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Curvature lines on orthogonal surfaces of R?
and Joachimsthal Theorem

Ronaldo A. Garcia*f
Instituto de Matematica e Estatistica
Universidade Federal de Goids Brazil

Abstract

In this paper is studied, as a complement of Joachimsthal theorem, the behavior of
curvature lines near a principal cycle common to two orthogonal surfaces.

keywords: principal cycle, curvature lines. MSC: 53C12, 34D30, 53A05, 37C75

1 Introduction

The local behavior of curvature lines near umbilic points was considered by G. Darboux,
[3], for analytic surfaces and by C. Gutierrez and J. Sotomayor, 7], for C" surfaces.

Near principal cycles, the local behavior of curvature lines was first considered in details by
C. Gutierrez and J. Sotomayor, [7]. They obtained the derivative of the first return map
7 : 3 — ¥ associated to the periodic leaf and showed that generically (open and dense set
of immersions) the principal cycles are hyperbolic, i.e, 7/(0) # 1.

The Joachimsthal theorem says that two surfaces intersecting at a constant angle along a
regular curve v and this curve is a curvature line of one surface then it is a curvature line
of the other.

The main goal of this paper is to describe the local behavior near a principal cycle common
to two surfaces intersecting orthogonally.
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2 Differential equation of curvature lines

A principal curvature line is a regular curve (parametrized by arc length s) 7 : (a, b) — M\U
such that for all s € (a,b) we have +/(s) is a principal direction.

The normal curvature at p in the direction w € T,M is ky(p; w) = II(p; w)/I(p;w), where
I and IT are, respectively, the first and second fundamental forms of M.

Therefore, w = (du, dv) is a principal direction, if and only if, there exists A € R such that

II(p;w) = M (p;w), I(p;w)=1.

This means that I e I1 are proportional in the direction w.
As I(p;w) = Edu? + 2Fdudv + Gdv? and I1(p;w) = edu?® + 2fdudv + gdv? we have that
w = (du, dv) is a principal direction, if and only if,

oI, 1)
A(du, dv)
Or, equivalently by,
(Fg — Gf)dv? + (Eg — Ge)dudv + (Ef — Fe)du® = 0. (1)

In the case where M is parametrized as graph (z,y, h(z,y)) we have that

E=1+h2, F = hghy, G=1+h,
R I P
VEG — F?’ VEG - F?’ VEG — F?
When M is defined implicitly M = {(z,y, 2) : h(z,y,z) = 0} the differential equation of
curvature lines is expressed y

[dp, Vh,dVh] =0,

where dp = (dz,dy,dz), Vh = (hg, hy, h;), dVh = (dhg, dhy, dh;) and [.,.,.] denotes the
mist product of three vectors.

Remark 1. See the books and lecture notes [1], [2], [5], [7], [6], [8], [9], [10], [11] and [12]
for more on local and global properties of principal curvature lines on surfaces.

3 General properties of curvature lines

Theorem 1 (Joachimsthal). Let M C R? and My C R3 two regular and oriented surfaces
such that My N My = « is a regular curve and (Ny(y(s)), N2(v(s))) = cte along ~, where
N7 and Ny are unitary normal vector fields to My and Ms. Then + is a principal curvature
line of M if and only if it is a curvature line of M.
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Curvature lines on orthogonal surfaces

Proof. Suppose that (N1(y(s)), Na(v(s))) = 0.
Let T' = 7/(s) and suppose that v is a principal curvature line, with geodesic curvature kg 1,
geodesic torsion 7,7 = 0 and principal curvature ky, 1, for the surface M;. See [11]. So,
T =kg Ny AT + kpy Ny
(MU AT = — kg T+ 711N (2)
N| = —kmiT —7g1NAT

The Darboux frame for 7, as a curve of My, is given by:

T =kgoNo AT + ky 2No
(NoAT) = —kgoT + 742N2 (3)
Ny = —kpoT — Tg,2(N2 A Ty
where k, 2 is the normal curvature, 742 is the geodesic torsion and k4o is the geodesic
curvature of v as a curve of M.

Also Ny = £N7 AT, since (N1, No) = 0. Suppose Ny = N1 A T. From the equations (2)
and (3), and using that Ny =T A Ny, it follows that:

Tg2 =Tg1 =0

kg1 =km2

kg2 =km1,
where k,, 2 is a principal curvature of M. Therefore v is a principal curvature line of M.
The case (N7, N3) = cte # 0 is analogous. O

Proposition 1. A closed, simple and biregular curve ¢ : R — R3 |¢/(s)| = 1, of length L
and torsion 7 is a principal curvature line of a surface if, and only if, fOL 7(s)ds = 2km, k € N.

Proof. Cousider the Frenet frame {¢,n,b} associated to c.
Let N = cosf(s)n(s) + sinf(s)b(s) be a unitary normal vector to c.
So it follows that,

N'(s) = —k(s) cos0(s)t(s) + (6'(s) + 7(s))[— sin@(s)n(s) + cos O(s)b(s)].
Therefore, N'(s) = At(s) if and only if §'(s) + 7(s) = 0.
So O(L) — 6(0) = — [ 7(s)ds e N(L) = N(0) if and only if [ 7(s)ds = 2kz, ke N. O
Proposition 2. Let v : [0,L] — R?® be a principal cycle of a surface M such that
{T,N AT, N} is a positive frame of R3. Then the expression

a(s,v) =y(s) + v(N AT)(s)

+ (;kg(s)v2 + %b(s)v3 + 2116(8)1)4 + 0(1)4)) N(s), —d<v<d )
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where ks is the principal curvature in the direction of N AT, defines a local C* chart on
the surface M defined in a small tubular neighborhood of 7.

Proof. The map a(s,v,w) = c(u) + v(N A T)(s) + wN(s) is a local diffecomorphism in
a neighborhood of the s axis. For each s, the curve v — v(N A T)(s) + w(s,v)N(s) is
the intersection of the surface M with the plane spanned by {(N A T)(s), N(s)}. Using
Hadamard’s lemma it follows that

w(s,v) = [%]{32(8)’02 + v2A(s,v)]N(s)

where A(s,0) = 0 and ky is the (plane) curvature of the curve in the plane spanned by
{N AT, N}, that cuts the surface M. This ends the proof. O

According to [11], the Darboux frame {T', N A T, N} along ~ satisfies the following system
of differential equations:

T = kyN AT + kN
(NAT) = —k,T + ON (5)
N =T —0(NAT)

where ky is the principal curvature and kg is the geodesic curvature of the principal cycle .

4 Preliminary calculations

Consider the parametrizations a of My and 8 of My in a neighborhood of =, such that
{T,NAT, N} is a positive frame of 7y as a curve of M and {7, N,TAN} is a positive frame
of v as a curve of M.

a(s,v) =(s) + o(N AT)(3) + [gha(s)0? + Sh(s)o® + OWHIN(s) o

Bls, w) =y(s) + wN(s) + [sma(s)u? + SB(s)u + O(w)|(TA N)(s).

4.1 Immersion «
The coefficients of the first fundamental form of o are given by:

E.(s,v) =1 =2k + [kg — k1koJv? + O(v®)
Fu(s,0) =0(v") (7)
Go(s,v) =1 + k30? + O(v®)

The unitary normal vector field N = (as A aw)/|as A ayl is given by:
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No(s,) :[—%k;& + OWHT(s) — [kaw + %b(s)qﬂ +OWH](N AT)(s) N
+[1 = 5B + O)IN(s)
The coefficients of the second fundamental form of « are given by:
ea(s,v) =k1 — (k1 + k2)kgv
+%[k’2’ — (k1 + ka)kika — kgb(s) + 2k2ka]v® + O(v?)
fa(s,v) =kbv + %[k:gk'g + 0/ (s)]v* + O(v?)
Ja(s,v) =ka + b(s)v + %(c(s) — k3)v? + O(v®)
The functions L, = (Fg — Gf)a, My, = (Eg — Ge),, and N, = (Ef — Fe),, are given by:
Lo(s,v) = — kv — %(kgk‘é +0/(5))v? + O(v?)
M (s,v) =ko — k1 + [(k1 — k2)kg + b(s)]v

+%[(—3k1k§ — 3kgb(s) + c(s) — k3 — ki + K ka]v” + O(v”) 1)
Ny (s, v) =kbv + %(b/(s) — 3kykbh)v? + O(v?)
The functions K, and H, are given by:
Ka(s,v) =kiks + [(kika — k3)kg(s) + k1b(s)]v + O(v?) "

Ha(s, ) =5k + k1) + (ks = Ka)ky + ()]0 + O(?)

The principal curvatures ki, = Ho — \/H2 — Ko and ka2 o = Ho + /H2 — Ko are given
by:

k1a(s,v) =k + (k1 — ka)kgv + 0(v?)

) (12)
k2,a(s,v) =ka + b(s)v 4 0(v7)
Remark 2. The following relations holds
(k1o 1 (k2)’ Ok
k =— k =— b(s) = (ka)y = =— 1
9) = P () =~ e be) = (k) = (13

Here k;—(s) is the geodesic curvature of the other principal curvature line which pass through
V().
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4.2 Immersion

The coefficients of the first fundamental form of 3 are given by:
Ep(s,w) =1 — 2kyw + (k% + kyma)w? + O(w®)
F(s,w) =0 (w’) (14)
Gp(s,w) =1 +mjw? + O(w®)

The unitary normal vector field Nz = 5 A Bw/|Bs A Buw| is given by:

Ns(s,w) :[—%m§w2 + O(w)]T(s) — [maw + %B(s)w2 + O(w?)](N AT)(s)

1 : (15)
+[1 - §m%w2 + O(w®)]N(s)
The coefficients of the second fundamental form of 3 are given by:
eg(s,w) = — kg — ki[ma — kglw
1
+§[m’2’ — k1B(s) + 2kima + kJma + kgm3]w® + O(w?)
(16)

I3(s,w) =mhv + %[klmé + B'(s)|w? + O(w?)
95(s, w) =mao + B(s)w + %(C(s) —m3)w? + O(w?)

The functions Lg = (Fg — Gf)g, Mg = (Eg— Ge)g and Ng = (Ef — Fe)g are given by:

(s, w) = — mbw — %(klm’z + B'(s))w’ + O(w?)
Mpa(s,w) =mg + kg + [B(s) — k1(ma + kg)]v

+%[(3k9m§ — 3k1B(s) + C(s) —mj — mj — kymoJw® + O(w?) 1
Ng(s,w) =my(s)v + %(B’(s) — 3kymb)w? + O(w?)
The functions Kg and Hg are given by:
K (s, ) = — kyma — [(kgma + m3)ks + k, B()lw + O(w?)
(s, 0) = (ama — k) + S1B(s) — (&, + malw + O(u?) "

The principal curvatures k1 g = Hg — /H% —Kgand kg = Hg + /H% — K3 are given by:

k1(s,w) =— kg — (kg + ma)kiw + O(wg)

ka,5(s, w) =mg + B(s)w + O(w?) (19)

146



Curvature lines on orthogonal surfaces

5 Principal cycles

Proposition 3 (Gutierrez-Sotomayor). Let v be a principal cycle of an immersion
a: M — R3? of length L. Denote by 7, the first return map associated to . Then

o 0) =eapl | 200 = canl | k5 ()
—dky

B o dH (20)
—eapl | 1] = eanl / ]

Proof. Suppose that v is a principal cycle and consider the chart (s,v) as defined by the
expression of a in the equation (6). The differential equation of the principal curvature
lines is given by

(f = k1 F)ds + (g — k1G)dv = 0. (21)

Therefore 7(vg) = v(L, vg), where v(s, vg) is the solution of equation 21 with initial condition
v(0,vg) = vg.
Differentiation of equation 21 with respect to vy gives:

d  Ov f—kF ov
a5 (g (503 00) = =L (s, 0(s,0)) 55, (s, w0)

Denote a(s) = (g—;;)(s, 0). Therefore at v(s,0) =0 it is obtained

d v(s,0 K
Ea(s) = _J;<—$k1)a s) = T —2k1 a(s) = k;‘(s)a(s), a(0) = 1.
Integration of the linear differential equation above leads to the result. O

The following result established in [4] is improved in the next proposition.

Proposition 4. Let v be a principal cycle of length L of a surface M C R3. Consider a
chart (s,v) and a parametrization « as defined by equation (6). Denote by k1 and ko the
principal curvatures of M. Suppose that Jac(k1, k2) = agz;i?) = (k1)s(k2)y — (k1)v(ka2)s # 0
for all s € [0, L]. Then if v is not hyperbolic then it is serﬁihyperbolic. That is, if the first
derivative of the first return map 7 associated to 7y is one, then the second derivative of 7

is different from zero. In fact, if 7/(0) = 1 then,

L —[3 Ky Jac(k’l ]{32)
(0 :/ ¢ Jo R ZAANL ) 5
©) 0 (k2 = k1)?
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Proof. The differential equation of the principal curvature lines 21 in the chart (s,v) is
given by
dv [ —kF
ds  g—kG
K . l[b/(kg — k1) — 2k5b + kgky (k1 — ko)
k2 — kl 2 (k2 - k1)2

=P(s)v + %Q(S)UQ + R(s,v)v?, R(s5,0)=0

Jv? + v2R(s, v)- (22)

Therefore 7(vg) = v(L,vg), where v(s, vp) is the solution of equation (22) with initial con-
dition v(0, vg) = wo.

Differentiating twice the equation (22) with respect to vy and evaluating at vy = 0 the
following holds

d , ov _p ov

E 81/0 - 61}0

d 0% 0% ov o

E(a_vg) _P(S)a_vg + Q(S)(B_vo)
v 9%
_— :1 _— p—
G0 <1 Sg0) =

So,

a?v L S
:a_vg(L):/O ea:p(/o P(u)du)Q(s)ds

L s ! / / /
k5, 2k50 — V' (ko — k1) — kgkb (k1 — ko)
= exp(— du ds
/0 P 0 k2 —Fki ) (kg — k1)? }

7_(_//(0)

Integration by parts and using that kg (k1 — ko) = % it follows that

L Ok
" 0 :/ o d 1 0w 2 Ov d
™) 0 eop( 0 k2 —k1 vl (ko — k1)? Ids

L S K Jac(ki, k2)
= exp(— du *_ = ds
/0 ol /0 ka — ki ) (k2 — k1)?

s klz K Oko k! Ok1

(]
Proposition 5. Let ¢ : R — R3, |/(s)| = 1 be a closed, simple and biregular curve of

length L and torsion 7 such that fOL 7(s)ds = 2km, k € N. Then there exists an immersion
a: [0, L] x (—¢,€) — R3 such that a(s,0) = c(s) is a hyperbolic principal cycle of c.
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Proof. Tt follows from propositions 2 and 3 defining the principal curvatures adequately.
0

Theorem 2. Let 7 be a hyperbolic (minimal) principal cycle of a surface M C R? of length
L. Let ki and k3 the principal curvatures of My and k,; the geodesic curvature of . Let
P(s) = ky/(k2 — k1) and suppose that the linear differential equation f’ = P(s)f + kj, has
a L—periodic solution such that f(s) # 0 for all s € [0, L]. Then there exists a surface
M, C R? such that v is a principal hyperbolic principal cycle of My which is orthogonal to
M; along v and 71(0) = 75(0).

Proof. Consider the parametrizations o of My and 8 of My in a neighborhood of +,
1 1
a(s, v) =y(s) + v(N AT)(s) + [Sha(s)v” + 55(8)’03 +O0(v*)|N(s)

Bls,w) =y(s) + wN(s) + ma(s)u? + SB(s)u + Ow)|(T A N)(s).

where {T, NAT, N} is a positive frame of v as curve of My and {T, N, T A N} is a positive
frame of v as curve of M.
By proposition 3 it follows that

w0 = el [ B2 w0 el [ 02 (25)
Suppose that the following equation holds
Ky oy
ke —ki  mo+ky
Then mo is a defined by the linear differential equation:
mh — k2k/2k1m2 — kgkgkiékl =0, m2(0) =myg (24)

The solution of the linear equation above is given by

ma(s) = elo *Odt [y 4 / e~ Jo alwdug (4)a(t)dt],
0
where a(s) = kb/(ka — k1)(s).
As, by hypothesis, fOL % # 0 it follows that
mo = ma(0) = mg(L) if and only if

R i G i LA QIO
0= iy 5 .
e J0 ko—kp —1
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Therefore the immersion § can be constructed with mo, principal curvature of 3, defined
by the equation 24. To finish we need to show that ma(s) + k4(s) # 0 for all s € [0, L] and
so 7y is a principal cycle of j.
In the differential equation (24) let f = k4 4+ ma. So it is obtained,
ko
"= ——=—f+ k. 25

F= =tk (25)
By the same argument above the differential equation (25) has a L— periodic solution.
The points s where f(s) = 0 correspond to umbilic points of Ms. Therefore v is a principal

cycle of My if equation (25) has a periodic solution which is different from zero for all
s €0, L]. O

Remark 3. The condition k, # cte is a necessary condition for existence of the surface My
as stated in the theorem 2 above.

Theorem 3. Let v be a minimal principal cycle of a surface M; C R? such that kgl # cte.
Then there exists a surface My C R? such that + is a principal hyperbolic principal cycle of
M, which is orthogonal to M; along ~.

Proof. By theorem 1 we have that —k, is a principal curvature of My having T'A N as
positive normal vector in a neighborhood of . Defining a non constant L—periodic function

mg such that ma(s) + kg(s) > 0 and fOL %ﬁkgds # 0 the result follows, observing that
L m! L —k
0 mathy 45 = Jo mathy 45 O

Theorem 4. Let v be a hyperbolic (minimal) principal cycle of a surface M C R? of length
L. Suppose that the geodesic curvature of v is not constant. Then there exists a surface
My C R? such that v is a hyperbolic principal principal cycle of My which is orthogonal to
M; along ~.

Proof. By theorem 1 we have that —k, is a principal curvature of M having TAN as positive
normal vector in a neighborhood of v. Define a non constant L—periodic function my such
that ma(s)+kg(s) > 0 and fOL m;njkg ds # 0. Therefore v is a hyperbolic (minimal) principal

cycle of My parametrized in a neighborhood of v by the parametrization 5. Observing that

L m L —k, _ ’ . . ..
0 mds = fo mds, we can define m = mgy+ €k, to obtain m as a maximal principal
=/
curvature of My with 7 + k, > 0 and ;" =o-ds # 0 for € small.
g

O
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