

Lecturas de Economía

ISSN: 0120-2596 lecturas@udea.edu.co Universidad de Antioquia

Colombia

Inertial Growth: the British and American Cases
Lecturas de Economía, núm. 57, julio-diciembre, 2002, pp. 129-142
Universidad de Antioquia
.png, Colombia

Available in: http://www.redalyc.org/articulo.oa?id=155218092005

Complete issue

More information about this article

Journal's homepage in redalyc.org

Inertial Growth: the British and American Cases

-Introduction. -I.Growth Domestic Product increase Causes. -II.British and American cases. -Conclusion. -Bibliography.

Primera revisión recibida febrero de 2002; versión final aceptada septiembre de 2002 (Eds.).

Introduction

Perhaps, one of the most astonishing experiences in economics is trying to predict the future value of a variable. This can be very useful if you are trying to determine outcomes of future scenarios and you are willing to change them in order to reach a determined objective. For instance, if you wish to control inflation, it would be very practical to determine the value of the future production level in order to establish the money supply that will be required for obtaining the desired price level.

The idea of this paper is to try to determine an adequate formalization of the gross domestic product –GDP– through a simple econometric model so that we can at least guess, in a feasible and scientific way, the growth rate for this variable in a specific period of time. Thus, it must be clear that this article is not being written without rhyme or reason because I hope to achieve a model which can be applied in several moments of world economy.

First, I will try to show, in a theoretical way, the factors which influence growth. However, I will not apply the conventional growth theory that many prominent authors like Solow, Modigliani, Barro, Sala-I-Martin and others have discussed in such a brilliant way. But, indeed, I am going to use key ideas that they expressed and that might allow me to demonstrate my thesis. The second part of

Lecturas de Economía -Lect. Econ.- No. 57. Medellín, julio - diciembre 2002

this paper will be devoted to study the empirical evidence and the applicability of my work to two different cases: United States and United Kingdom; and finally I shall, sketch a conclusion.

I. Growth Domestic Product increase Causes

When GDP is mentioned, everybody immediately begins to think in the production of final goods and services in a specific period. But why does it increase? Why can't it be fixed? One reason, like in the case of inflation, is the expectation that different agents –households and firms– have in the economy or like Delong states: "in the twentieth century we *expected* and today we expect progress. We assume that each generation will live between half again and twice as well in material terms as its parents' generation. We find it hard to imagine what it would be like to live in a society not experiencing rapid material progress" (Bradford, 2000, 3).

This means that they are always taking in to account the growth of the economy in the near past, more specifically in the last quarter or recent quarters because they believe that that result or results indicate the possible turn that the economy will take in the following three months. Schumpeter summarizes this saying: "...it [the economical system] will always be connected with the previous state of things" (Schumpeter, 1957, 30).

But why are they so interested in the past? Because they know that history and the past figures can give a valid point of view for interpreting the possible evolution of the economy. In other words: "analysts and investors seem to believe that a firm whose past growth puts it in the top tier of growth rates for several years in a row is highly likely to repeat this performance in the future" (Chan, Karceski and Lakonishok, 2001, 9).

Even more, they understand that firms, analysts, investors, and economical agents behave in a cyclic way; the problem is trying to determine the way how such cycles repeats itself and the model that best explains those cyclical changes. Another reason for looking at the past is because suppliers are worried about their merchandise stock: they do not produce because it is a fun hobby but due to the possible profit they can obtain from their products. And they are conscient that the more they sell the more they gain, but a high stock means a high storage cost that finally reduces profit. About this, Schumpeter says: "Merchandise sellers appear again as buyers, in the adequate measure, for acquiring the goods that will allow them to maintain their consumption and productive equipment for the following economical period" (Schumpeter, 1957, 31).

But why are they so interested in the supply side and not on the demand one? The answer is quite simple. They have "supplycitis", a rear disease that is caused by thinking only in producing. So their way of thinking things is that supply generates demand because this side of the market is the one that pays workers and owners of capital their share, and these agents, due to the payment, obtain an income that allows them to demand goods and services and not the way around.

Since I am assuming that all economic agents are rational, I can conclude, *ceteris paribus*, due to my theory and perfect information about the growth level in the last period, that if agents perceive augment in such level, the most practical thing to do will be to increase production to try to sell more taking advantage of the idea that they will buy more as a result of the increased income that they posses. On the contrary, if the level of growth is diminished, they will reduce production and retrench spending through the abridgement of stocks.

In a formalized way, where Y_i^* represents long run per capita output or more precisely the per capita GDP produced in a period t, α is a constant that shows the per capita production level if there has not been any previously, β_i would be the change in the per capita output level in period t or the impact that a per capita GDP increase in the previous periods would have on today's per capita GDP; n represents the number of production periods that agents have in mind in order to establish the production level of future periods and u_i represents random effects; therefore, we could express today's per capita GDP as follows:

$$Y_{t}^{*} = \alpha + \sum_{i=1}^{n} \beta_{i} Y_{t-1} + u_{t}$$
 (1)

Now I must clarify that I am not stating that previous GDP is the only variable that makes output grow. No. What I am stating is that the causes of GDP growth are not wrapped in a shroud of mystery as many could think and that the main cause for the increase of production is the output in previous periods. I am aware that production depends on inputs, but this is true in an important manner in the short

¹ This is not my exclusive idea, on the contrary, a very important economist before me, said many years ago: "every supply generates its own demand." The author of such brilliant idea is John Baptiste Say.

² This idea could be summarized: "It all began with a need, that generated production, and the latter gave demand." Remember you cannot demand without money (income), that is merely speculation.

³ But the producer will be thinking: Not for long!

run, but in long run periods, the highest weight is given to previous output. This can be demonstrated, in the short run:⁴

$$Y_{t} = \phi (Y_{t}^{*}, A_{t}, K_{t}, H_{t}, L_{t})$$
 (2)

Where A_i represents the technological advance, K_i is the stock of capital, H_i is the accumulated human capital and L_i is the labor stock. So I am saying that in the short run production level depends mainly of these variables that are located in period t and with lesser importance than in the long run of previous output. This idea could be expressed in a more specific way in which we are going to include capital depreciation, that is, not only for physical capital but also for human capital,

$$Y_{t} = \mu_{1}Y_{t}^{*} + \mu_{2}(\xi - \rho)f(A_{t}) + (\psi - \delta)(\mu_{2}f(K_{t}) + \mu_{4}f(H_{t})) + \mu_{5}(\varsigma - \nu)f(L_{t})$$
(3)

Equation in which I am also adding the difference between the growth rate of the variable and depreciation of different variables represented by the subtraction of a Greek letter that you find by pairs in every parenthesis, as well as the importance or weight that every factor has in the short run. For example, the influence of A_t in the GDP of period t is μ_2 , for K_t is μ_3 and so on. The following step is to take limits towards infinity,

$$\lim_{t \to \infty} Y_t = \lim_{t \to \infty} [\mu_1 Y_t^* + \mu_2(\xi - \rho) f(A_t) + (\psi - \delta)(\mu_3 f(K_t) + \mu_4 f(H_t)) + \mu_5(\varsigma - \nu) f(L_t)]$$
 (4) But.

$$\operatorname{Lim}_{t \to x} Y_{t} = Y_{t}^{*} \tag{5}$$

And,

ULLUMENTALIO

$$\operatorname{Lim}_{t \to \infty} [\mu_1 Y_t^* + \mu_2(\xi - \rho) f(A_t) + (\psi - \delta)(\mu_3 f(K_t) + \mu_4 f(H_t)) + \mu_5(\varsigma - \nu) f(L_t)] = 0 \tag{6}$$

Which agrees with the idea of a variable in the steady state, that is, that its depreciation rate equals its growth rate. Replacing equation (5) and (6) in (4) we arrive at equation (7),

$$Y_t^* = \mu_1 Y_t^* \tag{7}$$

And replacing equation (1) in (7) and understanding that since we are in the long run m_1 is equal to one since there is only one thing that influences the product in the period t then it has a weight of one hundred percent. So we can write formula (8)

$$Y_{t}^{*} = \alpha + \sum_{i=1}^{n} \beta_{i} Y_{t-1} + u_{t}$$
 (8)

That is precisely the same as equation (1). Now in the steady state, it has to be true that

$$Y_{t}^{*} = Y_{t-1} = \dots = Y_{1}$$
 (9)

⁴ From now on, all the variables will be treated in per capita terms even though this is not mentioned explicitly in the text. So when we talk about the stock of capital, for example, we are really talking about the per capita capital stock. This applies for all other variables.

Therefore, we could establish the following relation and obtain equation (10),

$$Y_{t}^{*} = Y_{t} = \alpha + \sum_{i=1}^{n} \beta_{i} Y_{t} + u_{t}$$

$$Y_{t} = \alpha + n\beta Y_{t} + u_{t}$$

$$Y_{t} - n\beta Y_{t} = \alpha + u_{t}$$

$$Y_{t} = \frac{\alpha + u_{t}}{1 - n\beta}$$
(10)

What allows us to view that in the steady state the value of per capita output would be a fixed quantity (assuming that \mathbf{u}_t is fixed in the long run). It is easy to show that all the aggregated variables would grow at the same rate as the population's rate since we are in the steady state where per capita variables do not grow. Let's proceed, then, to verify the theoretical model using econometrics.

II. British and American cases

The following is the result of two econometric models that I estimated with data that I got from different governmental statistic sites in Internet of the above mentioned countries. For example, the information of GDP in USA was taken from the Bureau of Economic Analysis and for the U.K. this information was taken from StatBase. For the U.S.A and the U.K. cases, I have taken a quarterly sample of the real Gross Domestic Product. For the first case, the time series are from 1946:01 to 2001:02; for the second, the time series begins 1955:01 to 2001:02.

In both cases, variables (YUSASA for the United States and YUKSA for the United Kingdom) will have the subscript t-n that will mean that the GDP of the country that has this notation is the quarterly growth rate of the last quarter t-n on corresponding quarter of previous year t-n-1.

The first test that I made was the Unit Root Test that would allow me to establish if the variable was stationary or not. In both cases I applied the Augmented Dickey-Fuller Test and it showed that both variables, after being seasonally adjusted, were stationary. Therefore, there is no presence of a unit root, in consecuence we can apply the Box and Jenkins methodoloy and we do not have to difference the variables. The results of these two test are presented below (Tables 1 and 2).

⁵ This information is in included in the appendix of this paper.

Table 1. United States: Augmented Dickey-Fuller -ADF- Test Unit Root Test

ADF Test Statistic	-7,321285	1% Critical Value*	-3,4627
		5% Critical Value	-2,8753
		10% Critical Value	-2,5740
Durbin-Watson statistic	2,005050		

^{*} MacKinnon critical values for rejection of hypothesis of a unit root.

Table 2. United Kingdom: Augmented Dickey-Fuller -ADF- Test Unit Root Test

ADF Test Statistic	-4,529928	1% Critical Value*	-3,4678
		5% Critical Value	-2,8776
		10% Critical Value	-2,5752
Durbin-Watson statistic	2,018982		

^{*} MacKinnon critical values for rejection of hypothesis of a unit root.

Notice that the series were seasonally adjusted with the Difference from Moving Average or Additive Method since the information is given by quarters. You will find this information plus the White Heteroscedasticity Test, Durbin Watson and other details that help understand the econometric model in Table 3. Then you will encounter the two graphs that will show the accuracy of the developed models.

Table 3. Econometric models

Country	United States of America	United Kingdom	
Seasonal adjustment ^a	man and help by the party of the		
Scaling factors			
1	-3,005182	0,010534	
2	-3,594124	0,019423	
3	6,647530	-0,019327	
4	-0,048224	-0,010631	

a Through the Difference from Moving Average or Additive Method

Continues...

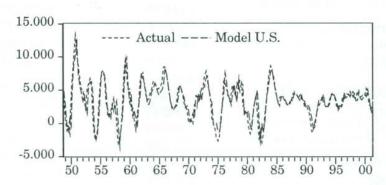
Table 3. Econometric models (continued)

Country	United States of America	United Kingdom
Adjusted serie	${ m Y}_{ m USt}$	Y_{UKt}
Regression ^b	0.50	Ott
Dependent variable	$\mathbf{Y}_{ ext{USt}}$	${ m Y}_{ m UKt}$
Sample, observations ^c	1948:4 to 2001:2, 211	1955:2 to 2001:2, 185
Equation	$Y_{USt} = \alpha_1 + \beta_1 Y_{USt-1}$	$Y_{UKt} = \alpha_1 + \beta_1 Y_{UKt-1}$
	$+\beta_2 Y_{USt-2} + \beta_3 Y_{USt-3}$	
α	1066,527	0,558784
Standard error	183,7715	0,141691
T-statistic	5,803551	3,943683
Probability	0,0000	0,0001
β_1	1,144805	0,773510
Standard error	0,058708	0,044737
T-statistic	19,49982	17,29023
Probability	0,0000	0,0000
β_2	-0,226977	
Standard error	0,095279	
T-statistic	-2,382247	
Probability	0,0181	
β_3	-0,224552	
Standard error	0,066552	
T-statistic	-3,374108	
Probability	0,0009	
R-squared	0,785051	0,602117
Adjusted R-squared	0,781936	0,599943
Standard error of regression	1289,548	1,409817
Sum squared residual	3,44E+08	363,7279
Log Likelihood	-1808,569	-325,0383
Durbin-Watson statistic	2,025806	1,981036
Mean dependent variable	3498,757	2,428544
Standard deviation ^d	2761,504	2,228957

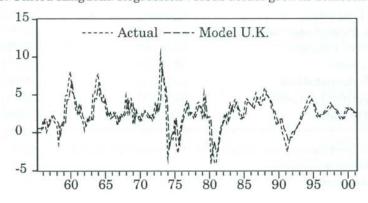
Continues...

Lecturas de Economía -Lect. Econ.- No. 57. Medellín, julio - diciembre 2002

b Method: Least Squares with Newey-West HAC Standard Errors & Covariance


After Adjusting Endpoints

d Dependant variable


Table 3. Econometric models (continued)

Country	United States of America	United Kingdom
Akaike Information Criterion	17,18075	3,535549
Schwarz Criterion	17,24429	3,570363
F-Statistic	252,0071	342,4664
Probability (F-statistic)	0,000000	0,000000
White Heteroscedasticity Test		
F-Statistic[Probability]	1,556603[0,161523]	0,582506[0,559535]
Obs*R-squared[Probability]	9,237192[0,160671]	1,176684[0,555247]

Graph 1. United States: Regression versus actual growth domestic product

Graph 2. United Kingdom: Regression versus actual growth domestic product

For the American case, I used an autoregressive model of order three -AR(3)—in the British case an AR(1) was used. Both are estimated through the least square method using the Newey-West HAC Standard Errors & Covariance option that corrects the heteroscedasticity that the model presented. Also, it is proven that the regression has no heteroscedasticity through the White Test; the results are presented in the Econometric Model Table. The probability of the White Test is higher than 0.1 in both cases what allows us to conclude that the model has no heteroscedasticity. Remember, the variables $(Y_{USA}$ and $Y_{UK})$ are stationary and nonseasonal, two necessary requirements for assuring an adequate regression. Also, the model does not present autocorrelation since, in both cases, the Durbin Watson statistics are very near to two. The value of all coefficients is shown in the table and, according to p-value, they are all statistically significant.

It can also be deduced that the relation between the growth domestic product –GDP– with one lag is positive giving us the idea that in both countries economical agents increase their current production if the GDP rose in the last quarter. But, in the American case there exists a negative relation between today's output and the output lagged two and three periods, then agents think that they should not increase their production if the GDP has risen in the second and third quarters before the current one. This could be explained through the idea of Clément Juglar, who said: "the cause of recession is growth." This is logical in the moment that production is highly big, because in order to increase such stock, the economy would have to produce a lot more, what is difficult given the different constraints.

Conclusion

It is clear that the idea of inertial growth is feasible in countries like the United States and Great Britain. The theory that I have mentioned at the beginning of this paper is totally logical with the empirical evidence that I have shown in this paper, at least for the two cases where this theory has been applied. Hence, today's GDP is related with tomorrow's GDP then policymakers should seek a sustainable path that will allow them to obtain an adequate growth rate today but also in the future because if they search a very high growth today, they will encounter, like in the American case, a very low growth rate since expectations of different economical agents will not allow the economy to grow.

Therefore, in the moment that we begin to establish our growth rate, we must have in mind all our constraints and those should include our idea of inertial growth and, of course, the cost of growing today as a price that we will have to pay as a low growth in the future.

Bibliography

- Auerbach, Alan. Kotlikoff, Laurencem, 1995. Macroeconomics an Integrated Approach, Cincinnati, South Western College Publishing.
- Barro, Robert. Sala-I-Martin, Xavier, 1995. Economic Growth, New York, McGraw Hill.
- ______, Robert, 2001. "Human Capital and Growth", American Economic Review, 91, 2.
 ______, Robert, 1999. "Ramsey meets Laibson in the Neoclassical Growth Model",

 Quarterly Journal of Economics, 114, 4.
- Becker, Gary. Murphy, Kelvin. Tamura, Robert, 1990. "Human Capital Fertility and Economic Growth", Journal of Political Economy, 98, 5.
- Bernabe, Ben. Gürkaynak, Refet, 2001. "Is Growth exogenous? Taking Mankiw, Romer and Weil Seriously"; [internet paper]; Cambridge, MA.; National Bureau of Economic Research –NBER–; Working Paper Series; working paper 8365; July of 2001; www.nber.org/papers/w8365; access date: april 2 of 2002.
- Bureau of Economic Analysis, 2002. "National Account Data", [statistical information on the internet], United States of America, Bureau of Economic Analysis, http://www.bea.doc.gov/bea/dn1.htm, access date: march 29 of 2002.
- Chan, Louis. Karceski, Jason. Lakonishok, Josef, 2001. "The Level and Persistence of Growth Rates"; [internet paper]; Cambridge, MA.; National Bureau of Economic Research NBER-; Working Paper Series; working paper 8282; May of 2001; www.nber.org/papers/w8282; access date: april 2 of 2002.
- CHIANG, Alpha, 1992. Elements of Dynamic Optimization, Singapore, McGraw Hill.
- Delong, Bradford, 2000. "Cornucopia: The Pace of Economic Growth in the Twentieth Century"; [internet paper]; Cambridge, MA.; National Bureau of Economic Research –NBER-; Working Paper Series; working paper 7602; March of 2000; www.nber.org/papers/w7602; access date: april 2 of 2002.
- GAVIRIA, Alejandro, 2001. "Endogenous Institutions: the Importance of History", Lecturas de Economía, 54, 2001.
- JOHNSTON, Jack. DINARDO, John, 1997. Econometric Methods, New York, McGraw Hill.
- Mankiw, Gregory. Romer, David. Weil., David, 1990. "A Contribution to the Empirics of Economic Growth"; [internet paper]; Cambridge, MA.; National Bureau of Economic Research –NBER-; Working Paper Series; working paper 3541; December of 1990; www.nber.org/papers/w3541; access date: april 2 of 2002.
- Schumpeter, Joseph Alois, 1957. Teoría del desenvolvimiento económico: una investigación sobre ganancias, capital, crédito, interés y ciclo económico, Medellín, Fondo de Cultura Económica.
- Solow, Robert, 1956. "A Contribution to the Theory of Economic Growth", Quarterly Journal of Economics, 70, 1.
- Statbase, 2002. "Time Series Data", [statistical information on the internet], United Kingdom, StatBase, http://www.statistics.gov.uk/statbase/TSDtimezone.asp, access date: march 29 of 2002.
- SWAN, Trevor, 1965. "Economic Growth and Capital Accumulation", Economic Record, 32.
 WEI, William, 1990. Time Series Analysis: Univariate and Multivariate Methods, California, Addison-Wesley Publishing Company.
- Varian, Hal, 1997. "How to Build an Economic Model in your Spare Time", *The American Economist*, 41, 2.

Table A.1. United States: Gross domestic product increase on previous quarter. 1996 chained dollars. –Percentage–

19481	3,793	19613	2,802	19751	-2,653	19883	4,148
19482	4,874	19614	6,269	19752	-2,063	19884	3,702
19483	5,043	19621	7,501	19753	0,757	19891	4,269
19484	3,627	19622	6,666	19754	2,590	19892	3,616
19491	0,748	19623	5,975	19761	6,387	19893	3,577
19492	-1,082	19624	4,115	19762	6,336	19894	2,603
19493	-0,370	1963 1	3,542	19763	5,018	19901	2,636
19494	-1,585	19632	3,768	19764	4,564	19902	2,315
19501	3,943	19633	4,729	19771	3,385	19903	1,646
19502	7,359	19634	5,228	19772	4,378	19904	0,463
19503	10,265	19641	6,317	19773	5,754	19911	-1,264
19504	13,411	19642	6,198	19774	5,019	19912	-0,939
19511	10,121	19643	5,604	19781	4,045	19913	-0,513
19512	8,735	19644	5,114	19782	6,145	19914	0,851
19513	6,779	1965 1	5,342	19783	5,275	19921	2,291
19514	5,097	19652	5,509	19784	6,554	19922	2,674
19521	5,142	19653	6,222	19791	6,524	19923	3,213
19522	3,465	19654	8,477	19792	2,638	19924	4,013
19523	2,076	19661	8,508	19793	2,380	19931	3,028
19524	5,257	19662	7,468	19794	1,366	19932	2,693
19531	5,969	19663	5,995	19801	1,444	19933	2,352
19532	6,752	19664	4,424	19802	-0,687	19934	2,548
19533	5,405	1967 1	2,833	19803	-1,541	19941	3,444
19534	0,392	19672	2,381	19804	-0,121	19942	4,252

Continues...

Table A.1. United States: Gross domestic product increase on previous quarter. 1996 chained dollars. –Percentage–(Continued)

19541	-1,918	19673	2,471	19811	1,484	19943	4,364
19542	-2,570	19674	2,345	19812	2,872	19944	4,079
19543	-0,884	19681	3,475	19813	4,257	19951	3,587
19544	2,726	19682	5,323	19814	1,226	19952	2,361
19551	6,192	19683	5,303	19821	-2,349	19953	2,594
19552	7,728	19684	4,967	19822	-1,237	19954	2,155
19553	7,997	19691	4,465	19823	-2,861	19961	2,506
19554	6,457	19692	2,967	19824	-1,631	19962	3,993
19561	3,056	19693	2,840	19831	1,182	19963	3,710
19562	2,233	19694	1,921	19832	3,126	19964	4,059
19563	0,774	19701	0,230	19833	5,462	19971	4,429
19564	1,892	19702	0,177	19834	7,551	19972	4,216
19571	2,909	19703	0,471	19841	8,646	19973	4,778
19572	1,871	19704	-0,137	19842	7,937	19974	4,307
19573	2,979	19711	2,793	19843	6,967	19981	4,739
19574	0,258	19712	3,142	19844	5,605	19982	3,824
19581	-2,992	19713	3,032	19851	4,209	19983	3,796
19582	-2,204	19714	4,410	19852	3,276	19984	4,775
19583	-0,973	19721	3,568	19853	3,921	19991	4,016
19584	2,321	19722	5,361	19854	3,992	19992	3,888
19591	7,349	19723	5,594	19861	4,071	19993	4,022
19592	9,518	19724	7,162	19862	3,692	19994	4,407
19593	7,068	19731	7,780	19863	3,114	20001	4,225
19594	5,057	19732	6,424	19864	2,816	20002	5,224
19601	5,191	19733	4,964	19871	2,635	20003	4,380
19602	2,007	19734	4,025	19872	3,296	20004	2,807
19603	2,239	19741	0,660	19873	3,203	20011	2,549
19604	0,590	19742	-0,070	19874	4,438	20012	1,181
19611	-1,025	19743	-0,789	19881	4,367		
19612	1,328	19744	-2,146	19882	4,486		

Source: Bureau of Economic Analysis. "National Account Data", [statistical information on the internet], United States of America, Bureau of Economic Analysis, http://www.bea.doc.gov/bea/dn1.htm, access date: March 29th, 2002.

 $Table\ A.2.\ United\ Kingdom:\ Gross\ domestic\ product\ increase\ on\ previous\ quarter.\ 1995\ chained\ dollars.\ -Percentage-$

1955 1	0,0	19664	0,9	19783	4,0	19902	1,6
19552	0,0	1967 1	1,9	19784	3,2	19903	0,1
19553	0,0	19672	2,5	19791	2,0	19904	-0,6
19554	0,0	19673	2,1	19792	5,2	19911	-1,4
19561	1,6	19674	2,6	19793	1,8	19912	-2,5
19562	1,6	1968 1	4,9	19794	2,0	19913	-1,4
19563	0,0	19682	2,6	1980 1	1,8	19914	-0,6
19564	0,8	19683	4,4	19802	-4,1	19921	-0,6
19571	1,9	19684	4,5	19803	-2,2	19922	-0,2
19572	2,2	1969 1	1,1	19804	-4,1	19923	0,4
19573	1,6	19692	3,1	19811	-3,9	19924	0,7
19574	1,3	19693	2,0	19812	-1,9	19931	1,3
19581	0,9	19694	2,0	19813	-0,1	19932	2,2
19582	-1,5	19701	1,4	19814	0,9	19933	2,6
19583	0,9	19702	2,5	19821	1,5	19934	3,2
19584	1,2	19703	2,8	19822	2,5	19941	3,7
19591	0,8	19704	2,9	19823	1,2	19942	4,4
19592	4,9	19711	2,3	19824	1,9	19943	4,8
19593	4,9	19712	1,8	19831	3,9	19944	4,6
19594	6,8	19713	2,3	19832	2,9	19951	4,0
19601	8,1	19714	1,7	19833	3,8	19952	3,1
19602	5,4	19721	2,6	19834	4,4	19953	2,1
19603	5,0	19722	4,0	19841	3,4	19954	1,9
19604	3,0	19723	2,8	19842	2,8	19961	2,3
19611	2,5	19724	5,0	19843	1,8	19962	2,4
19612	3,8	19731	10,6	19844	1,8	19963	2,6
19613	2,1	19732	7,5	19851	2,4	19964	2,9
19614	1,5	19733	7,4	19852	4,4	19971	3,1
19621	0,4	19734	3,9	19853	4,4	19972	3,5
19622	1,0	19741	-3,5	19854	4,0	19973	3,9
19623	2,0	19742	-1,4	19861	3,7	19974	3,5
19623	2,0	19742	-1,4	1900 1	3,7	19974	٥,

Continues...

Lecturas de Economía -Lect. Econ.- No. 57. Medellín, julio - diciembre 2002

Intertial Growth: the British and American Cases

Table A.2. United Kingdom: Gross domestic product increase on previous quarter. 1995 chained dollars. –Percentage–(Continued)

19624	1,6	19743	-0,7	19862	3,4	19981	3,2
19631	1,5	19744	-1,1	19863	4,5	19982	3,0
19632	5,1	19751	1,8	19864	5,2	19983	2,4
19633	5,0	19752	-1,7	19871	4,0	19984	2,0
19634	7,2	19753	-2,7	19872	3,9	19991	1,7
19641	7,8	19754	0,0	19873	4,9	19992	1,7
19642	4,7	19761	1,5	19874	4,8	19993	2,5
19643	4,4	19762	2,3	19881	5,9	19994	3,2
19644	5,0	19763	3,3	19882	5,4	20001	3,2
19651	3,6	19764	4,2	19883	4,8	20002	3,4
19652	2,1	19771	2,3	19884	4,5	20003	3,0
19653	2,7	19772	2,7	19891	3,1	20004	2,6
19654	1,8	19773	2,6	19892	2,9	20011	2,7
19661	2,1	19774	1,9	19893	1,7	20012	2,1
19662	2,7	19781	2,6	19894	0,9		
19663	2,1	19782	3,8	19901	1,6		

Source: Statbase. "Time Series Data", [statistical information on the internet], Great Britain, StatBase, http://www.statistics.gov.uk/statbase/TSDtimezone.asp, access date: March 29th, 2002.

el se