Villanueva, Pía
PIAHO: UNA HERRAMIENTA PARA LA PREVENCIÓN DE HÁBITOS ORALES DELETÉREOS
(PROTOCOLO DE INCORPORACIÓN APROPIADA DE HÁBITOS ORALES)
Revista CEFAC, vol. 16, núm. 4, julio-agosto, 2014, pp. 1326-1339
Instituto Cefac
São Paulo, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=169332210033
PIAHO: A TOOL TO PREVENT BAD ORAL HABITS OCCURRENCE (PROTOCOL OF APPROPRIATE INCLUSION OF ORAL HABITS)

PIAHO: Una herramienta para la prevención de hábitos orales deletéreos (Protocolo de Incorporación Apropiada de Hábitos Orales)

Pía Villanueva(1)

ABSTRACT

Purpose: to present a tool to prevent bad oral habits occurrence, this protocol is called PIAHO. Methods: comparing the diagnoses obtained by PeNaF subjective test with nasal resistance diagnoses obtained by the objective test of rhinomanometry. It was explored the relationships between the incorporation of consistencies, tools and choice of positions during feeding and swallowing different types. Based on both, the results obtained and published research in Chilean population; as in the international literature review. Results: a new strategy and guidelines for an early inclusion of consistencies and feeding tools, also focus in a good nasal hygiene. Conclusion: to contribute to the prevention of orofacial myofunctional disorders and avoiding oral bad habits occurrence.

KEYWORDS: Oral Medicine; Nasal Obstruction; Myofunctional Therapy; Speech Language and Hearing Sciences

INTRODUCTION

At present, in Chile there is no option for the speech-language pathologists to study a specialization in Orofacial Myology. Therefore the applicants must study abroad and thus we can say that OM is a “developing” discipline in Chile, which is also the term used to describe the general economic profile of our country.

The speech-language pathologists trained in Orofacial Myology attend generally patients referred by dentist, physicians and pre-school teachers. The dental specialties with more referral cases to the OM speech-language therapist are the orthodontists and the dento-maxillary orthopedists. The most common referral causes are pathological signs in the swallowing physiology, mainly associated with structural alterations.

Therefore, it is a challenge for the OM specialist to treat these patients in “in-formed” multidisciplinary work teams to give a solution to the referred case. However, the real challenge of the Specialty is to give a multidisciplinary solution to the presence of the aforesaid disorders through PREVENTION procedures of the concomitant factors.

Among them are the early detection and maintenance of the upper airways' permeable, as well as the diet characteristics influencing the persistence of the child swallowing patterns.

The Orofacial myofunctional disorders include swallowing, breathing, chewing and rest alterations together with the presence of bad oral habits or harmful habits. Consequently, it is not surprising that the main objective of this article is the prevention of bad oral habits through the application of the Protocol of Appropriate Inclusion of Oral Habits.

METHODS

This descriptive study was approved by the Ethics Committee of the School of Speech Therapy of the Universidad de Chile (04/2006).

(1) Escuela de Fonoaudiología; Facultad de Medicina, Universidad de Chile; Depto. Del Niño y Ortopedia Dentomaxilar; Facultad de Odontología, Universidad de Chile; Instituto de Ciencias Biomédicas; Facultad de Medicina, Universidad de Chile. Programa de Doctorado en Psicología, Universidad de Granada.

Conflict of interest: non-existent
The Protocol of Appropriate Inclusion of Oral Habits (PIAHO) was based on both a theoretical and analytical revision of the international literature, using Pubmed to obtain the records presented in periodic publications, and on the results of researches developed in our country. The databases, where the national results were collected from, are listed below.

Regarding the nasal permeability item, the efficiency to detect the nasal obstruction through the simple PeNaF clinical test was compared with the results of the rhinomanometry. For that, it is necessary to describe in detail the following descriptors: the result of the obstruction test is (+) if the patient cannot maintain 6 nasal cycles. Whereas, it is (-) if the patient is able to complete 6 nasal respiratory cycles.

For the item of early detection of the structural alteration in phonoarticulatory organs and for the item of early inclusion of consistencies, postures and food utensils, we used the evidence obtained in the last 5 years of research regarding the factors delaying the apparition of the adult swallowing. The 2008-2012 database of Prof. Villanueva was used, from the line of investigation: School of Speech Therapy, Universidad de Chile. “Evolution of the swallowing in Chilean children”. So, 180 cases of children sorted in 3 groups: 2 to 4.11 years, 5 to 8.11 years and 9 to 12 years of age. They were sorted by age, gender and evolution state of the dentition. Then, a food routine survey was filled, including data of consistencies, postures and utensils used. Finally, each child was clinically, extra and intra-orally assessed. For every procedure, the individuals and their parents had to sign an informed consent.

These studies permitted to detect the presence of a child swallowing pattern at a high rate in school children aged between 5 and 8 years. The low incidence of mature pattern –adult or typical – in these children was associated with the presence of dentomaxillary anomalies. However, in the group with normal occlusion, the incidence of the child swallowing pattern –somatic or atypical – was also significantly higher. So, we proved that the difference between these children and those with normal occlusion + adult swallowing lied in the appropriate inclusion of utensils, consistencies and postures during the feeding and also in the maintenance of the nasal airways permeable, in other words, the lacking of bad oral habits for these children.

The assessment guidelines, the tests and procedures (treatment) are based on national evidence developed in the last 15 years of clinic experience, teaching and research. The presentation of this protocol to the scientific community intends to give a simple tool for the training of parents, teachers and health care professionals. For this, the same principle of diffusion to the community and the success of the plans for early intervention were applied. In the future, this will allow professionals, parents and patients to be informed and thus it will contribute to the oral health of our patients as well as to the decrease of the incidence of orofacial dysfunctions.

RESULTS

As this is an intervention protocol, it is intended for the professionals who know the anatomophysiological and evolutional basis required for its efficient and effective administration. In spite of this, many activities of the protocol can be carried out by the parents of the child, because of its simple nature and recommended domestic materials.

Protocol of Appropriate Inclusion of Oral Habits (PIAHO)

This protocol consists basically of three items to consider:

1. Preservation of hygiene and nasal permeability
2. Early detection of structural alteration in phonoarticulatory organs (OFA)
3. Early inclusion of consistencies, postures and food utensils
PROTOCOL OF ADEQUATE INCLUSION OF ORAL HABITS (PIAHO): Record Sheet

1. NASAL HYGIENE AND NASAL PERMEABILITY CONSERVATION

1.1 Detection of functional nasal permeability

<table>
<thead>
<tr>
<th>Right nostril</th>
<th>Left nostril</th>
<th>Assessment Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PeNaF (</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PeNaF (</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Referred to ENT if the result is (+) Assessment Date: Diagnosis/Procedure:

1.2 Nasal Hygiene teaching

<table>
<thead>
<tr>
<th>Present</th>
<th>Absent</th>
<th>Assessment Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air cycle management: mouth-nose</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Parents: use of one hand</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Child: use of both hands</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

2. EARLY DETECTION OF STRUCTURAL ALTERATION IN PHONOARTICULATORY ORGANS

<table>
<thead>
<tr>
<th>Present</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstructions in the airway</td>
<td>()</td>
</tr>
<tr>
<td>Enlarged tonsils</td>
<td>()</td>
</tr>
<tr>
<td>Nasal bridge deviation</td>
<td>()</td>
</tr>
<tr>
<td>Enlarged nasal turbinates</td>
<td>()</td>
</tr>
</tbody>
</table>

Mechanical or structural impairments

<table>
<thead>
<tr>
<th>Present</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short sublingual frenulum</td>
<td>()</td>
</tr>
<tr>
<td>Craniofacial malformations</td>
<td>()</td>
</tr>
<tr>
<td>Dento-maxillary anomalies</td>
<td>()</td>
</tr>
</tbody>
</table>

3. EARLY INCLUSION OF CONSISTENCIES, POSTURE AND FOOD UTENSILS

<table>
<thead>
<tr>
<th>Stage</th>
<th>Consistencies</th>
<th>Postures</th>
<th>Utensils</th>
<th>Movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>liquid</td>
<td>face-up</td>
<td>semi-seated</td>
<td>mother breast</td>
</tr>
<tr>
<td>4 to 6 months</td>
<td>liquid</td>
<td>semi-seated</td>
<td>cup</td>
<td>oral games</td>
</tr>
<tr>
<td>6 to 10 months</td>
<td>mashed</td>
<td>sitting in a high chair with support</td>
<td>spoon</td>
<td>vertical lingual/vertical labial</td>
</tr>
<tr>
<td>10 to 12 months</td>
<td>chopped</td>
<td>sitting in a high chair without support</td>
<td>glass by the feeder</td>
<td>labial backwards</td>
</tr>
<tr>
<td>12 to 18 months</td>
<td>chopped</td>
<td>family chair with support</td>
<td>blunt fork</td>
<td>wrist action when the child eats alone</td>
</tr>
<tr>
<td>18 to 24 months</td>
<td>chopped or whole</td>
<td>family chair without support</td>
<td>glass</td>
<td>lingual elevation</td>
</tr>
</tbody>
</table>

Figure 1 – Protocol
1. Preservation of hygiene and nasal permeability

The anatomo-functional characteristics of a full-term newborn include all the required elements for nasal breathing to be the least energy-consuming mechanism, even during breastfeeding (Figure 2).

It is important to remember that at birth the child presents a small and retracted mandible, an accumulation of fat in the cheeks that permit a better sucking and their tongue takes up the entire oral cavity. As a posterior limit, the veil of the palate touches the epiglottis; the hyoid bone and the larynx are high in the neck, which favors an efficient system of defense of the airway, considering that at this stage there is still a poor coordination of the glottic closure during swallowing.\(^3,4\).

For these reasons, the PIAHO protocol brings up the two following items to fulfill the objective of hygiene preservation and nasal permeability.

1.1 Detection of functional nasal permeability: the professional must carry out the PeNaF test (Functional Nasal Permeability). This is a semi-objective clinical exam, quick and easy to apply, which shows the functional nasal permeability, independent for each nostril. Its results were compared with those obtained through the objective rhinomanometry exam, presenting a positive correlation and coincidence higher than 94%.\(^1\)

For this test, the speech-language pathologist obstructs gently with the thumb the right nostril of the subject, placed in postural position of the mandible (Figure 3). Then the patient is asked to inhale and exhale 6 times through the left nostril. After, the same procedure is applied with the other nostril. The result of the exam is negative (-) when the patient keeps the nasal breathing during 6 inhalations and positive (+) if the patient is not able to keep the nasal breathing during 6 inhalations and requires to breathe orally to continue the inhalations.

The result of the PeNaF test is recorded in the protocol and the speech-language pathologist continues with the application of the PIAHO. If the results obtained are positive, it is recommended to repeat the test after 2 weeks during which the point 1.2 of the PIAHO, will be applied. If the result persists, the patient must be referred to an orotínnolaryngologist to determine the cause of the nasal obstruction.

It is important to note that the results of the PeNaF are also related to the protocol’s item 2, as many causes of obstruction can be detected when applying the assessment guideline of the phonoarticulatory organs.

1.2 Nasal Hygiene teaching: as described before, many development skills (such as sphincter control) and habits (such as teeth brushing) must be stimulated since the early age and are of common
general knowledge. Nevertheless, the proper nasal hygiene of the children by the parents at first, and then by the children themselves since the age of 6, is clearly a concept little known by the community.

For all of the above reasons, we propose the teaching of a correct nasal hygiene, according to the age of the child. For this, the bases of the nasal anatomy are outlined to the child and his/her parents, to inform that intranasal pressure must be produced by the permanent obstruction of one nostril, to be able to blow strongly through the other nostril and then alternate.

For both parents and minors, it is necessary to emphasize on the importance of a deep inhalation. And, only because the nose is temporally and partially obstructed, this inhalation must be through the mouth.

In practice, we must make sure that the air cycle: mouth – nose works properly !!! Therefore, some children with poor air control require some extra activities to improve their coordination.

Finally the use of one hand, for the parents, and both hands at the same time, for the children, must be practiced. The use of both hands is always recommended in the first stage.

2. Early Detection of Structural Alteration In Phonoarticulatory Organs (OFA)

This item of the protocol is centered on the assessment of the phonoarticulatory organs (OFA). Like every specialist in Orofacial Myology, who has a wide range of assessment guidelines, OFA observation and anthropometric measures applied to the orofacial study \(^5\), I have included the OM assessment guideline, to give the general speech-therapists an improvable starting point, and to give the specialists a comparison point with their tools.

See figure 4: file of assessment of Orofacial Myology \(^7\).

This item aims to determine the presence of two concepts that must be detected precociously. The obstructions in the airway, possible to detect clinically; such as enlarged tonsils, nasal bridge deviation or enlarged nasal turbinates. And the mechanical or structural impairments interfering with the appropriate instauration of oral habits; such as short sublingual frenulum, craniofacial malformations and dento-maxillary anomalies.

If one of the mentioned manifestations is detected, the patients must be timely referred to the respective specialist, and continue with the next item of the PIAHO, incorporating the indications of the treating team.

3. Early Inclusion of Consistencies, Postures and Food Utensils

In our country, the pediatrician generally indicates to the mother the appropriate inclusion of food consistencies, once she visits the professional with her child for the “well-child check-ups”. As for the postures and utensils used for the food, they are normally chosen by the parents following intuition or family advices.

The inclusion of different consistencies and utensils in the food, as well as the recommended position for each stage, are based on evolutionary-physiological principles experienced by the child. In some cases, this permits the incorporation of new tools, whereas in others, it stimulates the development of a motor action, necessary for the step towards the next stage. The swallowing stages are well-known by the professionals of the field, and thus will not be approached here.

0 to 4 months

As previously described, the children are born with a small mouth, completely filled by the tongue. The intraoral stability is given by the presence of fat cushions that permit a better grip to the nipple, guaranteeing an adequate extraction of the milk. The lingual movements are only anteroposterior and are made with the help of the mandible. This movement guarantees the first physiological advance of the mandible, which in turn permits the condylar development and thus the enlargement of the intraoral cavity.

Initially the child puts positive pressure with the mandible and the anterior third of the tongue; and then negative pressure with lingual backing and mandibular descent.

Considering that the minor is still totally dependent of the mother, the recommended position to feed him/her must give the minor the required security sensation. The face-up position is recommended, with the head slightly leaning up and sideward against the maternal breast, or semi-seated at an angle not higher than 45 degrees.

At this stage, the only recommended food utensil is the maternal breast. However, as a result of medical or parent decisions, the minor can be fed by the baby bottle. The chosen bottle must favor the correct position of the child’s head, it must allow the adequate quantity of milk according to the development stage and it must have the appropriate shape to be handled by the feeder.

4 to 6 months

Between 4 and 6 months old, the minors present motor advances that lead to a change in their food. They are able to hold the head, the larynx starts...
INTRA AND EXTRAORAL ASSESSMENT RECORD

PATIENT RECORD

NAME:
DATE OF BIRTH:
AGE:
DATE:
EXAMINER:

ANAMNESIS
Previous dental treatments NO___ YES___ Date______Cause______________________
Tooth extraction or tooth loss NO___YES___Date________Cause______________________
Use of denture:
Upper Maxilla NO___ YES____
Partial prosthesis ______ Total prosthesis ______
Start________Cause__________________________
Lower Maxilla NO___ YES____
Partial prosthesis ______ Total prosthesis ______
Start________Cause__________________________
Patient experience with dentures:

Existence of dento-maxillary anomalies in the family NO___YES___Specify______________
Dental Hygiene Good____ Fair____ Bad____
Other records:

ANATOMO-FUNCTIONAL OROFACIAL ASSESSMENT:

Extraoral Exam
Facial width _______ Facial height_______ % ________
Upper facial third _____ Middle facial third _____ Lower facial third _____
Facial type: Dolichofacial ____ Mesofacial ____ Brachiofacial ____
Swallow (trago), Subnasal, Chin ______________________
Facial profile: Straight____ Convex ____ Concave ____

Nose:
Front:
Normal ____ Deviated right _____ Deviated left _____
Profile:
Normal ____ Shape _________________________
Inferior view:
Normal ____ Greater right _____ Greater left ____
Permeability:
Nasal mirror test:___

Rosenthal test: Right nostril _____ Left nostril _______

Upper lip:
Size:
Normal_____ Long_____ Short_____ Cleft _____ Operated_____
Frenulum:
Normal_____ Short_____ Transfixing_____
Functionality:
Functional_____ Non functional_____

Lower lip:
Size:
Normal_____ Everted_____

Intraoral Exam

Determine number of teeth in the mouth:_____________________
Absence of teeth NO___YES___ Specify_________________________
Maximum oral opening _______________

Occlusion and ADM (For each measurement specify if it is right or left).
- Intra-maxillary
 o Upper Maxilla NO YES Specify
 Agenesis ___ ___
 Supernumerary ___ ___
 Rotations ___ ___
 Diastemas ___ ___
 o Lower Maxilla NO YES Specify
 Agenesis ___ ___
 Supernumerary ___ ___
 Rotations ___ ___
 Diastemas ___ ___

- Intermaxillary
 o Sagittal direction
 Molar relationship:
 Neutroclusion (D I)____ Distoclusion (D I)____ Mesioclusion (D I)____
 Incisor relationship:
 Normal____ Aumentada (enlarged)____ Vis a Vis ____ Inverted____
 o Vertical direction:
 Normal____ Vis a Vis ____ Open____ Overbite ____
 o Transversal direction:
 Normal(D I)____ Vis a Vis (D I)____ Crossbite (D I)____

- If the patient uses prosthesis, evaluate:
 o Upper prosthesis :
 Retention YES_______ NO_______
 Support YES ______ NO_______
 Indicate the covered zones _________________________________
 - Lower prosthesis :
 Retention YES_______ NO_______
 Support YES ______ NO_______
 Indicate the covered zones: _______________________________
Tongue:
Size:
Normal____ Enlarged____
Frenulum:
Normal____ Short____

Hard palate:
Shape:
Normal____ High____ Cleft ____ Operated____

Soft palate:
Shape:
Normal____ Cleft ____ Operated____

Uvula:
Shape:
Normal____ Short____ Bifid ____
Mobility in (/a/) phonation:
Appropriate ____ Reduced____ Without mobility____ Diverted____

Tonsils:
Normal____ Enlarged____ Absent____

EVALUATION OF NON-VERBAL FUNCTIONS:

Rest:
Lingual position:
Normal____ Low____ Interdental ____ Anterior thrust ____
Labial closure:
Present ____ Absent ____ With effort____

Breathing:
Type:
Diaphragmatic ____ High costal ____ Mixed ____
Mode:
Nasal ____ Oral ____ Mixed ____

Bad oral habits:

<table>
<thead>
<tr>
<th>Item</th>
<th>YES</th>
<th>NO</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finger sucking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nail-biting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baby bottle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lip sucking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objects sucking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Swallowing:

<table>
<thead>
<tr>
<th>Item</th>
<th>Normal</th>
<th>Lip sucking</th>
<th>Lingual Interposition</th>
<th>Labial Interposition</th>
</tr>
</thead>
</table>
Praxis execution:
Normal (N) Reduced (D) Without mobility (Sm)

Labial Praxis
- Protrusion of both lips
- Distension of both lips
- Lip deviation to the right corner
- Lip deviation to the left corner
- Resonant labial retrusion
- Lip vibration
- Cheek swelling

Lingual Praxis
- Lingual apex goes across upper dental arch
- Lingual apex goes across lower dental arch
- Lingual apex goes across the hard palate
- Lingual attachment
- Lingual click
- Voiceless alveolar vibration
- Voiceless lingual vibration between the lips
- Extraoral lingual elevation
- Extraoral lingual descent
- Lateralization of the lingual apex to the right
- Lateralization of the lingual apex to the left
- Lingual apex pushes right cheek
- Lingual apex pushes left cheek
- Lingual apex under upper lip
- Lingual apex under lower lip

SPEECH EVALUATION:

Articulation

<table>
<thead>
<tr>
<th>Phonemes</th>
<th>M</th>
<th>P</th>
<th>B</th>
<th>F</th>
<th>S</th>
<th>T</th>
<th>D</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>RR</th>
<th>N</th>
<th>CH</th>
<th>Y</th>
<th>J</th>
<th>K</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT OF ARTICULATION</td>
<td></td>
</tr>
<tr>
<td>Bilabial</td>
<td></td>
</tr>
<tr>
<td>Labiodental</td>
<td></td>
</tr>
<tr>
<td>Post Dent Inf.</td>
<td></td>
</tr>
<tr>
<td>Post Dent sup.</td>
<td></td>
</tr>
<tr>
<td>Alveolar</td>
<td></td>
</tr>
<tr>
<td>Palatal</td>
<td></td>
</tr>
<tr>
<td>Velar</td>
<td></td>
</tr>
<tr>
<td>Comp. Lab. Inf.</td>
<td></td>
</tr>
<tr>
<td>Interdental</td>
<td></td>
</tr>
<tr>
<td>Retroflex</td>
<td></td>
</tr>
<tr>
<td>Omite</td>
<td></td>
</tr>
</tbody>
</table>

OBSERVATIONS:

__
__
__

SIGNATURE

UNIVERSIDAD DE CHILE
FACULTY OF MEDICINE
SCHOOL OF SPEECH THERAPY
VILLANUEVA P., GÓMEZ B. 2001

Figure 4 – Orofacial Myology, Assessment Record. Villanueva P., Gómez B. 2001
When the food is brought closer, the mandible is open for a prolonged period and the tongue is motionless. Ideally, the food must be given in a teaspoon, with a flat bowl at first.

In the following months, the child acquires skills that facilitate the transition to the adult deglutition, as long as the consistency of the food and the incorporation of utensils, adapted to the age of the child, is done progressively. (Figure 5). At 7 months of age, the child is able to tear the food. At 9 months the upper lip can move downward to drag the food in the spoon an when swallowing, the lips can close with force. This labial movement is expressed clearly with the appearance of babbling and its characteristic bilabial sounds.

6 to 10 months

The 6-months stage is marked by the sitting position, which allows the pelvic stability to support the shoulder girdle and this, in turn the head and neck. So, the orofacial region has a better motor control. That is how the tongue begins to move up and down, which, together with a better lips control, makes more efficient the nipple sucking and favors the appearance of phonemes.

Due to the incipient pelvic control, it is suggested to change the position to sitting on a high chair, with the support of cushions or towels around the child. This is to give independence to the posture, based on an external or positional stability. This external support must be progressively retired until the postural or internal stability is obtained at 10 months, which permits to use a high chair without support.

At 6 months of age, it is recommended to incorporate the first baby food. The physiological characteristics of the minor favor this change. The dentition appears, together with an excessive salivation.
This stage has to be considered as an exploration stage and therefore the child must investigate by him/herself. The child usually plays with the food, discovers the consistencies, temperature and tries to help in his/her feeding with the hands. It is also recommended to have a second spoon, lighter, with a thicker plastic handle for the child to play eating. The former favors the hand-mouth coordination, necessary in the following stages to achieve the self-feeding by the child.

10 to 12 months

Between 10 and 12 months of age, the chewing begins because at this stage the minor must receive entire or partially ground food to help the development of the mastication. The smooth baby food must be replaced by lumpy purée, ideally not homogeneous. It is recommended to grind the soft components (rice, potatoes, pasta), to blend the other components and to present both consistencies in one plate.

The minor sits independently from the feeder, in a high chair without support, as he/she has the required postural stability. The child can drink in a cup or glass, with occasional liquid loss as the mandibular stability is still external.

The tongue presents anteroposterior and lateral movements which, together with the vertical and diagonal movements of the mandible, permit the lateralization of the bolus in the mouth. It is recommended to give entire food (cookies, bread), so that the child exercises vertical cutting movements of the mandible.

It is possible to observe that the upper lip starts moving backwards at this stage when the spoon leaves the mouth, allowing an efficient seal and avoiding the escape of food.

12 to 18 months

At 12 months of age, the minor starts walking, the first words come out as well as the first temporary molars. This assures the first physiological lift and the consequent increase of the intraoral space. An occasional elevation of the tongue is observed. Until 15 months, there is not enough neurological maturation for the tip of the tongue to rise and to be placed in the anterior part of the palate. (Figure 6 and 7).
The inclusion of minced food (except meat) favors the chewing, made with the help of the cheeks and the active participation of the corners of the mouth. The child can select the part of the bolus ready to be swallowed and can continue to chew the remaining bolus.

The lingual protrusion can still be observed inside the cup. This favors the stability, required for the swallowing of the liquid.

At 15 months of age the child can clean his/her lower lip by dragging the upper incisors.

The cut of entire food (cookies for example) goes with backward movements of the head or the body.

The child continues with the exploration of food, now throwing it to the ground, to the clothes or the head, and facing also the reaction of the adults. The child eats alone, using wrist movements sporadically.

18 to 24 months

If the child still uses the baby bottle, at 18 months he/she can grab and lift it and drink alone. He/She is very skillful at eating with the fingers and tries with other adult utensils (fork). It is recommended to let the child drink all the liquids in glass, cup or narrow-mouthed bottles.

At 18 months of age, they can swallow with a soft closing of the lips and the tip of the tongue raised. This elevation of the lingual tip will not happen while the child is still fed with baby bottle, straw or sippy cups, which are placed at the tip of the tongue and prevent it from going up. The inclusion of the glass (without accessories) must come early to guarantee the accomplishment of the next stage. The child must be progressively included in the family routine, which means he/she must sit on an adult chair with booster or support. Even if the hours are different, at least one of the meals should be together with the family and its social routine.

2 years and more

At 24 months of age, most of the children change the protrusion for the elevation of the tongue, independently of the mandible, with a soft closing of the lips, preventing the leak of saliva or food. In this way, the labio-lingual position is established during swallowing, which together with the labio-lingual position at rest favors the growth and development of the craniofacial structures.

With the eruption of the second molar, the temporary dentition is complete and the second physiological lift occurs, with the consequent increase of the intraoral space.

Provided that the appropriate utensils, consistencies and postures have been incorporated, the minor has an adult-like eating mechanism.

The opening of the mouth is in accordance with the proximity and seizure of the food. The mandibular stability is given by the temporomandibular articulations. So, the child is capable of holding a glass, cup or bottle by gently using the lips without bites in its rim.

The tearing is made by the incisors or the canine zone, without associated movements of head or body. During the chewing, there are rotating mandibular movements and the child is able to move the bolus from one side to the other. He/She can adjust the forces and the movements to the texture of the food, and clean the vestibules or look for rests of food out of the mouth with the tongue as well.

The minor shares the menu, the consistency, the utensils and the routines with the family (Figure 8).

![Figure 8 – The minor must share utensils and food with the family](image)

DISCUSSION

Until one decade ago, it was frequent in our country to hear the question “what is speech-language therapy?” At present, the dissemination at the community level, together with the wonderful clinical achievement of our professionals, has not only incorporated this profession in the collective consciousness but has also placed it among the most demanded university careers of the students.

Therefore, for more than five years now, I have put in a lot of effort to change the pattern of “evaluation and treatment of bad oral habits” by programs of “prevention and early stimulation of appropriate oral habits”. In the “regulations of the prevention and interception of dento-maxillary anomalies” published by the Chilean Ministry of Health, exclusive
breastfeeding for the first 6 months, the correct lingual position at rest, phonemes and swallowing14, are described as preventive patterns. Likewise, it has been proved that the longer the breastfeeding period, the smaller the presence of bad oral habits15.

For the previous reasons, we, health professionals working with minors and their mothers must promote themes that are not of common general knowledge, as the evolution of the feeding and the speech, and the appropriate inclusion of oral habits. It has been proved that mothers with higher schooling offer more commonly the feeding bottle than mothers with elementary schooling, for comfort and time reasons and affecting the good habits. The same study shows that mothers working in the health area do not present differences in the use of feeding bottle when compared with mothers working in other areas16. Thus, the use of the Protocol of Appropriate Inclusion of Oral Habits intends to contribute to the prevention of organic, functional and sometimes psycho-emotional alterations, associated with bad oral habits. The idea is to present it to the community of speech-language therapists for its use in clinics, schools, kindergartens and mothers associations.

CONCLUSIONS

This article presents the Protocol of Appropriate Inclusion of Oral Habits as a tool that contributes to the prevention of myofunctional alterations and that prevents the introduction of bad oral habits.

RESUMEN

Objetivo: presentar una herramienta de prevención de malos hábitos orales, llamado PIAHO.

Métodos: se comparan los diagnósticos obtenidos de la prueba subjetiva PeNaF con los diagnósticos de resistencia nasal obtenidos por la prueba objetiva de rinomanometría. Se estudian las relaciones entre la incorporación de consistencias, herramientas y elección de posturas durante la alimentación y los diferentes tipos de deglución. Basados tanto en, los resultados obtenidos y publicados de investigaciones realizadas en población chilena; como en la revisión de la literatura internacional.

Resultados: una nueva estrategia y plan de acción para una oportuna incorporación de consistencias y utensilios de alimentación, también enfocado en una correcta higiene nasal. Conclusión: Contribuir a la prevención de alteraciones miofuncionales, y evitar la instauración de malos hábitos orales.

PALABRAS CLAVES: Medicina Oral; Obstrucción Nasal; Terapia Miofuncional, Fonoaudiología

REFERENCES

6. De Brito SF, Marchesan IQ, De Bosco CM, Alves AC, Rehder MI. Lingual frenulum: classification and