

Desarrollo y Sociedad

ISSN: 0120-3584

revistadesarrolloysociedad@uniandes.ed u.co

Universidad de Los Andes Colombia

Melo-Becerra, Ligia Alba; Ramos-Forero, Jorge Enrique; Hernández-Santamaría, Pedro Oswaldo

La educación superior en Colombia: situación actual y análisis de eficiencia

Desarrollo y Sociedad, núm. 78, enero-junio, 2017, pp. 59-111

Universidad de Los Andes

Bogotá, Colombia

Disponible en: http://www.redalyc.org/articulo.oa?id=169149895003

Número completo

Más información del artículo

Página de la revista en redalyc.org

La educación superior en Colombia: situación actual y análisis de eficiencia¹

Higher Education in Colombia: Current Situation and Efficiency Analysis

Ligia Alba Melo-Becerra²

Jorge Enrique Ramos-Forero³

Pedro Oswaldo Hernández-Santamaría⁴

DOI: 10.13043/DYS.78.2

Resumen

El objetivo de este artículo es examinar el estado de la educación superior en Colombia y estimar los niveles de eficiencia de diferentes programas académicos de las instituciones de educación superior del país. Para el análisis de eficiencia se utilizan técnicas de frontera estocástica y los resultados de las pruebas Saber Pro. Las estimaciones evalúan el efecto de variables asociadas al personal docente y a la infraestructura de las instituciones, y de factores de entorno que no están directamente bajo el control de las instituciones, tales como el nivel de ingreso de las familias y la educación de los padres. Los resultados resaltan la importancia de los factores ambientales, sugiriendo que,

Los resultados y opiniones son responsabilidad exclusiva de los autores y su contenido no compromete al Banco de la República ni a su Junta Directiva. Este artículo se benefició de las discusiones con Hernando Vargas. Se agradece la información suministrada por el Ministerio de Educación Nacional y el Instituto Colombiano para la Evaluación de la Educación. Finalmente, se agradece la colaboración y asistencia de Carlos Murcia y Sonia Salazar.

² Banco de la República, Bogotá, Colombia. Correo electrónico: lmelobec@banrep.gov.co.

³ Banco de la República, Bogotá, Colombia. Correo electrónico: jramosfo@banrep.gov.co.

⁴ Universidad de los Andes, Bogotá, Colombia. Correo electrónico: po.hernandez92@uniandes.edu.co. Este artículo fue recibido el 17 de diciembre del 2015, revisado el 3 de diciembre del 2016 y finalmente aceptado el 7 de diciembre del 2016.

aunque muchas instituciones educativas tienen un margen para mejorar sus niveles de eficiencia, podrían estar restringidas por la influencia de los factores socioeconómicos de los estudiantes.

Palabras clave: educación superior, análisis de eficiencia, frontera estocástica, Colombia.

Clasificación JEL: 121, 123, D24.

Abstract

The aim of this paper is to examine the state of higher education in Colombia and estimate the efficiency of different academic programs from institutions of higher education in the country. To estimate efficiency measures, we use stochastic frontier techniques and the results of the Saber Pro test. Estimations evaluate the effect of variables associated with the teaching staff and infrastructure of institutions, and environmental factors that are not directly under the control institutions, such as the family income and parental education. Results highlight the importance of environmental factors, suggesting that while many institutions have margin to improve their efficiency, many of them are restricted by the influence of students' socioeconomic factors.

Key words: Higher education, efficiency analysis, stochastic frontier, Colombia.

JEL classification: 121, 123, D24.

Introducción

La educación superior en Colombia enfrenta retos importantes dentro de los que se destacan la ampliación de los niveles de cobertura y el mejoramiento de la calidad de las instituciones que ofrecen servicios educativos en este nivel de enseñanza. Si bien durante las dos últimas décadas el número de estudiantes matriculados ha crecido de manera importante, especialmente en la formación técnica y tecnológica, en un contexto internacional las tasas de cobertura continúan siendo bajas y no superan el 50%. Por otro lado, la calidad del sistema de educación superior es heterogénea, ya que coexisten instituciones bien organizadas y reconocidas por su excelencia, con instituciones

caracterizadas por bajos niveles de calidad. Además, no existe una conexión clara entre las necesidades del sector productivo y la formación profesional, lo cual constituye una limitación para el desarrollo económico del país.

El logro académico en la educación superior depende de una serie amplia de factores asociados a la institución y a los estudiantes. Dentro de los factores relacionados con las instituciones se destacan el manejo administrativo de los recursos físicos, humanos y financieros, los incentivos a la investigación y la calidad del personal docente. Por su parte, los factores asociados a los estudiantes incluyen, entre otros, las condiciones socioeconómicas del hogar al cual pertenece el alumno, la educación de los padres y el desarrollo de las habilidades cognitivas, que son adquiridos desde la primera infancia. En los últimos años, también se ha reconocido la importancia de las habilidades "no cognitivas" en el éxito académico y profesional de las personas.

De acuerdo con Tough (2012), el interés por el estudio del impacto de las habilidades no cognitivas en el desarrollo individual se extiende a investigadores de diferentes disciplinas como educadores, economistas, psicólogos, médicos y neurocientíficos. Los resultados de estas investigaciones indican, según Tough (2012, p. xv), que

[...] lo que más importa en el desarrollo de un niño no es la información que pueda almacenar en su cerebro en los primeros años, lo importante es la ayuda que se le pueda brindar para que desarrolle una serie de cualidades o de rasgos de la personalidad como la persistencia, el autocontrol, la curiosidad, la determinación y la autoconfianza.

Dentro de los economistas, la persona que más ha estudiado este tema es Heckman, quien destaca la importancia de las habilidades cognitivas y no cognitivas en el rendimiento de los estudiantes⁵. Con base en los resultados de sus investigaciones, Heckman hace énfasis en la necesidad de la inversión temprana en capital humano para el desarrollo de estos dos tipos de habilidades.

Dentro de los artículos que estudian el tema se pueden destacar Heckman (2000); Heckman y Rubinstein (2001); Carneiro, Hansen y Heckman (2002); Carneiro y Heckman (2002, 2003); Heckman, Larenas y Urzua (2004); Carneiro, Heckman y Masterov (2005); Heckman, Stixrud y Urzúa (2006); Cunha, Heckman, Lochner y Masterov (2006); Carneiro, Heckman y Vytlacil (2010); Doyle, Harmonb, Heckman y Tremblay (2009) y Heckman, Humphries, Urzúa y Veramendi (2011).

En general, la literatura sobre los determinantes del rendimiento académico en la educación ha hecho énfasis en la identificación de los factores asociados tanto a la institución como a los estudiantes⁶. Debido al aumento en la demanda por recursos para ampliar los niveles de cobertura y mejorar la calidad de los servicios educativos, recientemente han cobrado importancia los estudios sobre eficiencia técnica y de costos, los cuales permiten evaluar el impacto de diferentes variables en el desempeño de las instituciones y de los programas de educación superior. En este sentido, Salerno (2003) realiza una revisión de las metodologías utilizadas y de los artículos elaborados para Estados Unidos, Australia y varios países de Europa, los cuales emplean técnicas de frontera estocástica y de análisis envolvente de datos (DEA, por su sigla en inglés). Estos estudios utilizan como unidad de análisis la institución y/o el departamento académico. En general, los resultados de estas investigaciones encuentran niveles de eficiencia técnica y de costos relativamente altos⁷.

A escala nacional los estudios sobre eficiencia en el sector educativo se han concentrado en la formación básica y educación media. Dentro de estos, se encuentra el trabajo de Iregui, Melo y Ramos (2007), que estima la eficiencia técnica para los colegios públicos y privados en el año 2002, utilizando técnicas de frontera estocástica. Los resultados de este estudio indican que las variables asociadas a la infraestructura y al entorno socioeconómico de los estudiantes tienen un impacto positivo y significativo en el logro académico. En cuanto a la eficiencia, se encuentra que algunos colegios privados se podrían estar beneficiando de condiciones de entorno favorables, teniendo en cuenta que atienden alumnos de mayores ingresos. Para educación superior no se identificaron investigaciones que evalúen la eficiencia de las universidades y otras instituciones técnicas o tecnológicas.

Teniendo en cuenta los retos que enfrenta la educación superior en Colombia, esta investigación, en primer lugar, examina de manera general la situación sectorial, considerando los antecedentes históricos y los principales indicadores. En segundo lugar, se presenta un ejercicio que estima los niveles de eficiencia de las instituciones educativas y sus programas, utilizando técnicas de

⁶ Véanse los artículos de Heckman citados en la nota anterior. Para Colombia, véase Gaviria y Barrientos (2001).

⁷ Vale la pena destacar que en el trabajo de Klumpp y Zelewski (2008), quienes examinan la productividad de las universidades en Alemania, se encuentra que no necesariamente las universidades mejor clasificadas en los rankings oficiales son las que registran los mayores niveles de desempeño y productividad.

frontera estocástica y los resultados de las pruebas Saber Pro para el primer semestre del 2011. La estimación evalúa el impacto sobre el rendimiento académico tanto de variables que están con el control directo de las instituciones educativas, como de algunos factores socioeconómicos y de entorno asociados a los estudiantes. Los resultados del ejercicio empírico indican que existe una respuesta positiva y significativa entre el logro académico y las variables de infraestructura y las relacionadas con el personal docente. Los resultados también sugieren que los factores de entorno del estudiante, tales como el ingreso de los hogares y el nivel de formación de los padres, tienen un papel importante en la explicación de los resultados obtenidos por las instituciones de educación superior del país y sus programas.

El artículo contiene cinco secciones adicionales a esta introducción. En la primera sección se presenta una breve reseña de los antecedentes históricos de la educación superior en Colombia desde el período colonial. La segunda sección analiza los diferentes indicadores para este nivel de enseñanza, como la tasa de cobertura, el número de instituciones, el número de alumnos matriculados, la tasa de deserción, el número y cualificación de los docentes, la financiación de la educación superior pública y los resultados de logro académico medidos por medio de las pruebas Exámenes de Calidad de Educación Superior (ECAES) y Saber Pro. La tercera sección presenta los resultados del modelo de frontera estocástica, que se estima teniendo en cuenta el papel de las variables de entorno. La cuarta sección analiza los resultados de las diferentes estimaciones. Finalmente, la quinta sección presenta las principales conclusiones del artículo.

Antecedentes históricos de la educación superior en Colombia

La educación superior en Colombia se inicia en el período colonial, y particularmente en los siglos XVI y XVII, con la fundación en Bogotá de las universidades Santo Tomás, San Francisco Javier, hoy Pontificia Universidad Javeriana, y el Colegio Mayor de Nuestra Señora del Rosario. Estas instituciones educativas concentraron sus actividades en la enseñanza de teología, filosofía, jurisprudencia y medicina. Durante ese período, el acceso a la universidad estuvo limitado a un grupo de estudiantes pertenecientes a órdenes religiosas y familias españolas o criollas con buena posición social (Rodríguez y Burbano,

2012). Durante la colonia también se fundaron algunos colegios de estudios superiores y otras universidades en Cartagena, Popayán, Mompox y Medellín.

En los primeros años de la República se despierta el interés por la educación superior, especialmente, por la necesidad de formar profesionales para la construcción del Estado. Con este propósito, en 1826 se fundaron las universidades centrales y públicas de Quito, Bogotá y Caracas (Rodríguez y Burbano, 2012). Después de la disolución de la Gran Colombia, se aprueba una reforma educativa liderada por Mariano Ospina Rodríguez que impulsa la educación técnica y científica, limita la libertad de enseñanza e introduce un carácter confesional a la educación, debido al papel protagónico que se le asigna a la Iglesia Católica (Jaramillo, 1989; Pacheco, 2002). Posteriormente, el primer gobierno de Tomás Cipriano de Mosguera y luego el de José Hilario López (1849-1853), con un escenario agitado desde el punto de vista político, adoptan un programa educativo liberal y menos intervencionista. Durante estos años, las medidas estatales sobre educación superior estuvieron marcadas por las diferencias ideológicas entre liberales y conservadores. Vale la pena anotar que en 1861 el general Mosquera expulsó a los jesuitas del país y expropió sus bienes en lo que se conoció como la "desamortización de bienes de manos muertas".

Después de la Constitución de Rionegro (1863), que estableció un régimen federal en el país, se efectuó una reforma educativa de corte liberal que, entre otras características, desligó el poder civil del eclesiástico, estableció la escuela obligatoria y gratuita y redefinió el financiamiento de la educación por parte del Estado (Silva, 1989). En estos años se destaca la fundación de la Universidad Nacional de los Estados Unidos de Colombia y de la Universidad de Antioquia⁸.

Durante el período de la Regeneración, el Estado asumió un papel menos activo en el manejo de la educación, al otorgar mayor espacio a la iniciativa privada y facilitar el ingreso al país de diferentes órdenes religiosas que gradualmente adquirieron fuerza en la orientación del sistema educativo (Silva, 1989). La Regeneración limitó la autonomía universitaria y dejó en manos del Gobierno

⁸ La Universidad Nacional inició sus labores con las facultades de Jurisprudencia, Medicina, Filosofía y Letras, Ciencias Naturales, Ingeniería y el Instituto de Artes y Oficios.

el control de las instituciones educativas⁹. Esta orientación del sistema educativo generó resistencia entre los intelectuales y profesores de pensamiento liberal que impulsaron la fundación de la Universidad Externado de Colombia en el año 1886¹⁰.

Los primeros años del siglo XX estuvieron caracterizados por la Guerra de los Mil Días y la separación de Panamá. En materia de educación superior no hubo avances significativos, toda vez que persistió el control estatal y la influencia de la Iglesia católica. Durante este período no se observa la apertura de nuevas universidades públicas y se evidencian problemas de calidad y baja cobertura. En los años veinte se renueva el interés sobre la educación en el país, por lo que se contrata una misión alemana que evalúa la problemática del sector y deja como resultado el fortalecimiento de la formación docente mediante la fundación de algunas escuelas normales. Como hecho destacable en esta década se puede mencionar la fundación de la Universidad Libre en 1923.

Con el ascenso al poder de Alfonso López Pumarejo en 1934 se da un vuelco a la política educativa del país. En educación superior se intenta fortalecer los nexos entre la formación académica de los estudiantes y la realidad económica del país, caracterizada por el proceso de industrialización. Con esta perspectiva, se promueve la libertad de enseñanza, se otorga mayor autonomía administrativa y académica a las universidades, se asignan recursos para mejorar la calidad y la práctica docente, se ordena la construcción de una Ciudad Universitaria y se amplía el número de facultades de la Universidad Nacional¹¹ (Jaramillo, 1989). Esta orientación se mantuvo durante los gobiernos de Eduardo Santos (1938–1942) y Alberto Lleras Camargo (1945–1946).

En cuanto a la educación universitaria privada cabe destacar la apertura de la Pontificia Universidad Javeriana en Bogotá en 1931 y de la Universidad Pontificia Bolivariana de Medellín en 1936. En la segunda mitad de la década de los cuarenta se crearon varias universidades regionales como la Universidad del

⁹ A pesar del mayor control gubernamental sobre la educación superior, en este período se observa una creciente participación del sector privado en la educación básica, especialmente con la intervención de las congregaciones religiosas.

¹⁰ Para promover la formación técnica, en 1887, se abre la Escuela de Minas de Medellín.

¹¹ Se destacan las facultades de Arquitectura, Veterinaria, Agronomía, Química, Filosofía, Economía y Administración de Empresas.

Valle en 1945, la Universidad Industrial de Santander en 1948, la Universidad del Atlántico en 1943 y la Universidad de Caldas en 1943. En 1953 se crean, con carácter nacional, la Universidad Pedagógica y Tecnológica de Colombia en Tunja y la Universidad Pedagógica Nacional en Bogotá, y en 1948 se fundó la Universidad de los Andes.

Las reformas educativas de la Revolución en Marcha no alcanzaron los objetivos propuestos, por la falta de recursos fiscales y por la orientación de los nuevos gobiernos que redefinieron el papel de la educación en la sociedad (Jaramillo, 1989). En 1946, el Partido Conservador recupera la presidencia de la República y, posteriormente, con el asesinato de Jorge Eliécer Gaitán, en 1948, el país entra en una fase de violencia que se prolonga hasta finales de la década de los cincuenta. En 1953 se presenta un golpe militar que dio lugar al establecimiento de una dictadura que se extendió hasta 1957. Durante estos años se limitó nuevamente la autonomía universitaria y se dio prioridad a la educación técnica, para lo cual se crearon varias instituciones, entre las que se destacan el Instituto de Investigaciones Tecnológicas, la Escuela Superior de Administración Pública (ESAP), el Servicio Nacional de Aprendizaje (SENA) y el Instituto Colombiano de Crédito Educativo y Estudios Técnicos en el Exterior (Icetex).

Durante el gobierno de Rojas Pinilla (1953–1957) se contrató la misión Lebret, que alertó sobre el riesgo de la expansión de universidades de baja calidad y la contratación de profesores con poca preparación. No obstante, el proceso de urbanización y los cambios demográficos generaron una demanda creciente por servicios educativos, que propiciaron la apertura de instituciones privadas y el surgimiento de universidades con programas nocturnos (Helg, 1989a). En las décadas de los sesenta y setenta continúa la demanda por cupos universitarios, lo que da lugar a un aumento significativo en el número de programas y de universidades, especialmente, de carácter privado. El número de estudiantes universitarios se multiplicó y ascendió de 20.000 en 1958 a más de 300.000 en 1980 (Helg, 1989b). El aumento de la matrícula estudiantil contrasta con la heterogeneidad en la calidad de las instituciones y de los programas ofrecidos y con la insuficiente capacidad del Estado para proveer educación a los ciudadanos que por su condición socioeconómica no podían pagar por este tipo de servicios (Helg, 1989b).

Durante estas dos décadas hubo un flujo importante de recursos para el financiamiento de la educación superior gracias a la participación de organizaciones

internacionales como la Agencia para el Desarrollo Internacional (AID) y las fundaciones Ford, Kellog y Rockefeller. Es importante anotar que durante la década de los sesenta se construyeron las actuales sedes de las universidades del Valle y de Antioquia con recursos de crédito provenientes del Banco Interamericano de Desarrollo (BID) y de otras fuentes nacionales y externas. En 1968 se crearon el Instituto Colombiano para el Fomento de la Educación Superior (ICFES), y el Departamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias). A finales de los años setenta y comienzos de los ochenta, se establece un marco normativo para la educación superior que define los principios y los objetivos del sistema, la organización, el estatuto del personal docente, las normas sobre administración del presupuesto y las condiciones específicas que orientan las instituciones privadas.

Con la expedición de la Constitución Política de 1991 se consagra la libertad de enseñanza y se reconoce la educación como un derecho y un servicio público que puede ser prestado por el Estado o por los particulares. Asimismo, para asegurar la calidad del sistema educativo, se asignó al Estado la función de inspección y vigilancia. La Constitución también garantizó la autonomía universitaria y estableció que las universidades podrían expedir sus propios estatutos. Con base en los lineamientos de la Constitución se aprobó la Ley 30 de 1992 que establece la base normativa del sistema de educación superior. Esta norma definió los principios y objetivos del sector, clasificó los programas académicos y las instituciones públicas y privadas. La clasificación institucional se realizó con base en una tipología que incluye instituciones técnicas profesionales, instituciones universitarias o escuelas tecnológicas y universidades.

La Ley 30 también definió el estatuto del personal docente y las normas sobre la administración del presupuesto y del personal de las instituciones oficiales, garantizó el ejercicio de la autonomía y el gobierno universitario, permitiendo a las instituciones el nombramiento de sus directivas y la creación de sus propios programas académicos. Por otro lado, la ley fijó las condiciones que orientan el funcionamiento de las instituciones privadas. Con esta ley se establecieron como órganos rectores al Ministerio de Educación Nacional (MEN) y al Consejo Nacional de Educación Superior (CESU). Dentro del CESU se incluyó la organización del Sistema Nacional de Acreditación, como una estrategia para el mejoramiento de la calidad de la educación superior y del Sistema Nacional de Información.

En cuanto a la financiación de las universidades estatales, la lev estableció aportes crecientes del Presupuesto General de la Nación y de las entidades territoriales tomando como base los recursos girados en 1993¹². No obstante, esta fórmula constituye un factor de controversia entre el Ministerio de Hacienda y las instituciones de educación superior oficiales por los desfases entre el presupuesto de gasto de las universidades y los ingresos definidos en la ley. Este fenómeno se encuentra asociado, según Jaramillo (2010), a factores como: las diversas normas y sentencias sobre pensiones y remuneraciones salariales de los docentes; la necesidad de realizar inversiones en infraestructura física y académica para ampliar la cobertura; los procesos de calidad; las inversiones en capital humano; la destinación de mayores recursos para investigación y con fenómenos diferentes a lo estrictamente académico como el otorgamiento de descuentos en matrículas a quienes ejercen el derecho al voto (Jaramillo, 2010). De ahí que todos estos gastos mayores, que no quedaron previstos ni cubiertos por Ley 30 de 1992, afectaran la dinámica del crecimiento del sistema público de educación superior. En la sección de financiación de los indicadores del sector presentamos la evolución del financiamiento de las instituciones de educación superior públicas durante los últimos años, a partir de la dinámica de los aportes de presupuesto nacional.

Durante la década del 2000 se fortaleció la formación técnica y tecnológica, se creó el Viceministerio de Educación Superior, el cual se encarga de la inspección y vigilancia del sector, y se adoptaron algunas medidas sobre acreditación y de calidad. Dentro de estas últimas medidas cabe destacar la creación de la Comisión Nacional de Aseguramiento de la Calidad (Conaces) y el fortalecimiento del Consejo Nacional de Acreditación (CNA). El primer organismo se encarga principalmente de evaluar los requisitos para la creación de instituciones y de programas de educación superior y, el segundo, de emitir una opinión para la acreditación de las instituciones y de los programas. Durante esa década también se creó un conjunto de sistemas de información, con el fin de contribuir al conocimiento y la toma de decisiones del sector, dentro de los cuales cabe destacar el Sistema Nacional de la Información de la Educación Superior (SNIES), el Sistema de Información de Aseguramiento de la Calidad de

¹² Las universidades públicas de carácter nacional cubren el 80% de sus gastos totales con recursos de la nación y el 20% restante con recursos propios. Las universidades territoriales cubren el 60% de sus gastos con recursos del presupuesto de la nación, 9% con aportes de los departamentos, 19% con recursos propios y el 12% restante con aportes de los municipios y otras fuentes de financiamiento (Ayala, 2010).

la Educación Superior (SACES), el Sistema para la Prevención de la Deserción en Educación Superior (Spadies) y el Observatorio Laboral para la Educación.

Por otro lado, el ICFES se transformó en una entidad pública especializada en los servicios de evaluación de la educación en todos sus niveles y la generación de información sobre la calidad de la educación. Por su parte, el lcetex se transformó en una entidad financiera de naturaleza especial que a partir del 2010 fortaleció los programas de créditos educativos y mejoró las condiciones financieras de los préstamos a los estudiantes. Finalmente, vale la pena señalar que a pesar de los avances institucionales y del aumento en las tasas cobertura, aún se observa una gran heterogeneidad en la calidad de los programas ofrecidos, inequidad en el acceso y una oferta insuficiente de cupos.

La heterogeneidad en la calidad de los programas ofrecidos se puede observar al comparar la matrícula de las instituciones y programas académicos con acreditación vigente, la cual evidencia un escenario bastante concentrado y desigual. En efecto, con información del 2015, según el SNIES, del total de instituciones de educación superior activas, solo el 16% contaba con acreditación de alta calidad. De las instituciones con acreditación, el 40% eran del sector oficial, mientras que de las instituciones sin acreditación, el 73% eran del sector privado. Además, de acuerdo con el CNA (2014), la cobertura de matrícula en instituciones de educación superior y programas acreditados era de apenas 31% en el 2014. También se encuentra que la cobertura en programas de pregrado acreditados era del 19%, mientras que la cobertura en programas de posgrado era de apenas 6%¹³. Finalmente, como lo muestran los resultados del ejercicio empírico, las condiciones económicas y sociales de los estudiantes afectan en forma importante la calidad de la educación superior en términos del logro académico de las diferentes instituciones y programas académicos.

¹³ Una explicación de este fenómeno es provista por Misas (2004, p. 219), quien lo describe como una "Ley de Gresham", según la cual las instituciones de baja calidad desplazan a las de mejor calidad, gracias a la lógica del mercado, que genera una diferenciación de calidad entre programas y universidades. De acuerdo con este autor, la heterogeneidad en la educación superior se produce en la medida en que las instituciones de baja calidad, con bajo costo, desplazan a las de mejor calidad, con mayores costos, pues un alto porcentaje de estudiantes se matricula en universidades más asequibles, pero de menor calidad.

II. Principales indicadores del sector

De acuerdo con la Ley 30 de 1992, la educación superior a nivel de pregrado está compuesta por tres niveles de formación, que corresponden al técnico, al tecnológico y al profesional. Los programas académicos para estos tres niveles son ofrecidos por instituciones técnicas profesionales, instituciones universitarias o escuelas tecnológicas y universidades. En general, las modalidades de enseñanza ofrecidas son de tipo presencial, aunque algunas instituciones también ofrecen programas en la modalidad de educación a distancia. Para examinar la situación de la educación superior en el país, en esta sección se describe el comportamiento de los principales indicadores del sector, como son el de cobertura y número de matriculados, el número de instituciones y programas, el nivel de formación de los docentes, las tasas de deserción, la financiación de las instituciones educativas públicas y los resultados de logro académico.

A. Cobertura

Es importante resaltar la prioridad que desde los años treinta del siglo pasado se otorgó a la educación superior con el fin de responder al proceso de urbanización y a las necesidades de desarrollo del país. A pesar del esfuerzo de varios gobiernos por ampliar el acceso de la población a este nivel de formación académica, la tasa de cobertura bruta¹⁴, que indica la relación entre los alumnos matriculados en el nivel de pregrado y la población entre 17 y 21 años, apenas ascendió del 3,9% en 1970 al 8,9% en 1980 y al 13,4% en 1990. Durante los últimos 25 años, el acceso a la educación superior aumentó a un mayor ritmo, lo que se tradujo en una tasa de cobertura bruta que pasó del 24,0% en el año 2000 al 49,0% al final del 2015. Durante este período, la población matriculada a nivel de pregrado ascendió de 487.448 estudiantes en 1990 a 873.079 en el año 2000 y a 2.142.443 en el 2014. Gran parte del aumento reciente del número de matriculados tiene origen en la expansión de cupos para educación técnica y tecnológica, que pasaron de 152.324 en el 2000 a 713.500 en el 2014¹⁵. Este incremento refleja la política de educación superior durante la última década, la cual dio prioridad a este tipo de formación. En efecto, mientras la tasa de cobertura en educación técnica y tecnológica

¹⁴ La tasa de cobertura bruta mide la participación de los jóvenes y adultos que se encuentran efectivamente cursando un programa de educación superior.

¹⁵ De los cupos del año 2015, 428.318 corresponden al SENA, aproximadamente el 60% del total de la matrícula en educación técnica y tecnológica.

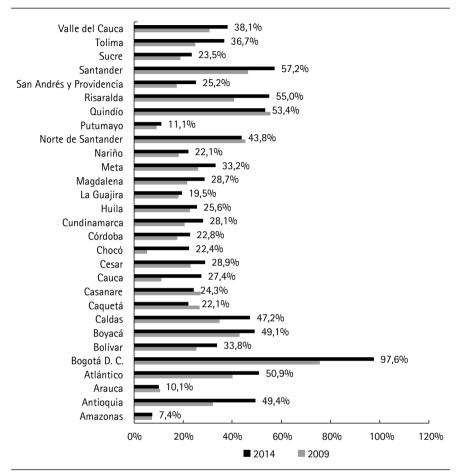
ascendió del 4,0% en el 2000 al 16,3% en el 2015, en el nivel profesional esta tasa aumentó del 18,7% en el primer año al 32,7% en el último (cuadro 1).

Cuadro 1. Matrícula y tasa bruta de cobertura educación superior a nivel de pregrado

			Matrícula Tasa bruta de cobertu			a de cobertu	ra** %	
	Profes.	Part. %	Técnica y tecnol.	Part. %	Total	Profes.	Técnica y tecnol.	Total
2000	720.756	82,6	152.324	17,4	873.079	18,7*	4,0*	22,7*
2001	737.330	81,0	172.862	19,0	910.191	19,2*	4,5*	23,7*
2002	754.570	80,5	183.319	19,5	937.889	19,6	4,8	24,4
2003	781.403	78,4	215.285	21,6	996.688	20,1	5,5	25,6
2004	799.808	75,2	263.375	24,8	1.063.183	20,3	6,7	27,0
2005	842.482	74,0	295.290	26,0	1.137.772	21,1	7,4	28,4
2006	872.902	71,6	347.052	28,4	1.219.954	21,5	8,5	30,0
2007	911.701	69,8	394.819	30,2	1.306.520	22,1	9,6	31,7
2008	961.985	67,5	462.646	32,5	1.424.631	23,0	11,1	34,1
2009	1.011.021	67,7	482.505	32,3	1.493.525	23,9	11,4	35,3
2010	1.045.570	65,8	542.358	34,2	1.587.928	24,4	12,7	37,1
2011	1.159.335	65,8	603.145	34,2	1.762.480	26,8	14,0	40,8
2012	1.218.536	66,2	622.746	33,8	1.841.282	28,1	14,3	42,4
2013	1.291.872	66,9	638.499	33,1	1.930.371	30,5	15,0	45,5
2014	1.365.301	66,4	691.558	33,6	2.056.859	31,2	15,8	47,0
2015 ^p	1.428.943	66,7	713.500	33,3	2.142.443	32,7	16,3	49,0

Nota. * Valores estimados.

Fuente: MEN - SNIES (2016), DANE, Observatorio de la Universidad Colombiana (2016).


Cuando se examinan las tasas de cobertura por regiones se observa una gran heterogeneidad. Por ejemplo, para el año 2014, mientras la tasa de cobertura de Bogotá fue del 97,6% y la de Quindío del 53,4%, departamentos como Amazonas, Arauca y Putumayo registraron tasas inferiores al 12% (figura 1).

Durante la última década la cobertura en el tercer nivel de enseñanza, como ya se mencionó, registra un avance importante, especialmente por los esfuerzos realizados en educación técnica y tecnológica. No obstante, desde una perspectiva internacional, la tasa de cobertura de Colombia es relativamente baja cuando se compara con países desarrollados como Estados Unidos, Finlandia, España, Nueva Zelandia, Australia, Noruega y con países latinoamericanos como Argentina y Chile, cuyas tasas de cobertura superan el 80% (cuadro 2).

^{**} Calculada con base en información del Censo del 2005.

P: preliminar

Figura 1. Tasa bruta de cobertura de la educación superior (2009 y 2014)

Fuente: MEN.

Cuadro 2. Tasa bruta de cobertura de la educación superior

País	Tasa de cobertura 2009	Tasa de cobertura 2010	Tasa de cobertura 2011	Tasa de cobertura 2014
Promedio América Latina y el Caribe*	39,6	41,2	42,3	37,7
Argentina	71,0	75,0		80,0
Chile	59,0	66,0	71,0	87,0
Colombia	35,3	37,1	40,3	47,0
Cuba	115,0	95,0	80,0	41,0
México	26,0	27,0	28,0	30,0

(Continúa)

Cuadro 2. Tasa bruta de cobertura de la educación superior (continuación)

País	Tasa de cobertura 2009	Tasa de cobertura 2010	Tasa de cobertura 2011	Tasa de cobertura 2014
Panamá	43,0	44,0	42,0	39,0
Paraguay	37,0	35,0		
Puerto Rico	81,0	86,0	86,0	
Uruguay	63,0	63,0		
Venezuela	78,0			
República de Corea	102,0	101,0	101,0	95,0
Finlandia	92,0	94,0	96,0	89,0
Estados Unidos	88,0	93,0	95,0	87,0
Eslovenia	86,0	88,0	85,0	83,0
Nueva Zelandia	83,0	83,0	81,0	81,0
Australia	76,0	80,0	83,0	87,0
Dinamarca	74,0	74,0		82,0
Islandia	74,0	78,0	81,0	82,0
Noruega	73,0	73,0	73,0	77,0
España	73,0	78,0	83,0	89,0
Suecia	71,0	75,0	74,0	62,0
Polonia	71,0	74,0	74,0	71,0
Bélgica	65,0	68,0	69,0	73,0
Italia	65,0	64,0	64,0	63,0
Holanda	62,0	64,0	76,0	79,0
Israel	62,0			66,0
Portugal	63,0	66,0		66,0
Hungría	62,0	60,0	60,0	53,0
Irlanda	63,0	71,0	73,0	73,0
República Checa	61,0	63,0	65,0	66,0
Austria	61,0	69,0	71,0	0,08
Japón	58,0	58,0	60,0	62,0
Reino Unido e Irlanda del Norte	59,0	61,0	61,0	56,0
Francia	54,0	56,0	57,0	64,0
Eslovaquia	55,0	56,0	55,0	53,0

Fuente: Cepal (2016); Unesco (2016); MEN (2016).

B. Instituciones

Para atender la demanda por servicios de educación superior, en el año 2015 el país contaba con 290 instituciones, de las cuales 83 corresponden a universidades, 120 a instituciones universitarias, 51 a instituciones tecnológicas y 37 a instituciones técnicas. Del total de entidades, 62 son oficiales, 207 privadas

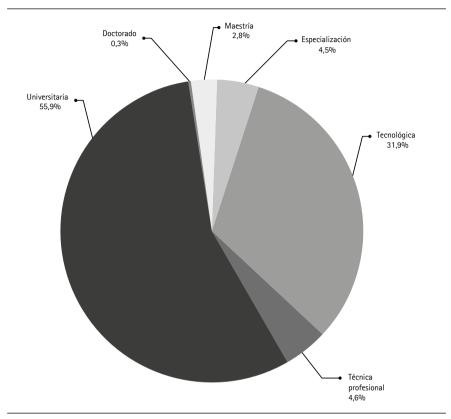
y 19 de régimen especial¹⁶. Durante los últimos años, el número de instituciones universitarias fue el que más cambios registró al ascender de 82 en el año 2000 a 119 en el 2015. En este mismo período, el número de universidades aumentó en 10 y el de las instituciones tecnológicas en 4. El número de instituciones técnicas, por el contrario, disminuyó en 7 (cuadro 3).

Cuadro 3. Instituciones de educación superior

Año	Instituciones técnicas	Instituciones tecnológicas	Instituciones universitarias	Universidades	Total
2000	44	47	82	73	246
2001	44	49	94	73	260
2002	43	47	104	73	267
2003	42	49	110	80	281
2004	42	48	106	80	276
2005	41	50	106	80	277
2006	41	49	105	80	275
2007	42	51	106	80	279
2008	42	53	109	80	284
2009	42	55	113	80	290
2010	42	55	115	80	292
2011	39	54	115	80	288
2012	37	50	120	81	288
2013	37	50	120	82	289
2014	37	51	120	82	290
2015	37	51	119	83	290

Fuente: MEN - SNIES (2016).

Para el año 2015, de acuerdo con las Estadísticas de Educación Superior del Ministerio de Educación Nacional (2016) con información de SACES y CNA, la oferta de programas académicos con registro calificado de las instituciones de educación superior incluía 6.341 programas de pregrado, de los cuales 1.066


¹⁶ En el año 2014 el país contaba con 28 instituciones técnicas privadas y 9 públicas; con 39 instituciones tecnológicas privadas, 6 públicas y 6 de régimen especial; con 92 instituciones universitarias privadas, 16 públicas y 12 de régimen especial; y con 31 universidades públicas, 50 privadas y 1 de régimen especial. Es importante señalar que el carácter especial obedece a que son establecimientos financiados parcialmente con recursos del Estado, pero no dentro del sector de educación, sino en otros sectores en términos presupuestales. Por ejemplo, los establecimientos educativos que dependen de las Fuerzas Militares y la Policía.

son técnicos profesionales, 1.519 son tecnológicos y 3.756 son profesionales universitarios. También se ofrecieron 4.872 programas de posgrado, de los cuales 3.171 corresponden a especializaciones, 1.465 a maestrías y 236 doctorados. Vale la pena resaltar que del total de programas académicos (11.213 programas con registro calificado en pregrado y posgrado), solo 956 (8,5%) están acreditados con alto nivel de alta calidad¹⁷, de estos programas acreditados, 856 corresponden a programas de pregrado (89,5%) y 100 a programas de posgrado (7,5%). De los programas de pregrado, 18 corresponden al nivel técnico profesional, 66 al tecnológico, y 772 al universitario. Por su parte, de los programas de posgrado, 8 corresponden a especialización, 66 a maestría y 14 a doctorado. Por áreas de conocimiento, el 31,8% de los programas acreditados con alto nivel de calidad corresponden a ingeniería, arquitectura y urbanismo, el 18,8% a ciencias sociales y humanas, el 16,3% a economía, administración, contaduría y carreras afines, el 10,3% a ciencias de la salud, el 9,1% a ciencias de la educación, el 6,5% a matemáticas y ciencias naturales, el 4,2% a bellas artes, y el restante 3% a programas de agronomía, veterinaria y afines.

Los diferentes programas de educación superior registraron 1.954.201 estudiantes en el año 2015, de los cuales 1.806.400 estaban matriculados en programa técnico, tecnológico o de pregrado y 147.800 en programas de posgrado. Por nivel de formación académica, 89.842 estudiantes (4,6%) pertenecían al nivel técnico profesional, 623.658 (31,9%) al tecnológico, 1.092.900 (55,9%) al universitario, 88.427 (4,5%) a especialización, 54.106 a maestría (2,8%) y 5.268 a doctorado (0,3%) (figura 2). Es importante señalar que del total de estudiantes para el 2015, el 50,7% asisten a instituciones públicas y el 49,3% a instituciones privadas. En el año 2002, el 41,7% de los estudiantes estaban matriculados en instituciones oficiales y el 58,3% en privadas. El aumento de la participación pública en el total de la matrícula obedece principalmente al aumento de cupos del SENA, que pasó de 48.123 en el 2003 a 428.318 en el 2015.

¹⁷ Es importante señalar que la acreditación de alta calidad está reservada para los programas que demuestren una excelencia académica, a partir de una evaluación que incluye 66 criterios, organizados en 7 categorías: plan institucional, organización de estudiantes y profesores, proceso académico, administración, organización y gestión, impacto de los egresados en la sociedad y recursos físicos y financieros.

Figura 2. Matrícula en instituciones de educación superior según nivel de formación (2015)

Fuente: MEN, SACES (2016).

En cuanto a la matrícula universitaria a nivel de pregrado se puede destacar que el número de estudiantes registrados ascendió de 582.672 en el 2000 a 1.092.900 en el año 2015. En cuanto a las universidades públicas, la matrícula aumentó de 234.210 estudiantes en el año 2000 a 553.197 estudiantes en el 2015. En este período se puede destacar el aumento de 53.754 estudiantes matriculados en la Universidad Nacional Abierta y a Distancia. Además, las instituciones con mayor número de estudiantes matriculados en el 2015 fueron la Universidad Nacional Abierta y a Distancia con 61.411 estudiantes, la Universidad Nacional de Colombia con 43.300 estudiantes, la Universidad de Antioquia con 32.523 estudiantes y la Universidad Pedagógica y Tecnológica de Colombia con 26.263 estudiantes (cuadro 4).

Cuadro 4. Matrículas universidades públicas a nivel de pregrado profesional

Universidades públicas*	2000	2005	2010	2015
Universidad Nacional Abierta y a Distancia (UNAD)	7.657	16.730	39.173	63.496
Universidad Nacional de Colombia	33.041	40.749	39.206	52.682
Universidad de Antioquia	19.498	30.480	27.080	35.409
Universidad de Pamplona	3.828	16.652	27.813	22.002
Universidad Ped. y Tec. de Colombia (UPTC)	13.368	18.760	20.340	28.999
Universidad del Tolima	6.448	11.118	20.315	23.312
Universidad del Valle	15.064	21.321	22.703	26.625
Universidad Distrital Francisco José de Caldas	10.306	16.653	19.499	25.238
Universidad Francisco de Paula Santander	11.174	12.754	19.177	24.541
Universidad del Atlántico	9.392	12.132	14.371	21.885
Universidad Industrial de Santander	12.248	15.279	18.434	20.101
Universidad de Cartagena	7.317	8.985	12.587	17.550
Universidad del Magdalena	3.055	7.626	13.172	22.580
Universidad del Quindío	8.742	7.362	11.499	18.713
Universidad Popular del Cesar	5.267	9.991	12.979	13.908
Universidad Tecnológica de Pereira (UTP)	3.867	7.800	11.595	18.267
Universidad Militar Nueva Granada	4.707	7.142	10.435	15.844
Universidad de Córdoba	5.007	6.980	10.744	13.941
Universidad del Cauca	7.891	11.543	12.554	15.919
Universidad de Nariño	5.777	7.959	8.028	10.121
Universidad Tec. del Chocó Diego Luis Córdoba	5.420	7.196	10.438	10.133
Universidad de Cundinamarca (UDEC)	4.708	7.775	8.964	12.834
Universidad de Caldas	6.514	8.503	9.347	14.553
Universidad Surcolombiana	4.705	5.860	8.120	11.474
Universidad Pedagógica Nacional	3.785	6.976	8.769	9.867
Universidad de la Guajira	4.428	4.883	7.080	12.535
Universidad de la Amazonia	2.149	4.580	6.602	8.433
Universidad de los Llanos	3.265	4.546	5.351	5.401
Universidad de Sucre	2.459	3.146	4.170	5.455
Universidad Colegio Mayor de Cundinamarca	2.929	3.709	3.786	5.215
Universidad del Pacífico	194 ^{***}	662	1.219	2.291
Escuela Naval de Cadetes Almirante Padilla	-	-	-	1.063
Total universidades públicas	234.210	345.852	445.550	589.38

Nota. * Corresponde al promedio de los estudiantes matriculados durante el primer y segundo semestre. Fuente: MEN – SNIES (2016).

Por su parte, las universidades privadas aumentaron su matrícula de 348.462 estudiantes en el 2000 a 539.704 estudiantes en el 2015. Para este último año se destaca la matrícula de la Universidad Cooperativa de Colombia con 48.144 estudiantes, la de la Universidad Libre con 29.082 estudiantes, la de la Universidad Santo Tomás con 28.109 estudiantes, y la de la Pontificia Universidad Javeriana con 25.309 estudiantes (cuadro 5).

Cuadro 5. Matrículas en las universidades privadas a nivel de pregrado profesional

Universidades privadas*	2000	2005	2010	2015
Universidad Cooperativa de Colombia	34.479	29.872	41.340	48.144
Universidad Libre	24.720	22.026	23.227	29.082
Pontificia Universidad Javeriana	25.598	24.975	24.106	25.309
Universidad Santo Tomás	15.463	14.245	19.769	28.109
Universidad Pontificia Bolivariana	12.379	14.002	17.442	21.160
Universidad de San Buenaventura	14.864	13.210	15.297	15.723
Escuela Colombiana de Carreras Industriales (ECCI)	-	-	-	16.181
Universidad de La Salle	11.847	13.055	14.022	14.770
Universidad La Gran Colombia	6.514	7.160	10.959	14.861
Universidad Antonio Nariño	26.233	7.638	12.480	15.611
Universidad de los Andes	7.515	10.288	12.050	13.874
Universidad Santiago de Cali	14.785	11.469	12.705	14.579
Universidad Simón Bolívar	-	-	-	13.959
Universidad de Medellín	12.747	8.690	10.805	11.793
Universidad Católica de Colombia	10.466	10.008	10.052	9.868
Fundación Universidad Central	7.640	7.470	9.869	10.969
Fundación Univ. de Bogotá Jorge Tadeo Lozano	9.747	7.951	8.604	10.680
Corporación Universidad de la Costa	_	_	_	10.202
Universidad Autónoma del Caribe	9.197	8.080	9.303	10.193
Fundación Univ. del Norte - Universidad del Norte	6.595	8.095	7.780**	11.373
Universidad EAFIT	9.010	7.665	8.508	10.018
Colegio Mayor de Nuestra Señora del Rosario	3.080	4.867	8.263	8.640
Corporación Universidad Piloto de Colombia	5.903	6.490	7.063	7.530
Universidad de Santander (UDES)	8.432	5.350	6.376	9.648
Fundación Universidad Autón. de Colombia (FUAC)	6.229	7.702	6.987	6.923
Universidad Sergio Arboleda	4.632	4.032	6.320	8.589
Universidad de La Sabana	6.947	5.473	6.325	8.122
Universidad Autónoma de Occidente	-	7.283	7.566	10.152
Universidad El Bosque	4.492	4.286	6.119	9.367
Universidad Autónoma de Bucaramanga (UNAB)	6.239	5.807	6.569	9.372
Universidad Manuela Beltrán (UMB)	-	4.969	5.877	8.078
Universidad del Sinú (Unisinú)	-	4.845	5.846	8.802
Universidad de Ibagué	-	3.106	5.261	7.039
Universidad Externado de Colombia	6.349	5.522	5.514	5.724
Universidad Mariana	5.512	2.629	4.871	6.542
Universidad de Boyacá (Uniboyacá)	-	3.465	3.582	5.553
Universidad EAN	3.255	3.222	3.576	5.545
Universidad ICESI	1.409	2.408	4.557	5.491
Universidad Metropolitana	4.156	4.860	4.267	4.369
Fundación Universidad de América	3.535	3.276	3.481	4.196
Universidad INCCA de Colombia	6.316	4.506	4.132	5.468

(Continúa)

Cuadro 5.	Matrículas en las universidades privadas a nivel de pregrado profesional
	(continuación)

Universidades privadas*	2000	2005	2010	2015
Universidad de Ciencias Apli. y Ambientales (UDCA)	-	2.889	3.159	5.101
Universidad Autónoma Latinoamericana (Unaula)	1.687	1.904	2.801	4.666
Universidad de Manizales	3.006	4.030	3.549	4.634
Universidad Tecnológica de Bolívar	-	2.869	3.078	5.493
Universidad Católica de Oriente	3.247	2.160	2.275	5.362
Universidad CES	741	1.225	1.873	3.145
Universidad Católica de Pereira	-	-	-	2.826
Universidad Católica de Manizales	1.632	1.402	1.736	1.811
Universidad Autónoma de Manizales	1.864	1.740	2.041	4.338
Universidad EIA	-	-	-	1.632
Total universidades privadas	348.462	338.216	401.382	539.704
Total universidades	582.672	684.068	846.932	1.092.900

Nota. * Corresponde al promedio de los estudiantes matriculados durante el primer y segundo semestre. Fuente: MEN – SNIES (2016).

Dentro de las instituciones universitarias públicas sobresale la Escuela Superior de Administración Pública (ESAP) con 10.319 estudiantes, el Politécnico Colombiano Jaime Isaza Cadavid con 14.811 estudiantes y el Instituto Tecnológico Metropolitano con 22.765 estudiantes. Dentro de las instituciones universitarias privadas se destacan la Corporación Universitaria Minuto de Dios con 93.658 estudiantes, el Politécnico Grancolombiano con 30.748 estudiantes, la Fundación Universitaria del Área Andina con 18.850 estudiantes, la Corporación Universitaria Remington con 18.281 estudiantes y la Fundación Universitaria Luis Amigó (FUNLAM) con 15.035 estudiantes.

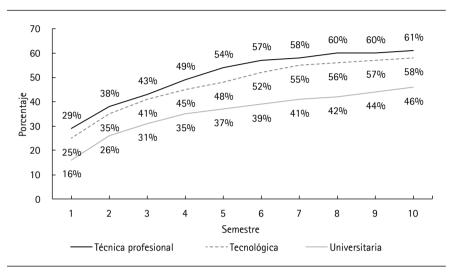
A nivel de posgrado, las matrículas aumentaron de 62.259 estudiantes en el año 2002 a 122.514 estudiantes en el 2015. Para este último año, dentro de las universidades públicas se pueden destacar la Universidad Nacional con 9.383 estudiantes, la Universidad del Valle con 3.218 estudiantes, la Universidad de Antioquia con 2.886 estudiantes, la Universidad Militar Nueva Granada con 1.858 estudiantes y la Universidad Pedagógica y Tecnológica de Colombia (UPTC) con 2.737 estudiantes. En el ámbito privado, se destacan la Universidad de Santander con 9.885 estudiantes, la Universidad Externado de Colombia con 7.502 estudiantes, la Pontificia Universidad Javeriana con 5.488 estudiantes, la Universidad de los Andes con 4.419 estudiantes y la Universidad Libre con 5.119 estudiantes.

C. Deserción

En cuanto a las tasas de deserción, los indicadores revelan una situación preocupante. En efecto, del seguimiento a las tasas de deserción por período y
por cohortes se concluye que en promedio uno de cada dos estudiantes no
culmina sus estudios superiores (MEN, 2009)¹⁸. Por nivel de formación, para el
año 2015, la tasa de deserción por período fue del 32,6% para el nivel técnico,
18,0% para el nivel tecnológico, y 9,3% para el nivel universitario; por su parte,
la tasa de deserción por cohorte representó un 56,9% para el nivel técnico, un
52,1% para el nivel tecnológico y 46,1% para el nivel universitario. Cuando se
evalúa la permanencia de los estudiantes por áreas del conocimiento (cuadro
6), las mayores tasas de deserción por período al nivel universitario se observan en matemáticas y ciencias naturales (11,1%), en agronomía, veterinaria
y afines (10,2%), y en economía, administración, contaduría y afines (10,1%).

Cuadro 6. Deserción anual por área de conocimiento y nivel de formación (2015)

Área de conocimiento	Técnica profesional	Tecnológica	Universitaria
Agronomía, veterinaria y afines	26,8	17,1	10,2
Bellas artes	24,6	16,8	8,9
Ciencias de la educación	35,8	11,6	9,7
Ciencias de la salud	30,8	13,5	6,0
Ciencias sociales y humanas	48,5	17,2	8,9
Economía, administración, contaduría y afines	31,4	18,7	10,1
Ingeniería, arquitectura, urbanismo y afines	33,0	18,3	9,6
Matemáticas y ciencias naturales	13,6	12,3	11,1


Nota. Fecha de corte: abril del 2016. Fuente: MEN, SPADIES (2016).

En el nivel técnico, la tasa de deserción por cohorte (o acumulada) alcanza 28,8% en el primer semestre y 57,0% en el sexto. Por su parte, el nivel tecnológico acumula tasas de deserción del 24,9% en el primer semestre y 52,1%

¹⁸ Según el Ministerio de Educación, la deserción por período (o deserción anual) corresponde a la proporción de estudiantes que estando matriculados 2 semestres atrás son clasificados como desertores un año después. Por su parte, la deserción por cohorte contabiliza la deserción acumulada en cada semestre para un grupo de estudiantes que ingresaron a primer curso en un mismo período académico (cohorte). Para el nivel universitario se observa al décimo semestre, mientras que para los niveles técnicos profesional y tecnológico se toma a sexto semestre.

en el sexto. Asimismo, en el nivel universitario la tasa de deserción asciende del 18,0% en el primer semestre al 46,1% en el décimo (figura 3).

Figura 3. Deserción por nivel de formación académica (2015)

Nota. Fecha de corte: abril del 2016. Fuente: MEN, Spadies (2016).

Por áreas del conocimiento, las tasas de deserción por cohorte muestran que las áreas de conocimiento con mayores tasas acumuladas (al décimo semestre) resultan ser ingeniería, arquitectura, urbanismo y afines (55,0%), bellas artes (52,8%), economía, administración, contaduría y afines (51,6%) y matemáticas y ciencias naturales (51,0%) (cuadro 7).

Cuadro 7. Deserción por cohorte por área de conocimiento (2015)

Área de conocimiento					Sem	estre				
Area de conocimiento	1	2	3	4	5	6	7	8	9	10
Agronomía y veterinaria	21,1	30,1	35,4	39,2	41,9	44,8	46,8	47,8	48,5	49,7
Bellas artes	20,4	29,1	34,7	39,1	42,7	46,2	48,4	50,2	51,4	52,8
Ciencias de la educación	19,0	26,5	31,4	34,9	37,6	39,9	41,6	43,1	44,7	46,7
Ciencias de la salud	17,8	24,1	28,3	31,6	34,2	36,2	37,8	39,3	40,4	41,9
Ciencias sociales y humanas	16,8	23,7	27,8	30,9	33,0	34,8	36,2	37,7	39,1	41,9
Economía, adm., contaduría	22,3	30,5	35,8	39,9	42,9	45,4	47,2	48,5	49,6	51,6
Ingeniería y arquitectura	22,7	32,1	38,3	42,7	46,0	48,9	50,9	52,5	53,6	55,0
Matemáticas y ciencias nat.	22,0	31,4	37,2	41,2	43,9	46,4	48,0	49,2	50,0	51,0

Nota. Fecha de corte: abril del 2016. Fuente: MEN, Spadies (2016).

Por último, debe señalarse que en general, las razones por las cuales los estudiantes abandonan sus estudios, obedecen a una combinación de factores sociales, económicos, familiares e individuales que afectan el entorno de los jóvenes (MEN, 2016). Específicamente, de acuerdo con el estudio del MEN (2009), son principalmente razones de índole personal (edad, género, situación laboral), académicas (repitencia, área de conocimiento y puntaje del ICFES¹⁹), socioeconómicas (nivel de ingresos, educación de la madre, tasa de desempleo de la región, número y posición entre los hermanos) e institucionales (facilidad de apoyo financiero).

D. Docentes

Respecto a los docentes, de acuerdo con el MEN, en el 2015 el sistema de educación superior contaba con 148.689 profesores, en promedio para ambos semestres, de los cuales 45.362 (30,5%) laboraban con un contrato de tiempo completo, 14.048 (9,4%) en la modalidad de medio tiempo y 90.763 (61,0%) con un esquema parcial o de hora cátedra (cuadro 8). Por nivel de formación, para los 144.270 profesores que indicaron máximo nivel de formación, el 2,1% de estos docentes tenía título de técnico o tecnólogo, el 29,9% tenían título de pregrado, el 30,6% de especialización, el 30,7% de magíster y el 6,7% de doctorado o posdoctorado. Llama la atención la alta proporción de profesores catedráticos (61%) y el bajo porcentaje de docentes con doctorado (6,7%), que además están concentrados en pocas universidades. Esta situación puede estar afectando las actividades de investigación, la formación académica de los estudiantes y, en general, los resultados del sistema educativo.

Cuadro 8. Docentes de educación superior

Año	Cátedra (o parcial)	Medio tiempo	Tiempo completo	Total general
2007	48.039	7.776	23.403	79.218
2008	52.040	8.380	28.321	88.741
2009	54.160	10.006	28.591	92.756
2010	62.400	10.947	30.732	104.102
2011	66.726	12.003	32.272	111.000

(Continúa)

¹⁹ Mientras los estudiantes con menores resultados en el ICFES (categoría baja) presentan las tasas de deserción más altas (60% en el décimo semestre), los estudiantes con mayores resultados (categoría alta) observan las tasas de deserción más bajas (38% en el décimo semestre).

Cuadro 8. Docentes educación superior (continuación)

Año	Cátedra (o parcial)	Medio tiempo	Tiempo completo	Total general
2012	72.359	11.280	34.161	117.800
2013	69.286	11.179	35.810	116.274
2014	87.642	13.627	42.138	143.407
2015	89.280	14.048	45.362	148.689

Fuente: MEN.

E. Financiación

Sobre la financiación de las instituciones de educación superior, es necesario señalar que mientras los recursos de las entidades privadas provienen esencialmente del cobro de derechos de matrícula, los de las instituciones de carácter público se originan en gran parte en transferencias del gobierno central y/o de los gobiernos subnacionales²⁰. En el período 2000-2015, el gasto estatal en este nivel de enseñanza representó en promedio 0,94% del PIB, del cual un poco más de la mitad corresponde a aportes de la nación y el resto a recursos territoriales y a rentas parafiscales²¹ (cuadro 9). Los aportes de la nación están asignados principalmente al financiamiento de las universidades Nacional, de Antioquia y del Valle, que reciben alrededor del 30%, el 10% y el 9% de los recursos, respectivamente. Durante la última década, los recursos estatales para educación superior no han mostrado cambios significativos respecto al PIB, lo cual sugiere que el Estado no ha respondido de forma paralela al crecimiento de la demanda por cupos de educación superior, aunque en los últimos años se observó un leve crecimiento en la participación de los aportes de la nación a las IES públicas.

²⁰ Hasta la reforma tributaria del 2012 el SENA se financiaba principalmente con rentas parafiscales.

²¹ Durante el período 2003-2011, los aportes territoriales a las instituciones de educación superior (IES) representaron en promedio 0,04% del PIB.

Cuadro 9.	Gasto del Estado en	educación superior l	(norcentaie del PIR)
Cuauro 9.	Gasto del Estado en	educación superior i	(porcentale dei FID)

	Aportes del GNC a universidades públicas (1)		Total de aportes del GNC a IES públicas (3)=(1)+(2)		Total del gasto público en ed. superior (5)=(4)+(3)
2000	0,54	0,01	0,55	0,41	0,96
2001	0,55	0,01	0,56	0,48	1,04
2002	0,52	0,01	0,53	0,42	0,95
2003	0,52	0,01	0,53	0,37	0,90
2004	0,48	0,01	0,49	0,44	0,93
2005	0,46	0,01	0,47	0,40	0,87
2006	0,43	0,01	0,44	0,43	0,88
2007	0,41	0,01	0,42	0,44	0,86
2008	0,39	0,01	0,39	0,48	0,87
2009	0,40	0,01	0,41	0,53	0,94
2010	0,41	0,01	0,42	0,61	1,03
2011	0,36	0,01	0,37	0,55	0.92
2012	0,37	0,26	0,63	0,33	0,96
2013	0,34	0,28	0,62	0,34	0,97
2014	0,35	0,26	0,62	0,40	1,01
2015	0,35	0,29	0,64	0,39	1,03
Promedio	0,43	80,0	0,51	0,44	0,94

Nota. * Incluye los recursos parafiscales asignados al SENA y aportes de las entidades territoriales. Fuente: MEN, (2016). Serie actualizada con corte a marzo del 2016 con información del DANE. Información basada en Dirección General de Presupuesto Público Nacional del Ministerio de Hacienda y Crédito Público.

F. Calidad

Desde el 2004, el Instituto Colombiano para la Evaluación de la Educación ha realizado pruebas para evaluar el logro académico en los diferentes programas de educación superior, las cuales, mediante la Ley 1324 del 2009, adquirieron carácter obligatorio para obtener el título de pregrado. Antes del 2009, las pruebas consistían en la evaluación de competencias específicas para diferentes programas y áreas de conocimiento y su presentación era voluntaria. A partir de ese año, el ICFES empezó a realizar pruebas genéricas "para evaluar competencias comunes y básicas para el ejercicio de cualquier profesión" (ICFES, 2011, p. 13). Inicialmente, se evaluó comprensión de lectura y conocimiento del idioma inglés. A partir del segundo semestre del 2011 se amplió a cuatro el número de pruebas genéricas, incluyendo razonamiento cuantitativo, lectura crítica, escritura e inglés. Las pruebas genéricas tienen como objetivo evaluar habilidades comunes de los estudiantes que son "relevantes para los logros universitarios y para el trabajo de los egresados" (ICFES, 2011, p. 15).

Para la presentación de los resultados, el ICFES estableció *grupos de referencia*, los cuales reúnen programas académicos afines, diferenciando los niveles universitario, técnico y tecnológico.

Por su naturaleza, las pruebas de competencias específicas solo permiten comparaciones en cada área del conocimiento, lo que impide la evaluación de los resultados de logro entre programas. Esta limitación desaparece con las pruebas genéricas, las cuales, como se mencionó, permiten evaluar habilidades comunes de los estudiantes de diferentes instituciones y programas. Por esta razón, para el ejercicio empírico que se presenta en este documento se utilizan los resultados de las pruebas genéricas, realizadas durante el segundo semestre del 2011.

Para hacer comparables los datos históricos de los resultados de las pruebas de conocimiento de los diferentes programas, para el período 2004-2009, el ICFES normalizó el puntaje total en todos los exámenes a una media de 100 y una desviación estándar de 10, preservando para los diferentes años los parámetros de la población evaluada en el 2007 (ICFES, 2011). Es importante advertir que esta normalización solo permite hacer comparaciones por programas académicos a través del tiempo, pero no entre ellos, dado que evalúan componentes disciplinarios distintos (anexo 1). Por otro lado, los resultados de las pruebas genéricas que se vienen aplicando recientemente permiten comparaciones entre áreas del conocimiento. En particular, los resultados del 2012, que se presentan en el cuadro 10, indican que los programas de medicina y economía obtienen en general los mejores puntajes en razonamiento cuantitativo, lectura crítica, escritura e inglés. Por su parte, los programas de humanidades se destacan en escritura, lectura crítica e inglés y los de ingeniería en razonamiento cuantitativo.

A escala internacional, el SCImago Research Group realiza una clasificación de la producción científica para las instituciones que han publicado al menos 100 documentos científicos en la base de datos bibliográfica conocida como Scopus. La clasificación incluye 4.300 instituciones a escala global, de las cuales 130 son de Colombia. El indicador se calcula tanto a escala mundial como para Iberoamérica y para cada país, teniendo en cuenta el número de documentos publicados en revistas indexadas en Scopus. El indicador para el período 2007-2011 muestra que a escala de Iberoamérica, la primera institución es la Universidad de São Paulo de Brasil con 47.837 publicaciones, la segunda es la Universidad Nacional Autónoma de México, con 19.349 publicaciones y la

tercera la Universidad de Barcelona, con 16.914 publicaciones. En esta lista, la primera institución colombiana es la Universidad Nacional de Colombia, en el puesto 41, con 5.112 publicaciones, seguida por la Universidad de Antioquia, en el puesto 77, con 2.721 publicaciones y por la Universidad de los Andes, en el puesto 92, con 2.049 publicaciones (cuadro 11).

Cuadro 10. Resultados de las pruebas genéricas Saber Pro (2012)

Grupo de referencia	Razonamiento cuantitativo	Lectura crítica	Escritura	Inglés
Administración y afines	9,9	9,9	10,2	10,2
Arquitectura y urbanismo	10,1	10,1	10,1	10,6
Bellas artes y diseño	10,0	10,3	10,2	11,3
Ciencias agropecuarias	10,1	9,9	10,0	10,1
Ciencias militares y navales	10,1	9,7	10,1	10,4
Ciencias naturales y exactas	10,6	10,4	10,4	10,9
Ciencias sociales	9,8	10,2	10,7	10,5
Com., period. y publicidad	9,8	10,2	10,5	10,8
Contaduría y afines	9,9	9,8	10,0	9,7
Derecho	9,8	10,1	10,5	10,1
Economía	10,7	10,5	10,7	11,0
Educación – Todas	9,5	9,7	10,1	9,9
Enfermería	9,7	9,8	10,1	9,8
Humanidades	9,9	10,5	10,9	11,0
Ingeniería	10,6	10,2	10,2	10,6
Medicina	10,5	10,6	10,4	11,1
Psicología	9,6	10,1	10,4	10,1
Salud	9,7	9,8	10,0	9,9

Fuente: ICFES.

Cuadro 11. Clasificación de instituciones por número de publicaciones indexadas en Scopus (2007-2011)

Ranking IBE	Ranking Colombia	Institución	Indicador
1		Universidade de São Paulo, BRA	47.837
2		Universidad Nacional Autónoma de México, MEX	19.349
3		Universitat de Barcelona, ESP	16.914
4		Universidade Estadual de Campinas, BRA	16.885
5		Universidade Estadual Paulista, BRA	16.810

(Continúa)

Cuadro 11. Clasificación de instituciones por número de publicaciones indexadas en Scopus (2007-2011) (continuación)

Ranking IBE	Ranking Colombia	Institución	Indicado
6		Universidade Federal do Rio de Janeiro, BRA	14.702
7		Universitat Autónoma de Barcelona, ESP	14.576
8		Universidad Complutense de Madrid, ESP	14.351
41	1	Universidad Nacional de Colombia, COL	5.112
77	2	Universidad de Antioquia, COL	2.721
92	3	Universidad de los Andes, COL	2.049
113	4	Universidad del Valle, COL	1.521
137	5	Pontificia Universidad Javeriana, COL	1.139
149	6	Universidad Industrial de Santander, COL	1.006
195	7	Universidad del Rosario, COL	594
221	8	Universidad Pontificia Bolivariana, COL	442
240	9	Universidad del Norte, COL	376
252	10	Universidad del Cauca, COL	330
254	11	Universidad Tecnológica de Pereira, COL	320
268	12	Universidad de Caldas, COL	286

Fuente: SCImago Research Group (2012).

III. Análisis de eficiencia

En esta sección se presentan los resultados de los ejercicios econométricos realizados para estimar los niveles de eficiencia de las instituciones de educación superior del país. En los últimos años, la literatura sobre el tema ha cobrado importancia debido al aumento en la demanda de recursos para ampliar los niveles de cobertura y mejorar la calidad de los servicios educativos. Un uso eficiente de los recursos puede mejorar los indicadores del sistema educativo y generar impactos positivos sobre el empleo y el producto en el mediano y largo plazo.

A. Aspectos generales

La estimación de los niveles de eficiencia para las instituciones de educación superior se realiza utilizando la técnica de frontera estocástica²². Esta metodología tiene como base los principios microeconómicos de la teoría de la

²² Para la estimación de las medidas de eficiencia también se utiliza una técnica no paramétrica, conocida como DEA (por la sigla en inglés de Data Envelopment Analysis), la cual emplea técnicas de programación matemática.

producción, a partir de la cual se puede estimar una medida de eficiencia técnica y/o de costos de las unidades productivas. La eficiencia técnica sobre la cual se concentra este estudio describe el máximo producto (y) que se puede lograr utilizando una canasta dada de insumos (x). Desde el punto de vista empírico, esta medida de eficiencia se estima a partir de una función de producción, teniendo en cuenta la distancia entre la producción observada y una frontera óptima. El valor de la eficiencia técnica fluctúa entre 0 y 1, siendo 1 el valor que alcanzan las unidades productivas que operan sobre la frontera (Kumbhakar y Lovell, 2000). A diferencia de la regresión tradicional, el término de error de los modelos de frontera estocástica se descompone en una parte aleatoria y un componente no negativo que mide la ineficiencia. De esta forma, la estructura básica de estos modelos está dada por:

$$y = \alpha + \beta' x + \varepsilon$$

En el caso de la función de producción, el término de error, ε , se representa como $\varepsilon = v - u$, donde u representa la ineficiencia y v es una variable aleatoria normalmente distribuida con media 0, que captura el ruido estocástico con la idea de que las desviaciones de la frontera no están totalmente bajo el control de las unidades de producción. Es importante señalar que las medidas de eficiencia que se obtienen son relativas a las unidades de producción en análisis. De acuerdo con Kalirajan y Shand (1999), estos resultados permiten derivar lineamientos de política que pueden contribuir a mejorar el uso de los recursos productivos.

El análisis de frontera y la estimación de las medidas de eficiencia suponen que las diferentes unidades de producción tienen condiciones y tecnología similares. No obstante, en la práctica estas unidades enfrentan condiciones heterogéneas que no siempre están en su control, pero que afectan su desempeño. Para la estimación de las fronteras de producción se consideran dos métodos de acuerdo con el tratamiento de las variables de entorno. Con el primer método, estas variables afectan la frontera y por tanto, se incluyen como regresores en la función:

$$y = \alpha + \beta' x + \theta z + v - u$$

Donde y es el producto, x representa el vector de insumos y z corresponde al vector de variables de entorno o ambientales. Las medidas de eficiencia técnica

que se obtienen a partir de este método son netas de la influencia del entorno y miden el desempeño de las diferentes unidades de producción, asumiendo que todas ellas operan en ambientes equivalentes. Con el segundo método de estimación, las unidades de producción comparten condiciones similares representadas por la frontera de producción y, contrario al primer método, las variables de entorno afectan directamente la eficiencia. Para la estimación se utiliza la aproximación propuesta por Battese y Coelli (1995), en la cual el término u es una función del vector de las variables de entorno z, así:

$$u_i \sim N \left[\delta_0 + \sum_{j=1}^M \delta_j z_{j,i} \sigma^2 \right]$$

Donde δ_0 y δ_j son parámetros que deben ser estimados. En este caso las medidas de eficiencia son brutas, en el sentido de que incluyen la influencia de los factores del entorno que no están con el control de las unidades de producción. Vale la pena señalar que la diferencia entre las medidas de eficiencia bruta y neta puede ser vista como la contribución de los factores de entorno a la ineficiencia de las unidades de producción (Coelli, Perelman y Romano, 1999).

B. La medición del producto educativo

La medición del "producto" en el caso de la educación es compleja debido a que la provisión de este servicio, contrario a otras actividades que producen bienes homogéneos, "transforman cantidades fijas de insumos en individuos con diferentes calidades" (Hanushek, 1986, p. 1.150). La mayoría de estudios que analizan la eficiencia en la educación básica utilizan como producto las diferencias en calidad, las cuales comúnmente se miden por medio de pruebas de logro²³. En la literatura también se han utilizado otras variables para medir el producto educativo, como la habilidad de los estudiantes y las tasas de asistencia y de deserción. Sin embargo, también algunos investigadores rechazan completamente esta línea de investigación porque consideran que el producto educativo no puede ser medido de forma apropiada (Hanushek, 1986 y 2002).

Contrario a las investigaciones para educación básica y media, en los estudios de educación superior las pruebas de logro no se utilizan frecuentemente, tal

²³ Para una discusión detallada de la conveniencia del uso de las pruebas de logro como una medida del producto educativo, véase Hanushek (1986).

vez por la falta de pruebas estandarizadas. Con base en la revisión sobre estudios de eficiencia para la educación superior realizada por Salerno (2003), las variables que se utilizan para medir el "producto" en este nivel de formación son el número de alumnos matriculados a nivel de pregrado y posgrado, así como diferentes índices sobre investigación y publicaciones. De acuerdo con el autor, estas variables pueden tener aspectos tangibles e intangibles que no siempre son fáciles de capturar empíricamente²⁴. Por ejemplo, "el número de matriculados" tiene limitaciones debido a que no considera el esfuerzo de los estudiantes, ni la calidad de los programas.

En Colombia, desde el 2004, el ICFES realiza pruebas para medir el logro académico de los estudiantes de educación superior. Inicialmente, estas pruebas evaluaban competencias específicas por programa y áreas de conocimiento. Como se mencionó en la sección anterior, desde el 2009 el ICFES evalúa competencias genéricas comunes a todos los estudiantes, independientemente del programa que cursen, las cuales incluyen razonamiento cuantitativo, lectura crítica, escritura e inglés. Teniendo en cuenta las ventajas de estas pruebas para realizar comparaciones entre los diferentes programas académicos y dentro de ellos, para la estimación de la eficiencia técnica se utilizan los resultados de las cuatro competencias genéricas presentadas en el segundo semestre del 2011. La utilización de estas pruebas evita sesgos de estimación, por el carácter obligatorio que tiene el examen para optar al título de pregrado, de acuerdo con lo establecido en la Ley 1324 del 2009.

Las unidades de medida utilizadas en la estimación de la frontera estocástica corresponden a los grupos de referencia establecidos por el ICFES, los cuales se consideran en forma independiente para cada institución $(GR-U_p)^{25}$. Estos grupos incluyen programas académicos afines, diferenciando los niveles de formación profesional, técnico y tecnológico. En el ejercicio empírico se consideran 1.020 unidades de análisis, las cuales incluyen información de 29 grupos de referencia, para 155 universidades e instituciones universitarias del país²⁶ (cuadro 12). El número de unidades de análisis incluidas en la muestra tiene en cuenta que

²⁴ Para más detalles véase Hopkins (1990).

²⁵ Por ejemplo, el grupo de referencia de medicina se considera como una unidad de medida independiente en cada una de las instituciones que ofrecen los programas incluidos en este grupo.

²⁶ En el ejercicio econométrico, las seccionales de las diferentes universidades e instituciones se consideran de forma independiente.

no todas las instituciones de educación superior ofrecen programas en todos los grupos de referencia, y que las instituciones y grupos de referencia que no disponen de información completa fueran excluidas del análisis empírico.

Cuadro 12. Grupos de referencias incluidos en el análisis empírico

Grupo de referencia	Tipo de formación	Muestra
Bellas artes y diseño	Universitario	42
Ciencias naturales y exactas	Universitario	35
Ciencias sociales	Universitario	76
Humanidades	Universitario	21
Derecho	Universitario	74
Comunicación, periodismo y publicidad	Universitario	56
Ciencias agropecuarias	Universitario	30
Ciencias económicas y administrativas	Universitario	122
Educación	Todas	66
Arquitectura y urbanismo	Universitario	26
Ingeniería	Universitario	115
Salud	Universitario	59
Medicina	Universitario	36
Ingeniería, industria y minas	Tecnológico	38
Administración y turismo	Tecnológico	49
Tecnología de información y com. (TIC)	Tecnológico	41
Salud	Tecnológico	27
Artes, diseño y comunicación	Tecnológico	14
Ciencias agropecuarias	Tecnológico	25
Ingeniería, industria y minas	Técnico	7
Administración y turismo	Técnico	12
Tecnología de información y com. (TIC)	Técnico	8
Salud	Técnico	4
Artes, diseño y comunicación	Técnico	6
Ciencias agropecuarias	Técnico	9
Normales superiores	Normales sup.	1
Judicial	No universitario	7
Recreación y deportes	Todas	9
Grupo referencia nacional	Todas	5
Total		1.020

Fuente: ICFES (2011) y cálculos propios.

C. Modelo

En esta sección se presenta el modelo que se estima para las universidades e instituciones universitarias del país, utilizando la técnica de frontera estocástica.

Para la estimación de este modelo se utiliza una función de producción Cobb-Douglas, considerando las 2 formas alternativas para el manejo de las variables de entorno. En el primer caso, cuando estas variables afectan directamente la frontera de producción, la especificación que se estima es la siguiente

$$ln Y_i = \beta_0 + \sum_{k=1}^{k} \beta_k \ln X_{k,i} + \sum_{j=1}^{M} \theta_j \ln Z_{j,i} + v_i - u_i$$

Donde Y_i representa los resultados promedio de las pruebas genéricas para cada GR-U presentados por los estudiantes de educación superior en el segundo semestre del 2011^{27} . Estos datos provienen del ICFES y fueron agrupados en cinco categorías, utilizando como criterio estadístico la desviación estándar con respecto a la media de la variable y asumiendo una distribución normal de los resultados de las pruebas. En particular, la categoría 1 corresponde a los puntajes iguales o inferiores a la media de la variable (m) menos una desviación estándar (ds); la categoría 2 incluye los puntajes entre m-ds y m; la categoría 3 agrupa los puntajes entre m y m+ds; la categoría 4 incluye los puntajes entre m+ds y m+2ds; y la categoría 5 considera los puntajes superiores a m+2ds.

Por su parte, $X_{k,i}$ corresponde al vector de insumos, el cual incluye k variables que aportan información sobre el personal docente y sobre la infraestructura de las instituciones de educación superior. La información sobre estas variables proviene de los sistemas de información del MEN. Dentro de las variables relacionadas con el personal docente se consideran la relación *profesor/estudiante* de cada institución, el porcentaje de profesores con maestría y doctorado y el porcentaje de profesores con contrato a término indefinido. En cuanto a las variables de infraestructura, se consideró el número de volúmenes por estudiante con que cuentan las bibliotecas, el número de aulas por estudiante y la existencia de red inalámbrica, esta última medida mediante una variable dicótoma²⁸.

²⁷ En el momento de realizar la investigación, las pruebas disponibles para las cuatro áreas del conocimiento y que cumplían con el requisito de ser de carácter obligatorio eran las del primer semestre del 2011.

²⁸ Otras variables relativas a la infraestructura no fueron incluidas debido a que un número importante de instituciones no disponía de la información, lo cual reducía la muestra en forma considerable. Dentro de estas variables se pueden mencionar el área construida, la existencia y tamaño de áreas deportivas, al igual que la existencia de laboratorios y auditorios. No obstante, se realizó un ejercicio para las instituciones que contaban con información para estas variables, y en la mayoría de los casos resultaron no significativas.

Por otro lado, el vector $Z_{j,i}$ incluye variables de entorno, las cuales, como se mencionó, representan los factores que no afectan directamente la función de producción del GR_-U , pero tienen impacto en el desempeño de las instituciones. Estas variables se dividen en dos grupos. El primero, recoge factores asociados a las instituciones de educación superior y el segundo, variables relacionadas con las condiciones socioeconómicas de los estudiantes que pertenecen a los diferentes GR_-U . En el primer grupo se incluyen tres variables dicótomas: 1) la primera considera la acreditación, la cual toma el valor de 1 para los GR_-U que están acreditados y 0 para los que no lo están; 2) la segunda se refiere a la ubicación geográfica, que toma el valor de 1 para los GR_-U que funcionan en las ciudades de Bogotá, Cali y Medellín y 0 para los GR_-U ubicados en el resto de ciudades; 3) la tercera corresponde a la naturaleza jurídica de la institución, que toma el valor 1 para los GR_-U que pertenecen a instituciones oficiales y 0 para aquellos que pertenecen a instituciones privadas.

En el segundo grupo se incluyen variables socioeconómicas, cuya información proviene del formulario de inscripción del ICFES de cada estudiante. Dentro de estas variables se consideran: 1) el nivel de ingreso de los hogares, medido como la proporción de estudiantes en cada $GR_{-}U$, que se ubica en cada uno de los diferentes rangos de ingreso establecidos por el ICFES, los cuales están fijados en salarios mínimos legales vigentes (SMLV)²⁹; 2) el porcentaje de estudiantes cabeza de familia en cada $GR_{-}U$; 3) el porcentaje de madres con estudios profesionales y de posgrado en cada $GR_{-}U$; 4) el porcentaje de estudiantes que financian sus estudios con recursos de alguna beca y 5) el porcentaje de estudiantes que financian sus estudios con crédito en cada $GR_{-}U$.

Las variables socioeconómicas pueden afectar no solo las habilidades cognitivas, por el acceso a información y entornos apropiados para su desarrollo, sino las no cognitivas que padres más educados y con mayores ingresos pueden estimular en sus hijos³⁰. El desarrollo de estas habilidades, de acuerdo con varios estudios como los de Heckman, mencionados en la introducción, es fundamental para el logro académico y en general para el éxito en la vida de los individuos.

²⁹ Los rangos considerados son: 1) menos de 1 SMLV; 2) entre 1 y 2 SMLV; 3) entre 3 y 5 SMLV; 4) entre 5 y 7 SMLV; 5) entre 7 y 10 SMLV; 6) más de 10 SMLV. El rango entre 2 y 3 SMLV, corresponde a la categoría utilizada como referencia.

³⁰ No obstante, la relación entre las variables socioeconómicas y el desarrollo de las habilidades no cognitivas requiere de una mayor investigación, que va más allá de este trabajo.

Es importante señalar que los resultados de las pruebas Saber 11 que los estudiantes presentan al finalizar sus estudios de secundaria, guardan una estrecha relación con los obtenidos en las pruebas Saber Pro que se presentan al finalizar los estudios de nivel superior³¹. Esta correlación para el resultado promedio del grupo de estudiantes que presentaron la prueba Saber Pro en el segundo semestre del 2011 es de 0,88. Por grupos de referencia, dicha correlación supera el 0,9 para medicina, derecho y ciencias económicas y administrativas (cuadro 13). A pesar de la relación existente entre las dos pruebas, los resultados de la prueba Saber 11 no fueron incluidos en el análisis empírico, debido a los problemas de endogeneidad que se pueden presentar con las diferentes variables socioeconómicas.

Finalmente, v_i es el ruido aleatorio, el cual se asume $iid\ N(0,\sigma_v^2)$ y es distribuido independientemente de u_i . Esta última variable representa la distancia de cada institución universitaria con respecto a la frontera de producción debido a la ineficiencia técnica. Por otro lado, en el segundo modelo, cuando las variables de entorno son una función del término de ineficiencia (u), se utiliza la aproximación de Battese y Coelli (1995), de la siguiente forma:

$$\ln Y_i = eta_0 + \sum_{k=1}^k eta_k \ln X_{k,i} + v_i - u_i$$
, $u_i \sim N \bigg[\delta_0 + \sum_{j=1}^M \delta_j z_{j,i} \sigma^2 \bigg]$

En esta estimación, el término de ineficiencia u es una función del vector de las variables de entorno z, mientras que δ_o y δ_j son parámetros que deben ser estimados. La variable independiente, y los vectores de variables X y Z son iguales a los explicados anteriormente.

³¹ Domingue (2012) en un estudio sobre la efectividad de las universidades evalúa la relación entre los resultados del examen Saber Pro y el Saber 11, y encuentra que el examen Saber 11 es un importante predictor del Saber Pro. Saavedra y Saavedra (2011) encuentran que la universidad realiza un aporte importante en el pensamiento crítico y las habilidades de comunicación de los estudiantes, aunque encuentra diferencias significativas entre las universidades.

Cuadro 13. Correlación resultados pruebas Saber 11 y pruebas Saber Pro

Grupo de referencia	Tipo de formación	Saber 11	Saber Pro	Correlación
Bellas artes y diseño	Universitario	51,7	10,5	0,878
Ciencias naturales y exactas	Universitario	50,9	10,5	0,896
Ciencias sociales	Universitario	47,6	10,3	0,904
Humanidades	Universitario	49,8	10,7	0,879
Derecho	Universitario	48,6	10,3	0,938
Com. periodismo y publicidad	Universitario	48,5	10,3	0,880
Ciencias agropecuarias	Universitario	47,3	10,1	0,892
Ciencias económicas y adm.	Universitario	47,8	10,2	0,932
Educación	Todas	45,7	10,0	0,882
Arquitectura y urbanismo	Universitario	49,3	10,3	0,887
Ingeniería	Universitario	49,2	10,3	0,895
Salud	Universitario	46,8	10,0	0,882
Medicina	Universitario	52,0	10,8	0,950
Ingeniería, industria y minas	Tecnológico	45,9	9,9	0,814
Administración y turismo	Tecnológico	44,9	9,8	0,732
TIC	Tecnológico	46,2	10,0	0,576
Salud	Tecnológico	45,1	9,8	0,874
Artes, diseño y comunicación	Tecnológico	46,7	10,0	0,859
Ciencias agropecuarias	Tecnológico	44,4	9,6	0,645
Ingeniería, industria y minas	Técnico	46,6	9,7	0,824
Administración y turismo	Técnico	45,0	9,6	0,797
TIC	Técnico	47,1	9,9	0,844
Salud	Técnico	44,3	9,6	0,896
Artes, diseño y comunicación	Técnico	47,2	10,0	0,904
Ciencias agropecuarias	Técnico	43,9	9,3	0,317
Normales superiores	Normales sup.	42,9	9,6	1,000
Judicial	No univ.	45,2	9,7	0,716
Recreación y deportes	Todas	44,5	9,8	0,905
Grupo referencia nacional	Todas	48,4	9,8	0,311

Fuente: ICFES y cálculos de los autores.

IV. Resultados

En esta sección se analizan los resultados de las estimaciones de los dos modelos descritos anteriormente. En el primer modelo se considera que los factores ambientales afectan la tecnología de producción (modelo base) y en el segundo, que estos factores son una función del término de ineficiencia (modelo alternativo)³². En el cuadro 14 se observa que los coeficientes de las

³² El modelo base se estimó asumiendo una distribución media-normal truncada en un punto diferente de 0. Esta distribución permite separar los dos componentes del error, con el fin de estimar un *u* para cada

variables asociadas a los insumos y a los factores ambientales tienen los signos esperados. En particular, con los dos modelos, el número de profesores por estudiante y el porcentaje de docentes con maestría y doctorado tienen un impacto positivo en los resultados de las pruebas de logro. Los coeficientes de las variables de infraestructura, como el número de volúmenes por estudiante, la existencia de red inalámbrica y el número de aulas por estudiante son también positivos, lo que sugiere la importancia de estas variables en el logro académico.

Los coeficientes de las variables ambientales también arrojan los signos esperados en las dos estimaciones. En particular, aquellos GR_U que tienen programas acreditados, que pertenecen a instituciones ubicadas en Bogotá, Cali y Medellín, y que son ofrecidos por instituciones oficiales, tienen un impacto positivo y significativo sobre el logro académico³³. Para las variables asociadas al nivel socioeconómico se encuentra que los GR_U con un mayor porcentaje de estudiantes cuyos hogares tienen ingresos menores a dos SMLV, tienen un impacto negativo en el rendimiento y la eficiencia. Para salarios mayores a este rango la respuesta es positiva. Por otro lado, el hecho de ser estudiante cabeza de familia o estar financiado con recursos de crédito tiene un impacto negativo en el logro académico. Por el contrario, cuando hay un mayor porcentaje de estudiantes con madres profesionales y que financian sus estudios con beca, hay un efecto positivo y significativo en los resultados de las pruebas. En el cuadro 14 también se presentan las varianzas del término de error σ_u y σ_e . Vale la pena señalar que la relación σ_u/σ_e es positiva, lo que indica la importancia de las variables que están en el control de las instituciones educativas en el logro académico y las medidas de eficiencia.

En el cuadro 15 se presentan el promedio y la desviación estándar de las medidas de eficiencia estimadas por medio de los modelos base y alternativo, tanto para el total de la muestra, como para los *GR_U* clasificados por su naturaleza jurídica y por su nivel de formación. Para el total de la muestra la eficiencia técnica promedio, utilizando el modelo base, es de 0,789, con un máximo de

unidad de producción. Cuando se utiliza la normal-truncada, *u* se distribuye como el valor absoluto de una normal, pero con media diferente de 0 (Kumbhakar y Lovell, 2000; Greene, 1993; Jondrow, 1982; Battese y Coelli, 1988).

³³ Estas variables presentan signos contrarios en el modelo base y en el modelo alternativo debido a la forma de estimación de este último, en el cual el término u es una función del vector de las variables de entorno z.

0,958 y un mínimo de 0,259. Con el modelo alternativo, el promedio es de 0,607, con un máximo de 0,973 y un mínimo de 0,228. Estos resultados sugieren que existe un margen para que las instituciones de educación superior mejoren su eficiencia, especialmente si se tiene en cuenta que mientras para algunos *GR_U* esta medida supera el 0,90, para otros es inferior al 0,30.

Cuadro 14. Parámetros estimados de la función de producción*

Parámetros	Modelo ba	se (truncado)	Modelo alternativo		
$eta_{_0}$ Constante	0,761	(10,670)	1,058	(13,911)	
$eta_{_1}$ % Prof. contrato indefinido	0,060	(1,116)	0,071	(1,232)	
$eta_{_2}$ Profesores/estudiantes	0,125	(0,719)	0,279	(1,445)	
$eta_{_3}$ % Prof. Maestría_Doctor.	0,468	(6,900)	0,546	(7,787)	
$eta_{_4}$ Volúmenes /Estudiantes	0,005	(4,694)	0,003	(2,484)	
$eta_{\scriptscriptstyle 5}$ Red comput. Inalámbr.	0,200	(4,640)	0,168	(3,180)	
$oldsymbol{eta}_6$ Aulas /Estudiantes	0,147	(0,967)	0,085	(0,624)	
$\delta_{_{_{0}}}$ Constante			0,216	(0,304)	
$\delta_{_1}$ Acreditación	0,066	(2,889)	0,216	(0,304)	
$\delta_{_2}$ Ubicación	0,111	(2,869)	-0,097	(-2,110)	
$\delta_{_3}$ Propiedad Jurídica	0,116	(3,155)	-0,124	(-2,064)	
$\theta_{_1}$ Ing. (menos de 1 SM)	-0,672	(-7,020)	-0,137	(-2,385)	
$ heta_{_2}$ Ing. (entre 1 y 2 SM)	-0,486	(-5,953)	0,998	(7,312)	
$ heta_{_3}$ Ing. (entre 3 y 5 SM)	0,198	(2,021)	0,680	(5,019)	
$ heta_{_4}$ Ing. (entre 5 y 7 SM)	0,324	(2,203)	-0,202	(-1,094)	
$ heta_{\scriptscriptstyle{S}}$ Ing. (entre 7 y 10 SM)	0,460	(3,354)	-0,280	(-0,967)	
$ heta_{_6}$ Ing. (más de 10 SM)	0,272	(2,254)	-0,932	(-2,445)	
$\theta_{_{7}}$ % Estud. cabeza familia	-0,264	(-4,483)	-1,976	(-2,978)	
$ heta_{_{8}}$ % Madre profesional	0,236	(t3,399)	0,422	(4,653)	
$ heta_{_{9}}$ % Estud. Beca	0,319	(3,821)	-0,310	(-2,365)	
$\theta_{\scriptscriptstyle 10}$ % Estud. crédito	-0,458	(-1,208)	-0,311	(-2,277)	
$\sigma_{_{ m u}}$	0,725		0,332		
$\sigma_{ m e}$	0,765		0,379		
$\sigma_{_{ m u}}/\sigma_{_{ m e}}$	0,947	(59,056)	0,874	(27,815)	
η (eta)					
μ (mu)	-1,410	(-2,712)			

Nota. * El estadístico t aparece entre paréntesis.

Fuente: elaboración propia.

Cuadro 15. Eficiencia técnica

		Modelo base				Modelo alternativo			
	Prom.	Desv. est.	Mín.	Máx.	Prom.	Desv. est.	Mín	Máx	
Naturaleza jurídica									
Oficial	0,7764	0,1503	0,2593	0,9561	0,5735	0,1917	0,2381	0,9524	
Privada	0,7980	0,1228	0,2799	0,9580	0,6277	0,1892	0,2284	0,9734	
Tipo de formación									
Técnico	0,6659	0,1872	0,2593	0,9415	0,3974	0,1485	0,2284	0,7318	
Tecnológico	0,7376	0,1609	0,3489	0,9580	0,4550	0,1521	0,2303	0,9734	
Universitario	0,8128	0,1112	0,2799	0,9561	0,6733	0,1681	0,2381	0,9647	
Total muestra	0,7899	0,1342	0,2593	0,9580	0,6073	0,1918	0,2284	0,9734	

Fuente: elaboración propia.

La comparación de las medidas de eficiencia obtenidas con los dos modelos brinda elementos para identificar el impacto de los factores socioeconómicos en el desempeño de los diferentes *GR_U*. En efecto, en el modelo base las medidas de eficiencia son netas de la influencia del entorno y por tanto pueden ser interpretadas como una medida del desempeño administrativo de las instituciones, lo que permite inferir cuál sería el comportamiento si las instituciones operaran en condiciones de entorno equivalentes. Por el contrario, con el modelo alternativo, estos factores afectan directamente la medida de eficiencia, por lo que instituciones con estudiantes de mejor nivel socioeconómico y cuyos padres tengan mayor nivel de formación se benefician de un ambiente favorable.

Para el promedio de la muestra esta diferencia es de 0,183. Cuando las instituciones a las que pertenecen los GR_U se clasifican por su naturaleza jurídica (pública o privada), no se observan diferencias importantes entre la eficiencia promedio obtenida bajo los dos modelos, aunque la eficiencia en los dos casos es mayor para las instituciones privadas. Cuando se evalúan los resultados por tipo de formación, los mayores niveles de eficiencia se registran en el nivel universitario con 0,81 en el modelo base y con 0,67 en el alternativo. El nivel de formación tecnológica registra en promedio una medida de eficiencia de 0,73 y 0,45, respectivamente (cuadro 12). Es importante destacar la diferencia en las medidas de eficiencia obtenidas en los 2 modelos para los GR_U que pertenecen a los distintos tipos de formación. La diferencia más baja se observa en el nivel universitario (0,14) y la más alta en el nivel tecnológico (0,28), lo cual refleja las desventajas en el entorno de los estudiantes

que atienden este último tipo de formación. Estos resultados son consistentes con estudios que han mostrado que las condiciones socioeconómicas de los estudiantes y sus familias tienen un impacto significativo sobre el rendimiento de los estudiantes (Escobar y Orduz, 2013). Vale la pena resaltar que estas variables no dependen directamente de la gestión de las instituciones de educación superior³⁴.

Cuando las medidas de eficiencia se clasifican por grupos de referencia se puede destacar que los resultados más altos, en los dos modelos, los registra medicina, reflejando la calidad tanto de los estudiantes como de los programas de este grupo, que podrían ser relativamente más exigentes. Además, se destacan los niveles de eficiencia obtenidos por los grupos de referencia de ciencias naturales y exactas, humanidades, bellas artes y diseño e ingeniería. Por otro lado, las mayores diferencias entre las medidas de eficiencia obtenidas mediante los dos modelos estimados se registran en los grupos de referencia de formación técnica y tecnológica, lo que refleja, como se mencionó, la importancia de los factores de entorno en el desempeño de estos niveles de formación (cuadro 16).

Con el fin de analizar los resultados a nivel institucional, se calculó un promedio de las medidas de eficiencia para los grupos de referencia que ofrecen las diferentes instituciones de educación superior incluidas en la muestra³⁵. Con el modelo base, se observa que el 47,1% de las instituciones de la muestra registran medidas de eficiencia entre 0,80 y 0,89 y que el 36,1% de las instituciones registran medidas entre 0,70 y 0,79. Con este modelo, solo el 5,8% de las instituciones obtuvieron medidas de eficiencia superiores a 0,90. Por otro lado, con el modelo alternativo, se evidencia que la mayoría de las instituciones, 78,7% de la muestra, registran medidas de eficiencia inferiores a 0,60 (cuadro 17). Estos resultados sugieren que existe un margen para mejorar el desempeño de las instituciones, y resaltan nuevamente la importancia de los factores socioeconómicos y ambientales de los estudiantes en su desempeño académico.

³⁴ Varios documentos evalúan la estratificación de las instituciones, los cuales tienen en cuenta las decisiones potenciales de los estudiantes y de las instituciones. Trabajos empíricos para Estados Unidos encuentran que existe un vínculo entre la estructura de precios de las instituciones y la habilidad de los estudiantes (véanse Epple y Romano, 1998; Epple, Fliglio y Romano, 2004; Epple, Romano y Sieg, 2002 y 2006). Esta línea de investigación va más allá del análisis que se realiza en este documento.

³⁵ Vale la pena mencionar que no todas las instituciones ofrecen programas para todos los grupos de referencia.

Cuadro 16. Eficiencia técnica por grupos de referencia

Grupo de referencia	Tipo de formación	Base	Alternativo	Diferencia
Medicina	Universitario	0,8726	0,8550	1,8
Arquitectura y urbanismo	Universitario	0,7401	0,6621	7,8
Bellas artes y diseño	Universitario	0,8316	0,7532	7,8
Com., periodismo y publicidad	Universitario	0,7949	0,6765	11,8
Salud	Técnico	0,4364	0,3163	12,0
Ciencias naturales y exactas	Universitario	0,8355	0,7031	13,3
Derecho	Universitario	0,8152	0,6807	13,5
Ingeniería	Universitario	0,8344	0,6876	14,7
Humanidades	Universitario	0,8471	0,6974	15,0
Ciencias sociales	Universitario	0,7977	0,6376	16,0
Grupo referencia nacional	Todas	0,7906	0,6242	16,6
Ciencias económicas y adms.	Universitario	0,8200	0,6522	16,8
Ciencias agropecuarias	Universitario	0,7417	0,5729	16,9
Salud	Universitario	0,7821	0,5846	19,8
Artes, diseño y comunicación	Técnico	0,6990	0,4955	20,4
Normales superiores	Normales sup.	0,7559	0,5326	22,3
Judicial	No universitario	0,7058	0,4682	23,8
Artes, diseño y comunicación	Tecnológico	0,8390	0,5939	24,5
Recreación y deportes	Todas	0,7095	0,4574	25,2
Salud	Tecnológico	0,6777	0,4159	26,2
Educación	Todas	0,8102	0,5444	26,6
TIC	Técnico	0,7159	0,4466	26,9
TIC	Tecnológico	0,7442	0,4653	27,9
Ciencias agropecuarias	Técnico	0,5323	0,2523	28,0
Ingeniería, industria y minas	Tecnológico	0,7833	0,4920	29,1
Administración y turismo	Tecnológico	0,7434	0,4494	29,4
Ciencias agropecuarias	Tecnológico	0,6538	0,3574	29,6
Ingeniería, industria y minas	Técnico	0,7744	0,4638	31,1
Administración y turismo	Técnico	0,7295	0,4127	31,7
Toda la muestra		0,790	0,6073	18,26

Fuente: elaboración propia.

Cuadro 17. Instituciones de educación superior por rango de eficiencia

Eficiencia	Casos modelo base	% muestra	Casos modelo alternativo	% muestra
> 0,90	9	5,8	8	5,2
0,80 - 0,89	73	47,1	15	9,7
0,70 - 0,79	56	36,1	10	6,5
0,60 - 0,69	13	8,4	49	31,6
0,50 - 0,59	2	1,3	41	26,5
< 0,50	2	1,3	32	20,6

Fuente: elaboración propia.

Como se observa en el cuadro 18, las instituciones registran diferencias importantes entre las eficiencias obtenidas mediante el modelo base y el alternativo. En efecto, la mitad de ellas mejoraron la eficiencia en más de 0,20, al pasar del modelo alternativo al modelo base que supone entornos equivalentes. Este grupo de instituciones tiene un alto porcentaje de estudiantes con ingresos bajos. En particular, en las instituciones que aumentaron la eficiencia en más de 0,26, el promedio de estudiantes con ingresos bajos es del 64,9%. En las instituciones que aumentaron su eficiencia entre 0,20 y 0,25, este porcentaje es del 45,5%. Por otro lado, cerca del 40% de las instituciones aumentaron la eficiencia entre 0 y 0,20; y en el 8,4% la eficiencia obtenida con el modelo alternativo superó la del modelo base, sugiriendo ventajas del entorno de sus estudiantes en el logro académico, teniendo en cuenta que cerca del 55% de sus estudiantes son de ingreso alto. En general, se observa que a medida que la diferencia entre las medidas de eficiencia obtenidas mediante los dos modelos se reduce, el porcentaje de estudiantes con ingresos bajos tiende a disminuir.

Cuadro 18. Eficiencia promedio por institución

Diferencia efic. (modelo base – alternativo)	Casos	% del total	Δ promedio en la eficiencia	% de ingreso bajo	% de ingreso medio	% de ingreso alto
Más de 0,26	32	20,6	0,3095	64,9	31,7	3,4
0,20 - 0,25	47	30,3	0,2304	45,5	47,1	7,4
0,15 - 0,19	31	20,0	0,1710	34,8	52,0	13,2
0 - 0,14	32	20,6	0,0861	26,6	51,1	22,3
Menos de 0	13	8,4	-0,056	9,8	35,3	54,9

Fuente: elaboración propia.

En general, los resultados destacan la importancia de las variables socioeconómicas en el logro académico de los estudiantes de educación superior, sugiriendo que, aunque las instituciones tienen un margen importante para mejorar sus niveles de eficiencia, están restringidas por la influencia de los factores ambientales de sus estudiantes. Por esta razón, las políticas sobre educación superior deberían tener en cuenta tales aspectos a la hora de tomar medidas para el mejoramiento de la calidad en este nivel de formación.

V. Conclusiones

En este documento se presenta un panorama general sobre la educación superior en Colombia. Inicialmente, se realiza una descripción de los antecedentes

históricos de la educación superior en el país y del comportamiento reciente de los principales indicadores del sector como cobertura, deserción, número y calificación de docentes, financiación de las instituciones públicas y resultados del logro académico. Posteriormente, se presentan y analizan los resultados de un ejercicio empírico que estima la eficiencia en el desempeño académico de un conjunto de instituciones de educación superior utilizando técnicas de frontera estocástica.

Con respecto a los antecedentes históricos, es importante señalar que en los comienzos de la educación superior en Colombia, las actividades de enseñanza se concentraron en ciertas áreas del conocimiento, en un contexto de control estatal e influencia de la Iglesia Católica. En la década de los 30 del siglo anterior, se observa un cambio importante en la política educativa del país, en cuanto se promueve la libertad de enseñanza, se asignan recursos para mejorar la calidad educativa y se otorga mayor autonomía a las universidades. No obstante, la falta de recursos impide que se logren los objetivos propuestos y se revierten aspectos como la autonomía universitaria. Posteriormente, con el proceso de urbanización y los cambios demográficos del país se genera una demanda creciente por servicios educativos, que propicia la apertura de instituciones privadas y el surgimiento de universidades con programas nocturnos. Con la expedición de la Constitución Política de 1991 se consagra la libertad de enseñanza y se reconoce la educación como un derecho, lo cual se ve se reflejado en un aumento de la cobertura educativa.

A pesar de los avances institucionales y del aumento en la matrícula estudiantil, aún se observa gran heterogeneidad en la calidad de los programas ofrecidos, inequidad en el acceso y una oferta insuficiente de cupos. En efecto, aunque durante las dos últimas décadas la cobertura registra adelantos importantes, especialmente en la formación técnica y tecnológica, desde una perspectiva internacional la tasa de cobertura del país continúa siendo relativamente baja cuando se compara con países desarrollados y con países de América Latina como Argentina, Chile, Cuba, Uruguay y Puerto Rico. También se puede destacar el aumento en el número de estudiantes matriculados en pregrado entre el 2003 y el 2014, cuya tasa de crecimiento supera el 100%. La variación en el número de estudiantes matriculados, no obstante, se explica en gran parte por el aumento de alumnos matriculados en el SENA y en la Universidad Nacional Abierta y a Distancia. Con respecto a las pruebas de logro académico para educación superior, es importante señalar que en el país solo se realizan desde el

año 2004. Hasta el año 2009 estas pruebas eran voluntarias y solo evaluaban competencias específicas por programa y área de conocimiento. Con la Ley 1324 del 2009, adquirieron el carácter de obligatorias y empezaron a evaluar competencias genéricas comunes para todos los programas. En general, los resultados indican variaciones importantes entre los programas académicos y las instituciones académicas del país.

En el ejercicio empírico se estimó una función de producción del sistema de educación superior, utilizando técnicas de frontera estocástica que permiten medir el impacto sobre el rendimiento académico de dos tipos de variables. Por un lado, las variables que están con el control de las instituciones y por otro, aquellas variables de entorno que afectan el desempeño de las instituciones y de los estudiantes. Los resultados del ejercicio, que estima la eficiencia en el desempeño de 1.020 grupos de referencia asociados a diferentes programas académicos de 155 instituciones de educación superior, indican que las variables de infraestructura y aquellas asociadas al personal docente tienen un impacto positivo en los resultados de las pruebas de logro de los estudiantes de las diferentes instituciones. En cuanto a las medidas de eficiencia, se encuentra que estas varían entre 0,228 y 0,973, lo que indica que existe un margen amplio para obtener ganancias de eficiencia por parte de varias instituciones del país.

Por otro lado, los resultados destacan la importancia de las condiciones socioeconómicas de los estudiantes y de sus familias, así como de otros factores de entorno, para explicar las diferencias en el desempeño académico de los estudiantes de los diferentes programas académicos ofrecidos por las instituciones de educación superior del país. En efecto, al analizar los resultados se observa que cuando se asumen entornos equivalentes, más de la mitad de las instituciones mejoran sus medidas de eficiencia en porcentajes superiores al 20%. Este resultado se puede atribuir a las ventajas que algunas instituciones obtienen al formar estudiantes con mejores condiciones de entorno, como el nivel de ingreso del hogar y la educación de los padres.

Los resultados del ejercicio empírico reafirman la importancia de las variables socioeconómicas en el logro académico de los estudiantes de educación superior. Ello sugiere que, aunque muchas instituciones educativas tienen margen para mejorar sus niveles de eficiencia, están restringidas por la influencia de los factores de entorno de sus estudiantes. Así, para lograr un mejoramiento

de los resultados académicos, las medidas de política del Estado y las estrategias de las instituciones deben tomar en cuenta, además de los criterios en la contratación de docentes, la definición de incentivos para la investigación y los aspectos administrativos y financieros, los mecanismos que permitan ayudar a contrarrestar el impacto negativo derivado de las condiciones socioeconómicas de los estudiantes y de otros factores ambientales.

Referencias

- 1. Ayala, M. V. (2010). Financiamiento de la educación superior en Colombia reflexiones para un próximo futuro. *Revista de la Educación Superior*, 39(156), 89-102.
- 2. Battese, G., & Coelli, T. (1988). Prediction of firm-level technical efficiencies with a generalised production function and panel data. *Journal of Econometrics*, *38*, 387–399.
- 3. Battese, G., & Coelli, T. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. *Empirical Economics*, 20, 325–332.
- 4. Carneiro, P., Hansen, K. T., & Heckman, J. (2002). Removing the veil of ignorance in assessing the distributional impacts of social policies (Working Paper 8840). National Bureau of Economic Research.
- 5. Carneiro, P., & Heckman, J. (2002). The evidence on credit constraints in post-secondary schooling. *Economic Journal*, *112*(482), 705-734.
- 6. Carneiro, P., & Heckman, J. (2003). *Human capital policy* (Working Paper 9495). National Bureau of Economic Research.
- 7. Carneiro, P., Heckman, J., & Masterov, D. V. (2005). Labor market discrimination and racial differences in premarket factors. *Journal of Law and Economics*, 48(1), 1–39.
- 8. Carneiro, P., Heckman, J., & Vytlacil, E. (2010). *Estimating marginal and average returns to education* (Working Paper 29/10). Center for Microdata

- Methods and Practice, The Institute for Fiscal Studies. Department of Economics, University College London.
- 9. Coelli, T., Perelman, S., & Romano, E. (1999). Accounting for environmental influences in stochastic frontier models: With application to international airlines. *Journal of Productivity Analysis*, *11*, 251–273.
- Comisión Económica para América Latina (Cepal). (2016). Bases de datos y publicaciones estadísticas (CEPALSTAT). Recuperado de http:// estadisticas.cepal.org/cepalstat/.
- 11. Consejo Nacional de Acreditación. (2014). *Boletín estadístico CNA: cifras del Sistema Nacional de Acreditación*. Recuperado de http://www.cna.gov.co/1741/articles-322119_boletin_2014.pdf.
- 12. Cunha, F., Heckman, J., Lochner, L., & Masterov, D. V. (2006). Interpreting the evidence on life cycles skill formation. En E. Hanushek & F. Welch (eds.), *Handbook of the Economics of Education* (vol. 1, pp. 697–812). Ámsterdam, Holanda: North Holland.
- 13. Domingue, B. (2012). Measuring effects of Colombian postsecondary institutions on Student learning. Documento presentado en el Seminario Internacional de Investigación sobre Calidad de la Educación, ICFES, Bogotá.
- 14. Doyle, O., Harmon, C. P., Heckman, J., & Tremblay, R. E. (2009). Investing in early human development: Timing and economic efficiency. *Economics & Human Biology*, 7(1), 1–6.
- 15. Epple, D., Fliglio, D., &t Romano, R. (2004). Competition between private and public schools: Testing stratification and pricing predictions. *Journal of Public Economics*, 88(7–8), 1215–1245.
- 16. Epple, D., & Romano, R. (1998). Competition between private and public schools, vouchers, and peer-group effects. *American Economic Review*, 88(1), 33–62.
- 17. Epple, D., Romano, R., & Sieg, H. (2002). On the demographic composition of colleges and universities in market equilibrium. *American Economic Review*, 92(2), 310–314.

- 18. Epple, D., Romano, R., & Sieg, H. (2006). Admission, tuition, and financial aid policies in the market for higher educations. *Econometrica*, *74*(4), 885–928.
- 19. Escobar, S., & Orduz, M. (2013). *Determinantes de la calidad en la educación superior en Colombia*. Proyecto de Grado para optar el título de Magíster en Economía, Facultad de Ciencias Económicas y Administrativas, Pontificia Universidad Javeriana, Bogotá.
- 20. Gaviria, A., & Barrientos, J. (2001). *Determinantes de la calidad de la educación en Colombia* (Archivos de Economía 159). Bogotá: Departamento Nacional de Planeación.
- 21. Greene, W. (1993). The econometric approach to efficiency analysis. En K. Lovell & S. Schmidt (eds.), *The measurement of productive efficiency: Techniques and applications* (pp. 68–119). Oxford: Oxford University Press.
- 22. Hanushek, E. A. (1986). The economics of schooling: Production and efficiency in public schools. *Journal of Economic Literature*, *24*, 1141–1177.
- 23. Hanushek, E. A. (2002). Publicly provided education. En A. J. Auerbach & M. Feldstein (eds.), *Handbook of Public Economics* (1st ed., vol. 4). Ámsterdam, Netherlands: North Holland.
- 24. Heckman, J. (2000). Policies to foster human capital. *Research in Economics*, *54*(1), 3–56.
- 25. Heckman, J., & Rubinstein, Y. (2001). The importance of noncognitive skills: Lessons from the GED testing program. *American Economic Review*, 91(2), 145–149.
- 26. Heckman, J., Larenas, M. I., & Urzua, S. (2004). Accounting for the effect of schooling and abilities in the analysis of racial and ethnic disparities in achievement test scores. Retrieved from http://jenni.uchicago.edu/econ_neurosci/ability_all_2006-04-19_jsb.pdf.
- 27. Heckman, J., Stixrud, J., & Urzua, S. (2006). The effects of cognitive and noncognitive abilities on labor market outcomes and social behavior. *Journal of Labor Economics*, *24*(3), 411–482.

- 28. Heckman, J., Humphries, J. J., Urzua, S., &t Veramendi, G. (2011). *The effects of educational choices on labor, market, health, and social outcomes* (Working Paper 2011–002). Chicago: Human Capital and Economic Opportunity Working Group, Economic Research Center, Universidad de Chicago.
- 29. Helg, A. (1989a). La educación en Colombia, 1946–1957. En Á. Tirado Mejía (director científico y académico), *Nueva historia de Colombia* (vol. IV, pp. 111–134). Bogotá: Planeta.
- 30. Helg, A. (1989b). La educación en Colombia, 1958–1980. En Á. Tirado Mejía (director científico y académico), *Nueva historia de Colombia* (vol. IV, pp. 135–158). Bogotá: Planeta.
- 31. Hopkins, D. S. P. (1990). The higher education production function: Theoretical foundations and empirical findings. In S. A. Hoenack & E. L. Collins (eds.), *The economics of American universities: Management, operations and fiscal environment* (pp. 11–32). Nueva York: State University of New York Press.
- 32. ICFES. (2011). Informe Exámenes de Estado de Calidad de la Educación Superior Saber Pro: Resultados del Período 2005-2009. Bogotá: ICFES.
- 33. Iregui, A. M., Melo, L., & Ramos, J. (2007). Análisis de eficiencia de la educación en Colombia. *Revista de Economía del Rosario*, 10(1), 21–41.
- 34. Jaramillo, A. (2010). El financiamiento de la educación superior en Colombia: retos y tensiones. *Pensamiento Universitario, 20*, 103-127. Asociación Colombiana de Universidades.
- 35. Jaramillo Uribe, J. (1989). La educación durante los gobiernos liberales, 1930–1946. En Á. Tirado Mejía (director científico y académico), *Nueva historia de Colombia* (vol. IV, pp. 87–110). Bogotá: Planeta.
- 36. Jondrow, J. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. *Journal of Econometrics*, *19*, 233–238.

- 37. Kalirajan, K. P., & Shand, R. T. (1999). Frontier production functions and technical efficiency measures. *Journal of Economic Surveys*, *13*(2), 149–172.
- 38. Klumpp, M., & Zelewski, S. (2008). *Higher education production analysis*. En Fifteenth International Working Seminar on Production Economics. Innsbruck, Austria. Disponible en: https://www.fom.de/download/8-d05_higher_education_production_analysis.pdf.
- 39. Kumbhakar, S. C., & Knox Lovell, C. A. (2000). *New York: Stochastic Frontier Analysis*. Cambridge, Reino Unido: Cambridge University Press.
- 40. Ministerio de Educación Nacional. (2009). Deserción estudiantil en la educación superior colombiana. Metodología de seguimiento, diagnóstico y elementos para su prevención. Bogotá: Viceministerio de Educación Superior Ministerio de Educación.
- 41. Ministerio de Educación Nacional. (2016). Sistema nacional de información de la educación superior (SNIES). Módulo de consultas: Instituciones de educación superior. Recuperado de http://snies.mineducacion.gov.co/consultasnies/institucion.
- 42. Ministerio de Educación Nacional. (2016). Sistema nacional de información de la educación superior (SNIES). Módulo de consultas: Programas académicos. Recuperado de http://snies.mineducacion.gov.co/consultasnies/programa.
- 43. Ministerio de Educación Nacional. (2016). Sistema nacional de información de la educación superior (SNIES). Resumen de indicadores de educación superior. Recuperado de http://www.mineducacion.gov.co/sistemasdeinformacion/1735/w3-article-212350.html.
- 44. Ministerio de Educación Nacional. (2016). Sistema nacional de información de la educación superior (SNIES). Perfiles regionales de educación superior. Recuperado de http://www.mineducacion.gov.co/sistemasde-informacion/1735/w3-article-358269.html.
- 45. Ministerio de Educación Nacional. (2016). *Estadísticas de deserción y graduación 2015*. Recuperado de http://www.mineducacion.gov.co/sistemasdeinformacion/1735/articles-357549_recurso_3.pdf.

- 46. Misas, G. (2004). *La educación superior en Colombia: análisis y estrategias para su desarrollo.* Bogotá: Universidad Nacional de Colombia.
- 47. Observatorio de la Universidad Colombiana (2016). *Indicadores de la U.* Recuperado de http://www.universidad.edu.co/index.php/indicadores-de-la-u-mainmenu-11.
- 48. Pacheco Arrieta, I. F. (2002). Evolución legislativa de la educación superior en Colombia. Educación culpable, educación redentora. Digital Observatory for Higher Education in Latin America and the Caribbean, IES/2002/ED/PI/30. lesalc Unesco.
- 49. Rodríguez G., R., & Burbano, G. (2012). Historia de la universidad e historia de la educación superior en América Latina (presentado en Educación Superior: Debates y Desafíos, Cátedra Manuel Ancízar 2012–1). Bogotá: Universidad Nacional de Colombia.
- 50. Saavedra, A., & Saavedra, J. (2011). Do colleges cultivate critical thinking, problem solving, writing and interpersonal skills? *Economics of Education Review*, *30*, 1516–1526.
- 51. Salerno, C. S. (2003). What we know about the efficiency of higher education institutions: The best evidence. Center for Higher Education Policy Studies (CHEPS), University of Twente. Enschede: The Netherlands.
- 52. Silva Olarte, R. (1989). La educación en Colombia, 1880-1930. En Á. Tirado Mejía (director científico y académico), *Nueva historia de Colombia* (vol. IV, pp. 61-86). Bogotá: Planeta.
- 53. SCImago Research Group (2012). *Institution rankings*. Información disponible en http://www.scimagoir.com/.
- 54. Tough, P. (2012). *How children succeed: Grit, curiosity, and the hidden power of character.* Nueva York: Houghton Mifflin Harcourt.
- 55. Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura. *Estadísticas Unesco*. Recuperado de http://data.uis.unesco.org/.

Anexo 1. Resultados de las pruebas de conocimiento – Pruebas ECAES (Saber Pro)

		2004	2005	2006	2007	2008	2009
A	Medicina Veterinaria	101,5	99,5	99,5	100,0	99,6	98,3
Agronomía, Veterinaria y afines	Medicina Veterinariay Zootecnia	103,9	102,4	100,1	100,0	101,7	99,2
vetermana y armes	Zootecnia	99,1	99,3	97,3	100,0	98,7	97,6
	Licenciatura en Ciencias Naturales	95,9	95,3	100,4	100,0	98,6	93,6
	Licenciatura en Ciencias Sociales	96,2	101,5	98,5	100,0	101,9	91,3
	Licenciatura en Humanidades	105,0	104,3	100,8	100,0	99,2	97,9
Ciencias de la	Licenciatura en Matemáticas		105,6	101,7	100,0	98,1	95,8
Educación	Licenciatura en Pedagogía Infantil	101,8	99,7	98,6	100,0	99,8	97,0
Luucacion	Licenciatura en Inglés	105,3	105,1	106,6	100,0	100,7	101,6
	Licenciatura en Francés	105,2	97,5	103,6	100,0	98,3	92,6
	Licenciatura en Educación Física				100,0	99,2	101,6
	Escuelas Normales Superiores			97,9	100,0	100,4	99,5
	Enfermería	100,6	100,6	99,4	100,0	100,7	99,5
	Fisioterapia	100,4	99,9	99,1	100,0	99,5	96,8
	Optometría	98,5	97,2	100,9	100,0	101,0	101,3
	Nutrición y Dietética	103,4	102,3	100,5	100,0	100,7	99,3
Ciencias de la Salud	Terapia Ocupacional	102,0	101,6	102,4	100,0	100,7	99,0
Ciencias de la Salud	Odontología	101,8	100,3	99,6	100,0	99,9	98,1
	Fonoaudiología	98,6	100,5	102,2	100,0	99,7	98,2
	Medicina	99,7	99,7	99,4	100,0	99,4	99,3
	Bacteriología	101,5	100,4	100,2	100,0	100,1	101,0
	Instrumentación Quirúrgica			100,0	100,0	100,4	98,4
	Derecho	92,7	99,9	100,3	100,0	100,8	98,0
Ciencias Sociales y	Psicología	92,4	95,0	94,5	100,0	99,3	100,3
Humanas	Comunicación e Información	100,6	98,7	99,1	100,0	101,2	100,2
	Trabajo Social	101,5	99,0	99,4	100,0	99,7	97,8
Economía,	Administración	99,1	97,8	98,9	100,0	99,2	99,1
Administración,	Contaduría	89,5	88,3	89,5	100,0	99,2	97,7
Contaduría y afines	Economía	99,3	100,2	100,4	100,0	101,4	98,8
	Arquitectura	101,4	101,4	100,7	100,0	98,7	98,7
	Ingeniería Agronómica	102,4	102,4	102,4	100,0	100,7	100,2
	Ingeniería Agrícola		99,5	103,8	100,0	101,4	102,2
	Ingeniería Civil		103,4	102,6	100,0	100,6	99,9
	Ingeniería Eléctrica		101,9	101,9	100,0	99,0	97,6
	Ingeniería Electrónica		100,1	99,6	100,0	99,3	99,7
Ingeniería,	Ingeniería Química		100,4	98,7	100,0	98,6	97,8
Arquitectura,	Ingeniería Industrial		100,2	100,2	100,0	99,3	98,8
Urbanismo y afines	Ingeniería de Sistemas		100,3	100,5	100,0	99,6	100,0
	Ingeniería Mecánica		101,9	101,1	100,0	101,1	101,3
	Ingeniería Ambiental		102,9	102,1	100,0	100,6	98,6
	Ingeniería de Alimentos		100,1	98,1	100,0	99,0	96,6
	Ingeniería de Petróleos		105,3	99,9	100,0	102,8	103,2
	Ingeniería Forestal		100,2	97,1	100,0	95,9	99,6
	iligeliielia i olestai			0,1.	.00,0	00,0	00,0

(Continúa)

Anexo 1. Resultados de las pruebas de conocimiento – Pruebas ECAES (Saber Pro) (continuación)

		2004	2005	2006	2007	2008	2009
	Biología		97,0	100,9	100,0	101,3	96,1
Matamáticas	Química		98,2	102,4	100,0	101,2	99,3
Matemáticas y Ciencias Naturales	Física		97,3	101,1	100,0	100,0	91,9
Ciclicias ivaturaics	Matemáticas		102,0	100,4	100,0	104,3	99,2
	Geología		100,7	101,2	100,0	101,2	93,1
	Técnica Profesional en Sistemas		97,5	99,6	100,0	100,5	102,9
	Tecnología en Sistemas		100,8	99,6	100,0	99,9	101,2
Técnicas	Técnica Profesional en Electrónica		99,7	98,0	100,0	99,3	97,8
Profesionales y	Tecnología en Electrónica		98,2	99,9	100,0	99,2	102,7
Tecnológicas	Técnica Profesional en Administración			99,7	100,0	100,2	99,1
	Tecnología en Administración			99,5	100,0	100,7	99,8

Fuente: ICFES.