v^{3})$$

$$M_{\alpha}(s,v) = k_{2} - k_{1} + [(k_{1} - k_{2})k_{g} + b(s)]v$$

$$+ \frac{1}{2}[(-3k_{1}k_{2}^{2} - 3k_{g}b(s) + c(s) - k_{2}^{3} - k_{2}'' + k_{1}^{2}k_{2}]v^{2} + O(v^{3})$$

$$N_{\alpha}(s,v) = k_{2}'v + \frac{1}{2}(b'(s) - 3k_{g}k_{2}')v^{2} + O(v^{3})$$

$$(10)$$

The functions \mathcal{K}_{α} and \mathcal{H}_{α} are given by:

$$\mathcal{K}_{\alpha}(s,v) = k_1 k_2 + [(k_1 k_2 - k_2^2) k_g(s) + k_1 b(s)] v + O(v^2)$$

$$\mathcal{H}_{\alpha}(s,v) = \frac{1}{2} (k_2 + k_1) + \frac{1}{2} [(k_1 - k_2) k_g + b(s)] v + O(v^2)$$
(11)

The principal curvatures $k_{1,\alpha} = \mathcal{H}_{\alpha} - \sqrt{\mathcal{H}_{\alpha}^2 - \mathcal{K}_{\alpha}}$ and $k_{2,\alpha} = \mathcal{H}_{\alpha} + \sqrt{\mathcal{H}_{\alpha}^2 - \mathcal{K}_{\alpha}}$ are given by:

$$k_{1,\alpha}(s,v) = k_1 + (k_1 - k_2)k_g v + 0(v^2)$$

$$k_{2,\alpha}(s,v) = k_2 + b(s)v + 0(v^2)$$
(12)

Remark 2. The following relations holds

$$k_g(s) = -\frac{(k_1)_v}{k_2 - k_1}, \quad k_g^{\perp}(s) = -\frac{(k_2)'}{k_2 - k_1}, \qquad b(s) = (k_2)_v = \frac{\partial k_2}{\partial v}$$
 (13)

Here $k_g^{\perp}(s)$ is the geodesic curvature of the other principal curvature line which pass through $\gamma(s)$.

4.2 Immersion β

The coefficients of the first fundamental form of β are given by:

$$E_{\beta}(s, w) = 1 - 2k_1w + (k_1^2 + k_g m_2)w^2 + O(w^3)$$

$$F_{\beta}(s, w) = O(w^3)$$

$$G_{\beta}(s, w) = 1 + m_2^2w^2 + O(w^3)$$
(14)

The unitary normal vector field $\mathcal{N}_{\beta} = \beta_s \wedge \beta_w/|\beta_s \wedge \beta_w|$ is given by:

$$\mathcal{N}_{\beta}(s,w) = \left[-\frac{1}{2}m_{2}'w^{2} + O(w^{3})\right]T(s) - \left[m_{2}w + \frac{1}{2}B(s)w^{2} + O(w^{3})\right](N \wedge T)(s) + \left[1 - \frac{1}{2}m_{2}^{2}w^{2} + O(w^{3})\right]N(s)$$
(15)

The coefficients of the second fundamental form of β are given by:

$$e_{\beta}(s,w) = -k_{g} - k_{1}[m_{2} - k_{g}]w$$

$$+ \frac{1}{2}[m_{2}'' - k_{1}B(s) + 2k_{1}^{2}m_{2} + k_{g}^{2}m_{2} + k_{g}m_{2}^{2}]w^{2} + O(w^{3})$$

$$f_{\beta}(s,w) = m_{2}'v + \frac{1}{2}[k_{1}m_{2}' + B'(s)]w^{2} + O(w^{3})$$

$$g_{\beta}(s,w) = m_{2} + B(s)w + \frac{1}{2}(C(s) - m_{2}^{3})w^{2} + O(w^{3})$$
(16)

The functions $L_{\beta} = (Fg - Gf)_{\beta}$, $M_{\beta} = (Eg - Ge)_{\beta}$ and $N_{\beta} = (Ef - Fe)_{\beta}$ are given by:

$$L_{\beta}(s,w) = -m_{2}'w - \frac{1}{2}(k_{1}m_{2}' + B'(s))w^{2} + O(w^{3})$$

$$M_{\beta}(s,w) = m_{2} + k_{g} + [B(s) - k_{1}(m_{2} + k_{g})]v$$

$$+ \frac{1}{2}[(3k_{g}m_{2}^{2} - 3k_{1}B(s) + C(s) - m_{2}^{3} - m_{2}'' - k_{g}^{2}m_{2}]w^{2} + O(w^{3})$$

$$N_{\beta}(s,w) = m_{2}'(s)v + \frac{1}{2}(B'(s) - 3k_{1}m_{2}')w^{2} + O(w^{3})$$

$$(17)$$

The functions \mathcal{K}_{β} and \mathcal{H}_{β} are given by:

$$\mathcal{K}_{\beta}(s, w) = -k_g m_2 - [(k_g m_2 + m_2^2)k_1 + k_g B(s)]w + O(w^2)
\mathcal{H}_{\beta}(s, w) = \frac{1}{2}(m_2 - k_g) + \frac{1}{2}[B(s) - (k_g + m_2)k_1]w + O(w^2)$$
(18)

The principal curvatures $k_{1,\beta} = \mathcal{H}_{\beta} - \sqrt{\mathcal{H}_{\beta}^2 - \mathcal{K}_{\beta}}$ and $k_{2,\beta} = \mathcal{H}_{\beta} + \sqrt{\mathcal{H}_{\beta}^2 - \mathcal{K}_{\beta}}$ are given by:

$$k_{1,\beta}(s,w) = -k_g - (k_g + m_2)k_1w + O(w^2)$$

$$k_{2,\beta}(s,w) = m_2 + B(s)w + O(w^2)$$
(19)

5 Principal cycles

Proposition 3 (Gutierrez-Sotomayor). Let γ be a principal cycle of an immersion $\alpha : \mathbb{M} \to \mathbb{R}^3$ of length L. Denote by π_{α} the first return map associated to γ . Then

$$\pi'_{\alpha}(0) = exp\left[\int_{\gamma} \frac{-dk_2}{k_2 - k_1}\right] = exp\left[\int_{\gamma} k_g^{\perp}(s)ds\right]$$

$$= exp\left[\int_{\gamma} \frac{-dk_1}{k_1 - k_2}\right] = exp\left[\frac{1}{2}\int_{\gamma} \frac{d\mathcal{H}}{\sqrt{\mathcal{H}^2 - \mathcal{K}}}\right].$$
(20)

Proof. Suppose that γ is a principal cycle and consider the chart (s, v) as defined by the expression of α in the equation (6). The differential equation of the principal curvature lines is given by

$$(f - k_1 F)ds + (g - k_1 G)dv = 0. (21)$$

Therefore $\pi(v_0) = v(L, v_0)$, where $v(s, v_0)$ is the solution of equation 21 with initial condition $v(0, v_0) = v_0$.

Differentiation of equation 21 with respect to v_0 gives:

$$\frac{d}{ds}(\frac{\partial v}{\partial v_0})(s, v(s, v_0)) = -\left[\frac{f - k_1 F}{g - k_1 G}\right]_v(s, v(s, v_0)) \frac{\partial v}{\partial v_0}(s, v(s, v_0))$$

Denote $a(s) = (\frac{\partial v}{\partial v_0})(s,0)$. Therefore at v(s,0) = 0 it is obtained

$$\frac{d}{ds}a(s) = -\frac{f_v(s,0)}{g-k_1}a(s) = -\frac{k_2'}{k_2-k_1}a(s) = k_g^{\perp}(s)a(s), \ a(0) = 1.$$

Integration of the linear differential equation above leads to the result.

The following result established in [4] is improved in the next proposition.

Proposition 4. Let γ be a principal cycle of length L of a surface $\mathbb{M} \subset \mathbb{R}^3$. Consider a chart (s,v) and a parametrization α as defined by equation (6). Denote by k_1 and k_2 the principal curvatures of \mathbb{M} . Suppose that $Jac(k_1,k_2) = \frac{\partial(k_1,k_2)}{\partial(s,v)} = (k_1)_s(k_2)_v - (k_1)_v(k_2)_s \neq 0$ for all $s \in [0,L]$. Then if γ is not hyperbolic then it is semihyperbolic. That is, if the first derivative of the first return map π associated to γ is one, then the second derivative of π is different from zero. In fact, if $\pi'(0) = 1$ then,

$$\pi''(0) = \int_0^L e^{-\int_0^s \frac{k_2'}{k_2 - k_1} du} \frac{Jac(k_1, k_2)}{(k_2 - k_1)^2} ds.$$

Proof. The differential equation of the principal curvature lines 21 in the chart (s, v) is given by

$$\frac{dv}{ds} = -\frac{f - k_1 F}{g - k_1 G}$$

$$= -\frac{k_2'}{k_2 - k_1} v - \frac{1}{2} \left[\frac{b'(k_2 - k_1) - 2k_2' b + k_g k_2' (k_1 - k_2)}{(k_2 - k_1)^2} \right] v^2 + v^2 R(s, v). \tag{22}$$

$$= P(s)v + \frac{1}{2} Q(s)v^2 + R(s, v)v^2, \qquad R(s, 0) = 0$$

Therefore $\pi(v_0) = v(L, v_0)$, where $v(s, v_0)$ is the solution of equation (22) with initial condition $v(0, v_0) = v_0$.

Differentiating twice the equation (22) with respect to v_0 and evaluating at $v_0 = 0$ the following holds

$$\begin{split} &\frac{d}{ds}(\frac{\partial v}{\partial v_0}) = P(s)\frac{\partial v}{\partial v_0} \\ &\frac{d}{ds}(\frac{\partial^2 v}{\partial v_0^2}) = P(s)\frac{\partial^2 v}{\partial v_0^2} + Q(s)(\frac{\partial v}{\partial v_0})^2 \\ &\frac{\partial v}{\partial v_0}(0) = 1, \qquad \frac{\partial^2 v}{\partial v_0^2}(0) = 0 \end{split}$$

So,

$$\pi''(0) = \frac{\partial^2 v}{\partial v_0^2}(L) = \int_0^L exp(\int_0^s P(u)du)Q(s)ds$$

$$= \int_0^L exp(-\int_0^s \frac{k_2'}{k_2 - k_1}du)[\frac{2k_2'b - b'(k_2 - k_1) - k_gk_2'(k_1 - k_2)}{(k_2 - k_1)^2}]ds$$

Integration by parts and using that $k_g(k_1-k_2)=\frac{\partial k_1}{\partial v}$ it follows that

$$\pi''(0) = \int_0^L exp(-\int_0^s \frac{k_2'}{k_2 - k_1} du) \left[\frac{k_1' \frac{\partial k_2}{\partial v} - k_2' \frac{\partial k_1}{\partial v}}{(k_2 - k_1)^2} \right] ds$$
$$= \int_0^L exp(-\int_0^s \frac{k_2'}{k_2 - k_1} du) \frac{Jac(k_1, k_2)}{(k_2 - k_1)^2} ds$$

Proposition 5. Let $c: \mathbb{R} \to \mathbb{R}^3$, |c'(s)| = 1 be a closed, simple and biregular curve of length L and torsion τ such that $\int_0^L \tau(s)ds = 2k\pi, k \in \mathbb{N}$. Then there exists an immersion $\alpha: [0, L] \times (-\epsilon, \epsilon) \to \mathbb{R}^3$ such that $\alpha(s, 0) = c(s)$ is a hyperbolic principal cycle of α .

Proof. It follows from propositions 2 and 3 defining the principal curvatures adequately.

Theorem 2. Let γ be a hyperbolic (minimal) principal cycle of a surface $\mathbb{M} \subset \mathbb{R}^3$ of length L. Let k_1 and k_2 the principal curvatures of \mathbb{M}_1 and k_g the geodesic curvature of γ . Let $P(s) = k'_2/(k_2 - k_1)$ and suppose that the linear differential equation $f' = P(s)f + k'_g$ has a L-periodic solution such that $f(s) \neq 0$ for all $s \in [0, L]$. Then there exists a surface $\mathbb{M}_2 \subset \mathbb{R}^3$ such that γ is a principal hyperbolic principal cycle of \mathbb{M}_2 which is orthogonal to \mathbb{M}_1 along γ and $\pi'_1(0) = \pi'_2(0)$.

Proof. Consider the parametrizations α of \mathbb{M}_1 and β of \mathbb{M}_2 in a neighborhood of γ ,

$$\alpha(s,v) = \gamma(s) + v(N \wedge T)(s) + \left[\frac{1}{2}k_2(s)v^2 + \frac{1}{6}b(s)v^3 + O(v^3)\right]N(s)$$

$$\beta(s,w) = \gamma(s) + wN(s) + \left[\frac{1}{2}m_2(s)w^2 + \frac{1}{6}B(s)w^3 + O(w^3)\right](T \wedge N)(s).$$

where $\{T, N \wedge T, N\}$ is a positive frame of γ as curve of \mathbb{M}_1 and $\{T, N, T \wedge N\}$ is a positive frame of γ as curve of \mathbb{M}_2 .

By proposition 3 it follows that

$$\pi'_{\alpha}(0) = exp[-\int_{\gamma} \frac{dk_2}{k_2 - k_1}], \quad \pi'_{\beta}(0) = exp[-\int_{\gamma} \frac{dm_2}{m_2 + k_g}]$$
 (23)

Suppose that the following equation holds

$$\frac{k_2'}{k_2 - k_1} = \frac{m_2'}{m_2 + k_q}.$$

Then m_2 is a defined by the linear differential equation:

$$m_2' - \frac{k_2'}{k_2 - k_1} m_2 - k_g \frac{k_2'}{k_2 - k_1} = 0, \quad m_2(0) = m_0.$$
 (24)

The solution of the linear equation above is given by

$$m_2(s) = e^{\int_0^s a(t)dt} [m_0 + \int_0^s e^{-\int_0^t a(u)du} k_g(t)a(t)dt],$$

where $a(s) = k_2'/(k_2 - k_1)(s)$.

As, by hypothesis, $\int_0^L \frac{k_2'}{k_2-k_1} \neq 0$ it follows that $m_0 = m_2(0) = m_2(L)$ if and only if

$$m_0 = \frac{\int_0^L (e^{-\int_0^L a(u)du}) k_g(t) a(t) dt}{e^{-\int_0^L \frac{k_2'}{k_2 - k_1} ds} - 1}.$$

Therefore the immersion β can be constructed with m_2 , principal curvature of β , defined by the equation 24. To finish we need to show that $m_2(s) + k_g(s) \neq 0$ for all $s \in [0, L]$ and so γ is a principal cycle of β .

In the differential equation (24) let $f = k_q + m_2$. So it is obtained,

$$f' = \frac{k_2'}{k_2 - k_1} f + k_g'. (25)$$

By the same argument above the differential equation (25) has a L- periodic solution. The points s where f(s) = 0 correspond to umbilic points of \mathbb{M}_2 . Therefore γ is a principal cycle of \mathbb{M}_2 if equation (25) has a periodic solution which is different from zero for all $s \in [0, L]$.

Remark 3. The condition $k_g \neq cte$ is a necessary condition for existence of the surface \mathbb{M}_2 as stated in the theorem 2 above.

Theorem 3. Let γ be a minimal principal cycle of a surface $\mathbb{M}_1 \subset \mathbb{R}^3$ such that $k_g|_{\gamma} \neq cte$. Then there exists a surface $\mathbb{M}_2 \subset \mathbb{R}^3$ such that γ is a principal hyperbolic principal cycle of \mathbb{M}_2 which is orthogonal to \mathbb{M}_1 along γ .

Proof. By theorem 1 we have that $-k_g$ is a principal curvature of \mathbb{M}_2 having $T \wedge N$ as positive normal vector in a neighborhood of γ . Defining a non constant L-periodic function m_2 such that $m_2(s) + k_g(s) > 0$ and $\int_0^L \frac{m_2'}{m_2 + k_g} ds \neq 0$ the result follows, observing that $\int_0^L \frac{m_2'}{m_2 + k_g} ds = \int_0^L \frac{-k_g'}{m_2 + k_g} ds.$

Theorem 4. Let γ be a hyperbolic (minimal) principal cycle of a surface $\mathbb{M} \subset \mathbb{R}^3$ of length L. Suppose that the geodesic curvature of γ is not constant. Then there exists a surface $\mathbb{M}_2 \subset \mathbb{R}^3$ such that γ is a hyperbolic principal principal cycle of \mathbb{M}_2 which is orthogonal to \mathbb{M}_1 along γ .

Proof. By theorem 1 we have that $-k_g$ is a principal curvature of \mathbb{M}_2 having $T \wedge N$ as positive normal vector in a neighborhood of γ . Define a non constant L-periodic function m_2 such that $m_2(s) + k_g(s) > 0$ and $\int_0^L \frac{m_2'}{m_2 + k_g} ds \neq 0$. Therefore γ is a hyperbolic (minimal) principal cycle of \mathbb{M}_2 parametrized in a neighborhood of γ by the parametrization β . Observing that $\int_0^L \frac{m_2'}{m_2 + k_g} ds = \int_0^L \frac{-k_g'}{m_2 + k_g} ds$, we can define $\bar{m} = m_2 + \epsilon k_g'$ to obtain \bar{m} as a maximal principal curvature of \mathbb{M}_2 with $\bar{m} + k_g > 0$ and $\int_0^L \frac{\bar{m}'}{\bar{m} + k_g} ds \neq 0$ for ϵ small.

References

- [1] M. Berger and B. Gostiaux Introduction to Differential Geometry, Springer Verlag, New York, (1987).
- [2] M. do Carmo, Differential Geometry of curves and surfaces, Prentice Hall, New Jersey, (1976).
- [3] G. DARBOUX Leçons sur la Théorie des Surfaces, vol.I, IV, Gauthiers Villars, (1896).
- [4] C. GUTIERREZ and J. SOTOMAYOR, Closed principal lines and bifurcation, Bull. Braz. Math. Soc. 17, 1986, pp. 1-19
- [5] R. Garcia and J. Sotomayor Lectures Notes on Qualitative Theory of Differential Equations of Classical Geometry, Notas de Curso, IME/UFG, (2000).
- [6] A. GRAY, L. CORDEIRO and M. FERNÁNDEZ, Geometría diferencial de curvas y superficies, con Mathematica, Addison-Wesley Iberoamericana, (1995).
- [7] C. Gutierrez and J. Sotomayor, Lines of Curvature and Umbilic Points on Surfaces, Brazilian 18th Math. Coll., IMPA, 1991, Reprinted as Structurally Configurations of Lines of Curvature and Umbilic Points on Surfaces, Monografias del IMCA, (1998).
- [8] H. HOPF, Differential Geometry in the Large, Springer Lecture Notes in Mathematics, vol. 1000, (1983).
- [9] D. HILBERT and S. COHN VOSSEN Geometry and the Imagination, Chelsea, (1952).
- [10] G. Monge Journ. de l'Ecole Polytech, II^e, (1796), Applications de l'Algebre a la Geometrie, Paris, (1850).
- [11] M. Spivak A Comprehensive Introduction to Differential Geometry, vol.III, V, Publish of Perish Berkeley, (1979).
- [12] D. Struik Lectures on Classical Differential Geometry, Addison Wesley, (1950), Reprinted by Dover Collections, (1978).