

Revista Brasileira de Ciência Avícola

ISSN: 1516-635X revista@facta.org.br

Fundação APINCO de Ciência e Tecnologia

Avícolas Brasil

Nassiri Moghaddam, H; Kazemi Fard, M; Agah, MJ; Hosseini, SJ; Mirakzehi, MT

Effect of different levels of methionine, protein and tallow on the productive performance and egg
quality of laying hens in the late-phase production

Revista Brasileira de Ciência Avícola, vol. 14, núm. 2, abril-junio, 2012, pp. 149-158

Fundação APINCO de Ciência e Tecnologia Avícolas

Campinas, SP, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=179723125009

Complete issue

More information about this article

Journal's homepage in redalyc.org

■Author(s)

Nassiri Moghaddam H Kazemi Fard# M Agah MJ Hosseini SJ Mirakzehi MT

Excellence Center for Animal Sciences Research and Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, PO Box 91775-1163, Mashhad, Iran

■Mail Adress

* Corresponding author:

E-mail: mo.kazemifard@gmail.com

■Keywords

Eggshell, egg weight, fat, specific gravity, sulfur amino acids.

ABSTRACT

An experiment was conducted to determine the effects of different levels of methionine, protein and tallow on productive performance and egg quality of laying hens in the late phase of production. A completely randomized design with a 3×2×2 factorial arrangement, with three levels (0.34, 0.31, and 0.27%) of methionine (MET), two levels (12.8 and 14.7%) of protein (PRO) and two levels (1 and 3%) of tallow (TAL) with constant level of linoleic acid (1.55 \pm 0.02%), was used. A number of 144 Hi-Line W-36 layers from 70 to 76 wk of age was randomly distributed into 12 treatment groups with 4 replicates of 3 hens each. Egg production and egg weight were daily recorded and feed intake and egg quality traits were recorded every 2 wk. There was a significant interaction between PRO levels and TAL for egg weight. Low levels of TAL and PRO decreased egg weight throughout the experiment. High levels of MET and TAL with concomitant reduced PRO, increased eggshell thickness, and a significant interaction between levels of MET, PRO and TAL was observed during the experiment (70 to 76 wk). Low level of protein (12.8%) significantly decreased albumen weight in the third 2-wk period. Yolk color increased when hens were fed low levels of PRO and TAL. Results of this experiment indicated that the simultaneous reduction of dietary PRO and MET in diets of Hi-Line W-36 laying hens in the late phase of production, reduced egg weight (P<0.05). Productive performance and egg quality were not affected by 12 and 20% reduction of PRO and MET, respectively. It seems that decreasing the levels of MET and PRO to lower than the recommended values can decrease egg weight without negative effects on productive performance and egg quality of laying hens in the late phase of production.

INTRODUCTION

In spite of preferences for large eggs by consumers, a very large increase in egg size in old hens might not be of benefit because the incidence of shell quality problems and the proportion of broken eggs increase (Bennett, 1992; Abdallah *et al.*, 1995). As hens grow older, the nutrient requirements decrease. It is important for commercial laying breeders to know the nutritional requirements of laying hens at different ages (Wu *et al.*, 2005b). Methionine is the first limiting amino acid for egg weight (Al-Saffar & Rose, 2002).

Some studies have shown that calcium absorption decreases with ages in layers (Roland *et al.*, 1975; Keshavarz & Nakajima, 1993). It was shown that absolute daily retention of Ca (Keshavarz, 2003) and shell weight (Roland *et al.*, 1975) remain constant as hens age. The reason for reduced shell quality is increasing in egg size, distributing a constant amount of shell over a larger egg. Consequently, limiting

Submitted: August/2011

egg size should also prevent loss of shell thickness (Keshavarz, 2003). Increase in egg size has resulted in reduced of eggshell thickness and eggshell weight (as a percentage of egg weight) (Roland, 1988; Jackson et al., 1987). Thus, researchers have been interested in reducing egg size during the late stages of the egg production cycle by dietary manipulation of nutrients for increasing eggshell quality.

MET (Sohail et al., 2002), linoleic acid (LIN) (Harms & Russell, 2004), and fat (Grobas et al., 1999b,c) are three factors that affect egg size. Also, Keshavarz (2003) observed that, by reducing dietary level of protein (PRO) to 13% and omitting supplemental MET from the diet, egg production, egg weight, egg mass, feed consumption, body weight gain, and extralarge plus large-sized eggs were reduced and feed conversion and the number of small plus tiny sized eggs increased. Accordingly, a reduction in the levels of these factors in the diet may decrease egg size and increase eggshell quality. Keshavarz (2003) pointed that reducing the dietary MET level in laying hens from 54 to 72 wk of age from 0.36 to 0.23% decreased productivity, including lower egg production and smaller egg size. Jackson et al. (1987) observed that egg weight was reduced and shell strength increased by reducing dietary MET. However, these changes were obtained at the expense of lower egg production. Petersen et al. (1983) reported that reducing dietary MET reduced egg weight and improved shell quality without affecting egg production. Safaa et al. (2008) reported that a decrease in MET content of the diet from 0.36 to 0.31% and of LIN from 1.60 to 1.12% did not affect hen performance at any age. Reducing the level of added supplemental fat from 3.0 to 1.1% impaired egg production (79.3 vs. 77.0%; p < 0.05), egg weight (66.3 vs. 64.9 g; p < 0.001), egg mass (52.5 vs. 49.8 g; p < 0.001), and feed conversion ratio (FCR) (2.26 vs. 2.36 kg/kg of eggs; p < 0.001) (Safaa et al., 2008). Summers et al. (1991) have shown that the supplementation of a low protein (10% CP) diet with 0.32% MET resulted in a 10% increase in egg mass. Sell and Rogler 83);), Chung et al. 98);), Ravikiran and Devegowda (1998) also found that supplementing MET to a low protein diet resulted in an improvement of egg production similar to the higher protein diet. Moreover, increasing dietary MET intake significantly increased egg weight (Harm & Russell, 1993). Many studies have shown that a decrease in dietary fat significantly decreases egg size (Keshavarz & Nakajima, 1995; Bohnsack et al., 2002; Sohail et al., 2003). Supplemental fat increased both yolk and albumen weights (Safaa et al., 2008), but in some for the albumen than for the yolk (Grobas *et al.*, 1999b). The results of many studies have shown that the requirement of LIN for hen productivity and egg size ranged from 1% to 2% of the diet (Scragg *et al.*, 1987). Hence, this study was aimed at investigating the effects of dietary levels of MET, PRO and tallow (TAL) or the combination of these nutrient at a constant level of LIN (1.12%) on the performance and eggshell quality in aged laying hens.

MATERIAL AND METHODS

All experimental procedures used in this experiment were approved by the Animal Care Committee of the Ferdowsi University of Mashhad. A completely randomized experimental design was applied in a 3×2×2 factorial arrangement, with three dietary MET levels (0.35, 0.31 and 0.27%), two dietary PRO levels (14.3 and 12.87%) and two dietary TAL levels (3 and 1%), with a constant level of linoleic acid (1.55 ± 0.02%). One hundred forty-four of 70-wk-old hens layers (Hi-line W36) with initial body weight (BW) of $1,687 \pm 15.8$ g and similar egg production, egg weight, and egg specific gravity, were used in the experiment. The hens were randomly divided in to 12 combinations of MET, PRO and TAL (4 replicates of 3 hens per treatment). Each three hens were housed in a battery cage $(40.6 \times 45.7 \text{ cm})$ in a house with temperature maintained as close to 21°C as possible and a 16L: 8D lighting program. All hens were fed an experimental diet from 70 to 76 wk of age. They were supplied with feed and water ad libitum. The experimental diets were formulated to have simila AMEs and minerals levels, according to the nutritional requirements suggested in the Hi-line W36 Commercial Managemnt Gguide (Hy-Line International, 2009-2011). Ingredients and the nutrient composition of the experimental diets are shown in Table 1.

Feed consumption was recorded biweekly for calculation of average daily feed consumption. Egg production and egg weight were recorded daily. Total eggs from each unit were collected during the last 3 d of every-14 d interval, weighed and graded as indicated by the European Council Directive (2006). The four categories registered for egg size were extra large (>73g), large (73 to 63 g), medium (63 to 53 g) and small (<53g). Weighed and graded eggs were assessed for quality by specific gravity shortly after collection that same day. The specific gravities of the eggs were determined using the formula referring to

Table 1 - Ingredient composition and nutrient content of laying hen diets.

		0.34%	MET ¹			0.31%	6 MET			0.27%	6 MET	
Ingredient (%)	14.3 %	6 PRO ²	12.87	% PRO	14.3 %	6 PRO	12.87	% PRO	14.3 9	% PRO	12.87	% PRO
	3% TAL ³	1% TAL	3% TAL	1% TAL	3% TAL	1% TAL	3% TAL	1% TAL	3% TAL	1% TAL	3% TAL	1% TAL
Corn	59.13	66.47	58.00	65.20	59.11	66.55	58.00	65.20	59.10	66.61	58.00	65.20
Soybean meal	18.94	19.26	13.90	14.43	19.00	19.31	13.95	14.46	19.04	19.40	13.99	14.53
Barley	3.15	0.50	8.00	6.42	3.15	0.40	8.00	6.42	3.16	0.30	8.00	6.39
Wheat bran	3	0	4.15	0	3	0	4.13	0	3	0	4.13	0
Salt	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
Tallow	3.00	1.00	3.00	1.00	3.00	1.00	3.00	1.00	3.00	1.00	3.00	1.00
Limestone	10.30	10.30	10.30	10.30	10.30	10.30	10.30	10.30	10.30	10.30	10.30	10.30
Dicalcium phosphate	1.44	1.44	1.46	1.48	1.44	1.44	1.46	1.48	1.44	1.44	1.46	1.48
Methionine	0.11	0.10	0.13	0.12	0.08	0.07	0.10	0.09	0.03	0.03	0.06	0.05
Lysine	0.05	0.05	0.18	0.17	0.04	0.05	0.18	0.17	0.05	0.04	0.18	0.17
Mineral premix ⁴	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Vitamin premix⁵	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Calculated analysis												
Energy (kcal ME/kg)	2756	2754	2756	2762	2755	2750	2755	2762	2755	2754	2755	2761
Protein (%)	14.3	14.3	12.87	12.87	14.3	14.3	12.87	12.87	14.3	14.3	12.87	12.87
Methionine (%)	0.34	0.34	0.34	0.34	0.31	0.31	0.31	0.31	0.27	0.27	0.27	0.27
Linoleic acid (%)	1.53	1.57	1.54	1.57	1.53	1.57	1.54	1.57	1.53	1.57	1.54	1.57
Calcium (%)	4.29	4.29	4.29	4.29	4.29	4.29	4.29	4.29	4.29	4.29	4.29	4.29
Non-phytate P (%)	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38

¹MET= methionine

Specific gravity = weight in air (g)/ [weight in air (g) - weight in water (g)]

A random sample of total eggs per replicate was taken from the collection of last 3 d of each 14 d interval. The eggs used for specific gravity were weighed and broken. The yolks were separated from the albumen. Before determining yolk weight, the chalaza was removed by using a forceps. Each yolk was rolled on a blotting paper towel to remove adhering albumen. The shells were cleaned of any adhering albumen and dried for 5 d. Albumen weight was calculated by subtracting the yolk and shell weights from the whole egg weight.

of determining shell weight. Shell weight per unit of surface area (SWUSA) was calculated via by dividing the shell weight (mg) the egg surface area (cm²). Egg surface area was determined according to Carter (1975), applying the equation: 3.9782 × egg weight (g) ^{0.7056}. Shell thickness the average of measurements made at three part regions of the egg (air cell, equator, and sharp end) using a shell-thickness measuring gauge (Seri 500, Mitutoyo, Tokyo, Japan). Yolk color and Haugh units were measured (in 4 eggs from each replicate) at the end of the experiment using an egg multi-tester (EMT-5200, Robotmation Co. Ltd., Tokyo, Japan). Haugh units were calculated based on alluments.

²PRO= protein

³TAL= Tallow

⁴Vitamin premix provided per kilogram of diet: vitamin A (retinyl acetate), 8,800 IU; cholecalciferol, 2,200 IU; DL-α-tocopheryl acetate, 11 IU; menadione sodium bisulfite, 2.2 mg; riboflavin, 4.4 mg; D-calcium pantothenate, 8.8 mg; nicotinic acid, 44 mg; pyridoxine hydrochloride, 2.2 mg; d-biotin, 0.11 mg; thiamine hydrochloride, 2.5 mg; ethoxyquin, 125 mg.

⁵Mineral premix provided per kilogram of diet: MnSO4: H2O, 185 mg; ZnO, 62 mg; FeSO47H2O, 149 mg; CuSO4: 5H2O, 19.6 mg; KI, 1.4 mg; Na2SeO3, 0.22 mg.

Table 2 - The effect of methionine (MET, %), protein (PRO, %), and tallow (TAL, %) levels on egg production, egg weight and egg mass.

Trea	tment	ent Egg production (%)							eight(g)		Egg mass(g/day)			
MET (%)	PRO (%)	TAL (%)	70 to 72 wk	72 to74 wk	74 to76 wk	70 to76 wk	70 to 72 wk	72 to74 wk	74 to76 wk	70 to76 wk	70 to 72 wk	72 to74 wk	74 to76 wk	70 to 76 wk
0.34	14.7	3	78.3	77.3ab	76.7	77.5	69.1ab	68.9ªb	70.1	69.4ª	54.0	53.4	53.8	53.7
0.34	14.7	1	78.8	81.5ª	78.5	79.6	69.9ª	69.1ª	67.3	68.7ªb	55.0	56.3	52.8	54.7
0.34	12.8	3	75.0	67.8 ^b	78.5	73.8	69.6ª	69.5ª	68.3	69.1ª	52.1	47.1	67.8	51.0
0.34	12.8	1	80.5	79.1 ^{ab}	79.1	79.6	66.9ab	68.0 ^{bc}	67.6	67.5ªb	53.9	53.9	53.6	53.8
0.31	14.7	3	82.2	81.5ª	72.0	78.5	66.1 ^b	67.4 ^{bc}	66.7	66.7 ^b	54.4	55.0	48.0	52.4
0.31	14.7	1	77.2	77.3ab	73.8	76.1	68.1ªb	68.4 ^{bc}	68.3	68.3ªb	52.6	52.9	50.4	52.0
0.31	12.8	3	76.6	75.0 ^{ab}	73.8	75.1	68.6ab	69.3ª	68.7	68.9ab	52.5	51.8	50.6	51.7
0.31	12.8	1	79.4	79.7ª	77.3	78.8	67.0 ^{ab}	66.5 ^b	67.7	67.1 ^{ab}	53.3	53.0	52.4	52.9
0.27	14.7	3	76.1	73.2ab	75.0	74.7	67.1ab	68.0 ^{bc}	67.7	67.6ab	51.0	49.7	50.7	50.5
0.27	14.7	1	76.6	70.8ab	75.0	74.1	67.7 ^{ab}	67.9 ^{bc}	67.8	67.8 ^{ab}	52.0	48.1	50.7	50.2
0.27	12.8	3	76.1	72.6ab	72.0	73.5	68.1ªb	68.9ªb	68.8	68.6ab	51.9	50.0	49.6	50.5
0.27	12.8	1	81.1	79.1 ^{ab}	79.1	79.8	67.6ab	67.1 ^b	65.3	66.7 ^b	54.8	53.2	51.8	53.3
SEM			3.13	3.50	3.68	2.98	0.903	0.894	1.05	0.747	2.15	2.44	2.55	1.84
Main effect														
MET (%)		0.34	78.1	76.4	78.2	77.6	68.9	68.9	72.6	70.1	53.8	52.7	57.0	54.5
		0.31	78.8	78.4	74.2	77.1	67.5	67.9	67.89	67.7	53.2	53.2	50.4	52.2
		0.27	77.5	73.9	75.2	75.5	67.6	68.0	67.4	67.7	52.4	50.2	50.7	51.1
PRO (%)		14.7	78.2	76.9	75.1	76.8	68.0	68.3	68.0	68.1	53.1	52.5	51.1	52.3
		12.8	78.1	75.5	76.6	76.8	68.0	68.2	70.6	68.9	53.1	51.5	54.3	53.0
TAL (%)		3	77.4	74.6	77.1	75.5	68.1	68.7	71.2	69.3	52.7	51.2	53.4	52.4
		1	78.9	77.9	74.7	78.0	67.9	67.8	67.3	67.7	53.6	52.9	51.9	52.8
MET			0.719	0.210	0.290	0.548	0.067	P 0.248	0.513	0.117	0.883	0.202	0.187	0.263
PRO			0.977	0.492	0.488	0.998	0.961	0.898	0.684	0.793	0.786	0.462	0.564	0.934
TAL														
			0.458	0.104	0.251	0.130	0.657	0.115	0.097	0.112	0.566	0.231	0.555	0.276
PRO × TAL			0.084	0.046	0.548	0.091	0.014	0.024	0.292	0.017	0.480	0.166	0.777	0.309
MET× PRO			0.867	0.151	0.918	0.577	0.283	0.959	0.699	0.755	0.843	0.140	0.894	0.704
MET× TAL			0.515	0.305	0.899	0.686	0.649	0.982	0.230	0.323	0.690	0.292	0.801	0.951
MET× TAL × PRO	0		0.809	0.978	0.722	0.912	0.594	0.603	0.401	0.746	0.864	0.973	0.920	0.900

^{a-c} Means within each column with no common superscript differ (p < 0.05).

height and egg weight using the formula: $HU = 100 \log_{10} (H - 1.7 \text{ W}^{0.37} + 7.56)$, where HU = Haugh unit, H = height of the albumen (mm) and W = egg weight (g). Moreover, shell strength was measured using an

The experiment was conducted as a completely randomized design with 12 treatments arranged in a factorial arrangement. Data were analyzed by means of GLM (SAS Institute, 2003). Significant differences

multiple range tests. Variation within each treatment was expressed as the P value and SEM (standard error of the mean) at 5% probability level.

RESULTS AND DISCUSSION

The effects of different dietary treatments on egg production, egg weight and egg mass are shown in Table 2. The interaction between dietary treatments was not significant for egg production, egg weight and egg mass with exception of PRO × TAL; therefore only the main effects are presented. The Significant interactions were observed between PRO and TAL for

egg production (72 to 74 wk) and egg weight (70 to 72, 72 to 74 and 70 to 76 wk). A protein level by TAL interaction (p< 0.05) was observed for the entire experimental period, indicating that the impact of 1% TAL on egg weight reduction was more pronounced in hens fed 12.8% PRO than in hens fed 14.7% PRO. Egg production can be affected by protein (36 weeks of age) (Liu et al., 2005), lysine (85 weeks of age) (Wu et al., 2005a), and supplemental fat (65 weeks of age) (Grobas, 1999b). There have been contradictory results about the effect of supplemental fat on egg production. Jackson et al. (1987) observed that egg weight decreased by reducing dietary MET. Likewise, Petersen et al. (1983) reported that reducing dietary

Table 3 - The effect of methionine (MET, %), protein (PRO, %), and tallow (TAL, %) levels on feed intake and feed conversion.

	Treatment			Feed inta	ke(g/day)		Fee	d conversion(o	g/100 g egg m	ass)
MET (%)	PRO (%)	TAL (%)	70 to 72 wk	72 to74 wk	74 to76 wk	70 to76 wk	70 to 72 wk	72 to74 wk	74 to76 wk	70 to76 wk
0.34	14.7	3	127.15	142.51	131.99	133.88	2.35	2.67 ^{ab}	2.45	2.49
0.34	14.7	1	117.18	125.67	119.55	120.80	2.13	2.23 ^b	2.26	2.21
0.34	12.8	3	122.11	132.62	134.75	129.83	2.34	2.81a	1.99	2.55
0.34	12.8	1	117.37	135.39	127.11	126.62	2.17	2.51 ^{ab}	2.37	2.35
0.31	14.7	3	119.95	132.14	124.69	125.59	2.20	2.40 ^{ab}	2.60	2.39
0.31	14.7	1	121.12	128.54	118.17	122.61	2.30	2.43 ^{ab}	2.34	2.36
0.31	12.8	3	133.00	131.42	124.78	126.40	2.53	2.53 ^{ab}	2.46	2.44
0.31	12.8	1	122.41	138.54	130.20	130.38	2.30	2.61 ^{ab}	2.48	2.46
0.27	14.7	3	117.77	130.94	127.13	125.28	2.31	2.63ab	2.50	2.48
0.27	14.7	1	129.02	135.65	128.79	131.15	2.48	2.82ª	2.54	2.61
0.27	12.8	3	114.46	121.86	122.60	119.64	2.20	2.44^{ab}	2.47	2.37
0.27	12.8	1	116.91	133.08	133.51	127.83	2.13	2.50 ^{ab}	2.58	2.40
SEM			4.39	6.630	6.507	5.209	0.120	0.179	0.246	0.154
Main effect										
MET (%)		0.34	120.95	134.05	128.35	127.78	2.60	3.16	2.90	2.89
		0.31	121.62	132.66	124.46	126.25	2.61	3.10	3.07	2.93
		0.27	119.54	130.38	128.01	125.98	2.67	3.23	3.14	3.02
PRO (%)		14.7	122.03	132.58	125.05	126.55	2.66	3.14	3.05	2.95
		12.8	119.38	132.15	128.83	126.79	2.59	3.19	3.02	2.93
TAL (%)		3	120.74	131.92	127.66	126.77	2.65	3.20	3.05	2.97
		1	120.67	132.81	126.22	126.57	2.60	3.13	3.02	2.92
						Р				
MET			0.830	0.512	0.716	0.872	0.763	0.587	0.601	0.493
PRO			0.215	0.566	0.416	0.734	0.351	0.679	0.977	0.826
TAL			0.861	0.542	0.607	0.580	0.430	0.481	0.537	0.562
$MET \times TAL$			0.090	0.247	0.312	0.173	0.153	0.040	0.634	0.317
MET × PRO			0.312	0.323	0.719	0.460	0.221	0.066	0.999	0.431
PRO × TAL			0.677	0.110	0.292	0.274	0.328	0.945	0.511	0.727
MET × TAL× F	PRO		0.732	0.883	0.901	0.895	0.458	0.830	0.866	0.718
a-b Means within	n each column v	vith no co	ommon superso	ript differ (p <	(0.05).					

MET declined egg weight without affecting egg production. In one study, Keshavarz (2003) found that, after reducing dietary level of protein from 15 to 13% and omitting supplemental MET, egg production, egg weight, egg mass, feed consumption, body weight gain and extra large-sized eggs were reduced and FCR was increased. Similarly, Harms & Russell (2003) reported that a reduction in MET from 0.36 to30% of in the diet of laying hens from 45 to 54 wk of age did not affect body weight, egg production, egg weight, and feed intake. In fact, the authors reported that, when MET content was greater than 0.30%, egg production and egg weight were numerically rduced, indicating that MET was not limiting performance. Shafer et al.

(1996) found that egg production was not significantly different due to MET treatments when laying hens were fed diets containing MET from 0.283 to 0.4%. Egg weight can be increase by increasing dietary protein (Liu et al., 2005 & Wu et al., 2005a), MET (Keshavarz, 1995), lysine (Novak et al., 2004 and Liu et al., 2005), supplemental fat (Grobas, 1999a, 1999b; Sohail et al., 2003) and energy (Bryant et al., 2005).

The impacts of protein and amino acids have been well understood. However, there are discrepant reports about the impact of supplemental fat or dietary energy on egg weight. In our experiment, a significant interaction was obtained between PRO × TAL on egg weight. This outcome was similar to that of Sohail et

Table 4 - The effect of methionine (MET, %), protein (PRO, %), and tallow (TAL, %) levels on specific gravity and eggshell thickness.

Treatr	nent			Specific	gravity			Eggshell thi	ckness (mm)	
MET (%)	PRO (%)	TAL (%)	70 to 72 wk	72 to74 wk	74 to76 wk	70 to76 wk	70 to 72 wk	72 to74 wk	74to76 wk	70 to76 wk
0.34	14.7	3	1.054 ^{ab}	1.066	1.068ab	1.063	0.371	0.374	0.388	0.377 ^{ab}
0.34	14.7	1	1.049b	1.068	1.067 ^{ab}	1.062	0.379	0.394	0.396	0.390 ^{ab}
0.34	12.8	3	1.056 ^{ab}	1.070	1.071ª	1.065	0.392	0.391	0.306	0.396ª
0.34	12.8	1	1.050 ^{ab}	1.069	1.068ab	1.062	0.369	0.389	0.383	0.380 ^{ab}
0.31	14.7	3	1.049 ^b	1.064	1.067 ^{ab}	1.060	0.365	0.382	0.301	0.383 ^{ab}
0.31	14.7	1	1.053 ^{ab}	1.067	1.069ab	1.063	0.365	0.371	0.380	0.372 ^{ab}
0.31	12.8	3	1.050 ^{ab}	1.063	1.065⁵	1.060	0.352	0.348	0.395	0.365⁵
0.31	12.8	1	1.051ab	1.067	1.069ab	1.062	0.374	0.380	0.386	0.380^{ab}
0.27	14.7	3	1.052ab	1.067	1.064b	1.061	0.363	0.373	0.369	0.368b
0.27	14.7	1	1.053 ^{ab}	1.067	1.071ª	1.064	0.392	0.377	0.399	0.389^{ab}
0.27	12.8	3	1.054 ^{ab}	1.067	1.069 ^{ab}	1.063	0.382	0.388	0.395	0.388 ^{ab}
0.27	12.8	1	1.059ª	1.067	1.068 ^{ab}	1.065	0.374	0.376	0.384	0.378 ^{ab}
SEM			0.002	0.002	0.001	0.001	0.010	0.011	0.010	0.007
Main effect										
MET (%)		0.34	1.052	1.068	1.069	1.063	0.378	0.387	0.393	0.386
		0.31	1.051	1.065	1.068	1.061	0.364	0.379	0.391	0.375
		0.27	1.055	1.067	1.068	1.063	0.378	0.370	0.387	0.381
PRO (%)		14.7	1.052	1.067	1.068	1.062	0.373	0.378	0.389	0.380
		12.8	1.053	1.067	1.068	1.063	0.374	0.379	0.391	0.381
TAL (%)		3	1.053	1.066	1.067	1.062	0.371	0.376	0.392	0.380
		1	1.053	1.068	1.069	1.063	0.376	0.381	0.388	0.382
MET			0.136	0.150	0.564	0.144	P 0.185	0.126	0.691	0.126
PRO			0.224	0.681	0.563	0.117	0.530	0.969	0.689	0.757
TAL			0.906	0.239	0.221	0.273	0.520	0.417	0.511	0.650
$MET \times TAL$			0.044	0.414	0.032	0.054	0.531	0.606	0.291	0.795
MET × PRO			0.774	0.593	0.265	0.410	0.769	0.374	0.936	0.586
PRO × TAL			0.919	0.657	0.181	0.507	0.408	0.921	0.113	0.187
MET × PRO × TAL		,	0.697	0.762	0.181	0.937	0.137	0.102	0.200	0.016

Table 5 - The effect of methionine (MET, %), protein (PRO, %), and tallow (TAL, %) levels on shell weight and SWUSA.

Т	reatment			Shell w	eight(g)			SWUSA	(mg/cm²)	
MET (%)	PRO (%)	TAL (%)	70 to 72 wk	72 to74 wk	74 to76 wk	70 to76 wk	70 to 72 wk	72 to74 wk	74 to76 wk	70 to76 wk
0.34	14.7	3	5.40	5.54	5.66	5.53	68.5	70.3	70.9	69.8
0.34	14.7	1	5.82	5.76	5.84	5.81	72.9	72.9	75.5	73.7
0.34	12.8	3	5.86	5.50	5.62	5.66	73.8	69.4	64.8	68.5
0.34	12.8	1	5.57	5.63	5.59	5.60	72.1	72.1	71.8	72.0
0.31	14.7	3	5.35	5.57	5.76	5.56	69.8	71.7	74.7	72.1
0.31	14.7	1	5.44	5.43	5.65	5.51	69.6	69.1	72.1	70.3
0.31	12.8	3	5.56	5.16	5.66	5.46	70.7	65.3	71.9	69.3
0.31	12.8	1	5.58	5.67	5.54	5.60	72.2	73.8	71.1	72.3
0.27	14.7	3	5.66	5.55	5.18	5.46	73.1	71.0	66.3	70.1
0.27	14.7	1	6.04	5.54	5.57	5.71	77.4	70.9	71.4	73.2
0.27	12.8	3	5.55	5.67	5.58	5.60	70.9	71.9	70.9	71.3
0.27	12.8	1	5.37	5.46	5.37	5.40	69.1	70.6	70.6	70.1
SEM			0.219	0.179	0.204	0.153	2.69	2.25	3.21	2.13
Main effect										
MET (%)		0.34	5.66	5.61	5.68	5.65	71.8	71.2	70.8	71.0
		0.31	5.56	5.46	5.65	5.53	70.6	70.0	72.4	71.0
		0.27	5.48	5.56	5.42	5.54	72.6	71.1	69.8	71.2
PRO (%)		14.7	5.62	5.56	5.61	5.60	71.9	71.0	71.8	71.6
		12.8	5.58	5.52	5.56	5.55	71.5	70.5	70.2	70.6
TAL (%)		3	5.56	5.50	5.58	5.55	71.1	69.9	69.9	70.2
		1	5.64	5.58	5.59	5.60	72.2	71.6	72.1	71.9
MET			0.423	0.486	0.237	0.803	0.554	0.705	0.510	0.989
PRO			0.780	0.654	0.732	0.660	0.787	0.701	0.380	0.430
TAL			0.568	0.435	0.485	0.242	0.491	0.214	0.250	0.163
MET × PRO			0.154	0.889	0.494	0.920	0.102	0.905	0.329	0.926
MET × TAL			0.991	0.432	0.407	0.821	0.976	0.447	0.261	0.537
PRO × TAL			0.091	0.555	0.358	0.648	0.261	0.212	0.919	0.966
MET × PRO ×	TAL		0.568	0.203	0.539	0.149	0.497	0.119	0.631	0.328

al. (2003), who reported that increasing fat affected egg weight. In contrast, Zou & Wu (2005) reported that increasing supplemental fat had no significant effect on egg weight. The differences among results in literatures may be due to differences in bird strain, body weight, age and fat composition. Significant interactions were observed between the levels of MET and TAL for FCR from 72 to 74 wk of age. Other dietary treatments did not have a noteworthy influence on FCR. An increase in MET content of the diet from 0.27 to 0.34% with constant level of 1%TAL resulted to best FCR (2.82 vs. 2.23) (Table 3). Safaa et al. (2008) reported that egg production and FCR per a dozen eggs were impaired at low levels of MET (0.31%) and supplemental fat (SFAT) (1.1%) in the diet. Soheil et al. (2003) indicated that SFAT enhanced feed efficiency and egg weight in laying hens. Some researchers showed that increased dietary MET intake significantly improved egg production, egg mass, egg weight and FCR (Bunchasak & Silapasorn, 2005), which also agrees with our results. Indeed, increasing fat content has the influence of slowing passage rate, allowing more time for the contact between enzymes and dietary components, which may lead to added digestibility of the nutrients such as protein and amino acids (Ewan, 1991). There was an interaction of MET x TAL for specific gravity in during the periods of 70 to 72 and 74 to 76 wk. Specific gravity dropped from 1.059 to 1.049 when hens were fed additional MET (0.34 vs.27%) at the level of 1%TAL. Keshavarz (2003) indicated that a reduction in MET content in the diet of laying hens from 0.32 to 0.27% did not

Table 6 - The effect of methionine (MET, %), protein (PRO, %), and tallow (TAL, %) levels on yolk weight and albumen weight.

Trea	tment			Yolk we	eight(g)			Albumen	weight(g)					
MET (%)	PRO (%)	TAL (%)	70 to 72 wk	72 to74 wk	74 to76 wk	70 to76 wk	70 to 72 wk	72 to74 wk	74to76 wk	70 to76 wk	Haugh unit	Yolk color	Shell strength (kg force)	Larg egg: (%)
0.34	14.7	3	20.0ab	20.3	19.9	20.0	40.8ab	42.6	44.9	42.8	51.0	7.000	2.465abc	87.
0.34	14.7	1	19.9b	20.1	20.4	20.1	43.3ab	43.2	44.6	43.7	41.9	7.375	2.123abc	84.
0.34	12.8	3	20.8a	19.4	19.1	19.8	43.1ab	40.7	40.3	41.4	51.9	7.625	2.679a	66.
0.34	12.8	1	19.5ab	20.3	20.5	20.1	42.0ab	42.2	43.9	42.7	55.5	7.375	2.350abc	72.
0.31	14.7	3	19.6ab	20.1	20.1	19.9	40.7ab	43.1	43.9	42.6	38.1	6.750	2.185abc	75.
0.31	14.7	1	20.1ab	19.8	20.8	20.2	42.1ab	41.1	43.9	42.4	50.4	7.875	2.452abc	79.
0.31	12.8	3	20.8a	21.3	19.7	20.6	45.3a	44.0	44.6	44.7	50.4	7.375	2.197abc	73.
0.31	12.8	1	20.1ab	20.1	20.2	20.1	42.0ab	42.7	41.9	42.2	47.8	8.000	2.523ab	71.
0.27	14.7	3	21.0a	20.5	20.2	20.6	43.7ab	41.6	41.9	42.4	49.5	7.125	1.947c	73.
0.27	14.7	1	20.7a	20.2	19.8	20.3	42.5ab	41.6	41.5	41.9	56.4	7.000	2.323abc	74.
0.27	12.8	3	19.5ab	19.7	19.8	19.6	39.6b	42.3	41.3	41.0	57.3	7.125	2.455abc	69.
0.27	12.8	1	18.8ab	19.6	20.0	19.5	44.6ab	42.4	41.6	42.9	57.4	7.250	2.055bc	66.
SEM			0.462	0.422	0.525	0.389	1.506	1.012	1.207	0.858	5.716	0.254	0.167	7.8
Main effe	ct													
MET (%)		0.34	20.0	20.0	20.0	20.0	42.3	42.2	43.5	42.7	50.1	7.34	2.40	76.
		0.31	20.1	20.3	20.2	20.2	42.5	42.7	43.6	43.0	46.7	7.50	2.33	75.
		0.27	20.0	20.0	20.0	20.0	42.6	42.0	41.6	42.1	55.2	7.12	2.19	68.
PRO (%)		14.7	20.2	20.2	20.2	20.2	42.8	42.2	43.5a	42.6	47.9	7.18b	2.24	76.
		12.8	19.9	20.1	19.9	20.0	42.2	42.4	42.3b	42.5	53.4	7.45a	2.37	69.
TAL (%)		3	20.3	20.2	19.8	20.1	42.2	42.4	42.8	42.5	49.7	7.16b	2.32	74.
		1	19.8	20.0	20.3	20.1	42.8	42.2	42.9	42.6	51.6	7.47a	2.30	71.9
								р						
MET			0.895	0.477	0.828	0.669	0.960	0.553	0.069	0.325	0.121	0.127	0.210	0.44
PRO			0.270	0.708	0.299	0.299	0.510	0.808	0.045	0.768	0.104	0.033	0.197	0.06
TAL			0.121	0.526	0.119	0.888	0.529	0.728	0.950	0.777	0.573	0.030	0.860	0.70
MET × PRC	1		0.002	0.053	0.870	0.129	0.324	0.152	0.378	0.221	0.928	0.497	0.753	0.54
MET × TAL			0.669	0.201	0.386	0.717	0.412	0.173	0.224	0.115	0.607	0.047	0.039	0.76
PRO × TAL			0.074	0.713	0.454	0.801	0.679	0.643	0.411	0.863	0.656	0.588	0.234	0.6
MET × PRC	ν TΛΙ		0.813	0.239	0.794	0.632	0.027	0.965	0.104	0.174	0.226	0.369	0.156	0.4

influence the percentage of large eggs or the specific gravity of the eggshell from 56 to and 68 wk of age. However, in a second experiment, this author observed that a further reduction of MET to 0.23% decreased the percentage of large eggs from 37.6 to 22.2% and increased eggshell specific gravity from 1.0749 to 1.0788 in laying hens from 54 to 72 wk of age, which is almost identical to our experiment. Novak *et al.* (2006) showed that by feeding low-protein diets, specific gravity was linearly reduced indicating that

shell quality was being reduced. Increasing the total sulfur amino acids (TSAA): lysine rate increased shell quality, indicating that, in order to optimize shell quality, the sulfur amino acid requirements for the synthesis of shell synthesis of shell protein matrix needs to be considered. Simkiss & Taylor (1957) reported that the shell protein matrix is comprised of 70% protein. Also, increasing the sulfate groups present in the shell matrix significantly increases both shell percentage and specific

Nassiri Moghaddam H, Kazemi Fard[#] M, Agah MJ, Hosseini SJ, Mirakzehi MT

Effect of Different Levels of Methionine, Protein and Tallow on the Productive Performance and Egg Quality of Laying Hens in the Late-phase Production

gravity, as well as overall shell quality. Other researchers have also indicated that decreasing dietary protein will decrease shell quality (Keshavarz & Nakajima, 1995; Keshavarz & Jackson, 1992). Eggshell thickness was reduced due to decreasing the MET content of the diet from 0.34% to 0.31% when the dietary TAL was 3% (p<0.05), independently of PRO level. Eggshell thickness decreased significantly due to the reduction of dietary Met content from 0.34 to 0.27% (p<0.05). The eggshell is formed during the passage of the egg through the oviduct, where the various layers of the eggshell are assembled sequentially (Novak et a004). Same Consistent with our experiment, Bunchasak & Silapasorn (2005) reported that eggshell thickness was significantly improved when MET was added at 0.3 or 0.38% to low crude protein diets. Similarly, Carey et al. (1991) observed increasing eggshell weight when increasing Met level from 330 to 450 mg/hen/day. However, Shafer et al. (1996) reported that increasing TSAA intake from 624 to 822 mg/hen/day had no effect on eggshell weight or eggshell percentage at 52 wk of age. Thus, it is suggested that MET intake higher than 620 mg/hen/dayd would not have any benefit on eggshell quality. Another reason is that, in general, the foundation of a shell consists of a protein matrix, and it may be possible that increasing the total sulfur amino acid intake may influence the protein synthesis of the shell membranes (Novak et al., 2004).

Yolk weight (Table 6) was affected by different levels of MET × PRO from 70 to 72 wk. The hens fed the highest level of MET and PRO had the lowest yolk weight. There was interaction (p<0.05) among MET, PRO and TAL for albumen weight in the first 2-wk period. Albumen weight diminished as the level of MET (0.31 to 0.27) decreased at a constant level of PRO (12.87%) and TAL (3%) in the diet (45.38 vs. 39.66 g). Albumen weight was significantly (p<0.05) affected by dietary PRO level from 74 to 76 wk (Table 6). Hens receiving the diet with 14.7% PRO produced heavier albumen than those receiving diet with 12.8% PRO. At the level of 3% TAL and 12.8% protein of diet, albumen weight was reduced when the MET level was reduced from 0.31 to 0.27% (p<0.05). Novak et al. (2006) indicated that, as protein intake declined, dry albumen and yolk weights linearly decreased and increased, respectively. On the other hand, protein intake influenced yolk components. As protein intake was decreased from 16.3 to 13.8 g/day, there was a linear rise in percentage of yolk from 27 to 27.4%, respectively. According to Table 6, yolk color was more intense at the end of experimental for layers fed 12.8%

obtained by Gunawardana et al. (2008), increasing TAL levels from 1 to 3% in the diet significantly weakened egg volk color (Table 6). Corn, corn gluten meal, and alfalfa meal are the main xanthophyll sources used in poultry feeds. In laying hens, the muscles and skin xanthophyll supplies are transferred to the ovaries at the onset of sexual maturity, and part of them are excreted in the egg yolk (Gouveia et al. 1996). It is likely that reduction of corn level in diet contained 3%, compared with 1% TAL, resulted to paler yolk color. Gunawardana et al. (2008) reported that yolk color depends on fat soluble carotenoids present in dietary fats. There are contradictory results relative to the effect of added fat on yolk color. Madiedo & Sunde (1964) reported that added dietary fat had no effect on egg yolk color. In contrast, Mackay et al. (1963) found that supplemental fat had a significant effect on egg yolk color. A significant interaction of MET × TAL was observed for yolk color (Tabl 6). The supplementation of 3% TAL significantly depressed yolk color compared to with 1% TAL. Omara & Romeilah (2009) found that egg color did was not statistically different between 0.35 and 0.40% MET levels. Differences in egg yolk color were significant considering the energy × MET × folic acid interaction. These discrepancies may be due to the xanthophyll content of the main feed ingredients rather than to the actual energy levels, for the xanthophyll levels were not controlled within the diets. This could be due to high carotenoid content of corn (Ciftci et al, 2003). Significant MET x TAL interaction was also observed for shell strength (Table 6). The highest shell strength value was obtained in hens fed diets with high levels of MET and TAL plus 12.8% protein. In contrast to this experiment, Novak et al. (2006) reported that dietary treatments varying in the total sulfur amino acids and protein had no effect on eggshell breaking strength. Egg size was not influenced by dietary treatments. In conclusion, the results of the present experiment showed that decreasing the levels of MET and PRO to lower levels than the recommended values can decrease egg weighgt with no negative effects on the productive performance and egg quality of laying hens in the late phase of production.

REFERENCES

Abdallah AG, Harms RH, Russell GB. Effect of age and resting on hens laying eggs with heavy or light shell weight. Journal of Applied Poultry Research 1995; 4:131–137.

L-Saffar AA, Rose SP. The response of laying hens to dietary amino acids. World's Poultry Science 2002; 58:209-234.

Bennett CD. Influence of egg weight on egg breakage in the field. Journal of Applied Poultry Research 1992;1:399–402

Nassiri Moghaddam H, Kazemi Fard[#] M, Agah MJ, Hosseini SJ, Mirakzehi MT.

Effect of Different Levels of Methionine, Protein and Tallow on the Productive Performance and Egg Quality of Laying Hens in the Late-phase Production

- Bohnsack CR, Harms RH, Merkel WD, Russell GB. Performance of commercial layers when fed diets with four contents of corn oil or poultry fat. Journal of Applied Poultry Research 2002; 11: 68–76.
- Bryant M, Wu G, Roland DR. Optimizing dietary energy for profits and performance of two strains of White Leghorns. Proceedings of the International Poultry Scientific Forum Abstracts; 2005; Atlanta, GA. p.23.
- Bunchasak C, Silapasorn T. Effects of adding methionine in low-protein diet on production performance, reproductive organs and chemical liver composition of laying hens under tropical conditions. International Journal of Poultry Science 2005;4:301-308.
- Carey JB, Asher RK, Angel JF, Lowder LS. The influence of methionine intake on egg composition. Poultry Science 1991;70(Suppl. 1):151.
- Carter TC. The hen's egg: Estimation of shell superficial area and egg volume, using measurements of fresh egg weight and shell length and breadth alone or in combination. British Poultry Science 1975;16: 541-543.
- Chung HJ, Chung-Yi L, Wen-Shyg Chiou P. Effects of ambient temperature and methionine supplementation of a low protein diet on the performance of laying hens. Animal Feed Science Technology 1998;74: 289-299.
- Ciftci I, Yenice E, Gokceyrek D Ozturk E. Effects of energy level and enzyme supplementation in wheat based layer diets on hen performance and egg quality. Acta Agriculture Scandinavica, Section-A Animal Science 2003;53: 113-119.
- European Council Directive. Certain marketing standards for eggs. In: Grades of eggs: grading of grade A eggs of regulation (EC); 2006 No. 2295/2003.
- Ewan RC. Energy utilization in swine nutrition. In: Miller R, Ullrey DE, Lewis AJ, editors. Swine nutrition. Boston, MA: Butterworth-Heinemann; 1991. p.134-135.
- Gouveia L, Veloso V, Reis A, Fernandes H, Novais J, Empis J. Chlorella vulgaris used to colour egg yolk. Journal of Science Food and Agricculture 1996; 10: 167–172.
- Grobas S, Mendez J, Blas C de, Mateos GG. Influence of dietary energy, supplemental fat and linoleic acid concentration on performance of laying hens at two ages. British Poultry Science 1999a; 40: 681–687.
- Grobas S, Mendez J, De Blas C, Mateos GG. Laying hen productivity as affected by energy, supplemental fat, and linoleic acid concentration of the diet. Poultry Science 1999b; 78: 1542–1551.
- Grobas S, Mateos GG, Mendez J. Influence of dietary linoleic acid on production and weight of eggs and egg components in young brown hens. Journal of Applied Poultry Research 1999c; 8: 177–184.
- Gunawardana P, Roland Sr DA, Bryant MM. Effect of energy and protein on performance, egg components, egg solids, egg quality, and profits in molted Hy-Line W-36 hens. Journal of Applied Poultry Research 2008; 17: 432–439.
- Harm RH, Russell GB. Optimizing egg mass with amino acid supplementation of a low protein diet. Poultry Science 1993;72: 1892-1896.
- Harms RH, Russell GB. Performance of commercial laying hens when fed diets with various levels of methionine. Journal of Applied Poultry Research 2003;12: 449–455.
- Harms RH, Russell GB. Performance of commercial laying hens when fed diets with various sources of energy. Journal of Applied Poultry Research 2004;13: 365–369.
- Hempe JM, Laukxen RC, Savage JE. Rapid determination of egg weight and specific gravity using a computerized data collection system. Poultry Science 1988; 67: 902–907.
- Hy-Line International. Iowa: West Des Moines; 2009-2011.
- Jackson ME, Hellwig HM, Waldroup WP. Shell quality: Potential for improvement by dietary means and relationship with egg size. Poultry Science 1987; 66: 1702–1713.
- Keshavarz K. Effects of reducing dietary protein, methionine, choline, folic acid, and vitamin B12 during the late stages of the egg production cycle on performance and eggshell quality. Poultry Science 2003; 82:1407-1414.
- Keshavarz K. Further investigations on the effect of dietary manipulations of nutrients on early egg weight. Poultry Science 1995; 74: 62-74.
- Keshavarz K, Jackson ME. Performance of growing pullets and laying hens fed low-protein, amino acid-supplemented diets. Poultry Science

- Keshavarz K, Nakajima S. Re-evaluation of calcium and phosphorus requirement of laying hens for optimum performance and eggshell quality. Poultry Science 1993; 72: 144–153.
- Keshavarz K, Nakajima S. The effect of dietary manipulations of energy, protein, and fat during the growing and laying periods on early egg weight and egg components. Poultry Science 1995;74: 50–61.
- Liu Z, Wu G, Bryant MM, Roland Sr DA. Influence of added synthetic lysine in low-protein diets with the methionine plus cysteine to lysine ratio maintained at 0.75 Journal of Applied Poultry Research 2005;14:174-182.
- Mackay E, Mountney GL, Naber EC. Yolk color resulting from different levels of paprika extract in the ration. Poultry Science 1963;42: 32–36.
- Madiedo G, Sunde ML. The effect of algae dried Lake Weed, alfalfa and ethoxyquin on yolk color. Poultry Science 1964; 43:1056–1060.
- Novak CL, Yakout H, Scheideler SE. The combined effects of dietary lysine and total sulfur amino acid level on egg production parameters and egg components in Dekalb Delta laying hens. Poultry Science 2004; 83: 977-984.
- Novak CL, Yakout H, Scheideler SE. The effect of dietary protein level and total sulfur amino acid: lysine ratio on egg production parameters and egg yield in Hy-Line W-98 hens. Poultry Science 2006;85: 2195–2206.
- Omara II, Romeilah RM. Energy and methionine utilization in laying hen diets supplementation with folic acid. Research Journal Agriculture Biology Science 2009;5(4): 428-444.
- Petersen CF, Sauter EA, Steele EE, Parkinson JF. Use of methionine intake restriction to improve egg shell quality by control of egg weight. Poultry Science 1983; 62:2044–2047.
- Ravikiran D, Devegowda G. Effects of DL- methionine supplementation in the ration of commercial layers during summer. International Journal of Poultry Science 1998;33:279-283.
- Roland DA Sr. Research note: Egg shell problem: Estimate of incidence and economic impact. Poultry Science 1998;67:1801–1803.
- Roland DA Sr, Sloan DR, Harms RH. The ability of hens to maintain calcium deposition in egg shell and egg yolk as the hen ages. Poultry 1975; 54:1720–1723.
- Safaa HM, Serrano MP, Valencia DG, Arbe X, Jime'nez-Moreno E, La'zaro R, Mateos, GG. Effects of the levels of methionine, linoleic acid, and added fat in the diet on productive performance and egg quality of brown laying hens in the late phase of production. Poultry Science 2008: 87:1595–1602
- SAS Institute. SAS user's guide: statistics. Cary; 2003.
- Scragg RH, Logan NB, Geddes N. Response of egg weight to the inclusion of various fats in layer diets. British Poultry Science 1987;28: 15–21.
- Sell DR, Rogler JC. The effect of sorghum tannin and methionine on the performance of laying hens maintained in two temperature environments. Poultry Science 1983;63: 109-116.
- Shafer DJ, Carey JB, Prochaska JF. Effect of dietary methionine intake on egg component yield and composition. Poultry Science 1996;75:1080-1085.
- Simkiss K, Taylor C. A histochemical study of the organic matrix of hen eggshells. Quarterly Journal of Microscopical Science 1957; 98: 19–28.
- Sohail SS, Bryant MM, Roland Sr DA. Influence of supplemental lysine, isoleucine, threonine, tryptophan, and total sulphur amino acids on egg weight of Hy-Line W-36 hens. Poultry Science 2002; 81:1038– 1044
- Sohail SS, Bryant MM, Roland Sr DA. Influence of dietary fat on economic returns of commercial Leghorns. Journal of Applied Poultry Research 2003: 12: 356–361.
- Summers, J. D., J. L. Atkinson and D. Spratt. Supplementation of a low protein diet in an attempt to optimize egg mass output. Canadian Journal Of Animal Science 1991;71: 211-220.
- Wu G, Bryant MM, Roland Sr DA. Effect of synthetic lysine on performance of commercial Leghorns in phase II and III (second cycle) while maintaining the methionine+cysteine/lysine ratio at 0.75. Proceedings of the International Poultry Scientific Forum Abstracts; 2005a; Atlanta. USA. p.43.
- Wu G, Liu Z, Bryant MM, Roland Sr DA. Performance comparison and nutritional requirements of five commercial layers strains in phase IV. International Journal of Poultry Science 2005b; 4:182-186.
- Zou SG, Wu YZ. Effects of supplemental fat on performance of laying hens.