

Ciencia en su PC

ISSN: 1027-2887

cpc@megacen.ciges.inf.cu

Centro de Información y Gestión Tecnológica de Santiago de Cuba Cuba

García-Gracial, Yuliet; Ruiz-Ruiz, José María; González-Fernández, Mayra Mónica REHABILITACIÓN ESTRUCTURAL DEL HOTEL IMPERIAL, SANTIAGO DE CUBA Ciencia en su PC, núm. 4, octubre-diciembre, 2016, pp. 22-36 Centro de Información y Gestión Tecnológica de Santiago de Cuba Santiago de Cuba, Cuba

Disponible en: http://www.redalyc.org/articulo.oa?id=181351126002

Número completo

Más información del artículo

Página de la revista en redalyc.org

REHABILITACIÓN ESTRUCTURAL DEL HOTEL IMPERIAL, SANTIAGO DE CUBA

STRUCTURAL REHABILITATION OF THE IMPERIAL HOTEL, SANTIAGO DE CUBA

Autores:

Yuliet García-Gracial, <u>ygarcia@emproy15.co.cu</u>. Empresa de Proyectos de Arquitectura e Ingeniería No. 15 [Emproy # 15]. Teléfono 643713. Santiago de Cuba, Cuba.

José María Ruiz-Ruiz, <u>josem@uo.edu.cu</u>. Teléfono 601269.¹
Mayra Mónica González-Fernández, <u>mayra@uo.edu.cu</u>. Teléfono 601273.¹
Universidad Oriente. Santiago de Cuba, Cuba.

RESUMEN

El patrimonio heredado en nuestra provincia posee disimiles estilos arquitectónicos, legados de importantes arquitectos que marcaron pauta en el siglo pasado. El objetivo fundamental de este trabajo es proponer acciones de intervención estructural sismorresistente en el edificio del hotel Imperial. Este edificio ecléctico, diseñado por el arquitecto Carlos Segrera y ubicado en Centro Histórico Urbano de la cuidad, requiere de una efectiva intervención por el desuso y el grado de deterioro que presenta. En este trabajo se exponen los resultados del estudio del comportamiento estructural del hotel Imperial, mediante la aplicación de la metodología de evaluación de la vulnerabilidad sísmica estructural de Scarlat de nivel III. Los resultados arrojaron que la respuesta dinámica del edificio es adecuada; sin embargo, los elementos verticales resistentes del primer y segundo nivel de la parte más antigua del edificio poseen inadecuada resistencia ante sismos de gran intensidad. Se propone como condición indispensable de la intervención la disminución de las cargas permanentes impuestas por los pesos muertos producidos por los grandes espesores de relleno en los entrepisos y la cubierta, así como el peso de los elementos no estructurales.

Palabras clave: Patrimonio edificado, rehabilitación estructural y vulnerabilidad

ABSTRACT

The patrimony inherited in our province possesses dissimilar architectural styles; they are legacies of important architects, that marked rule in last century. The fundamental objective of this work is to propose actions of structural intervention earthquake withstand in the hotel Imperial building. This eclectic building, located in the historic urban center, is one of the most significant; it was designed by the architect Carlos Segrera, that, due to its disuse and high deterioration grade, requires of an effective intervention. In this paper is presented the results of the structural behavior in the hotel Imperial, it was carried out applying the Scarlat methodology, level III, where a appropriate dynamic behavior of the building was obtained, however, the withstand of vertical elements on first and second level of the oldest part in the building possess inadequate resistance against earthquakes of great intensity. It is proposed as indispensable premise in the structural intervention to diminish permanent loads imposed by the dead loads due to the original filler thicknesses and non-structural elements.

Key words: Built patrimony, structural rehabilitation and vulnerability.

INTRODUCCIÓN

La conservación de patrimonio es un tema recurrente en nuestros días. En Santiago de Cuba gran parte del patrimonio construido se encuentra ubicado en la zona más antigua, que limita el Centro Histórico Urbano de la cuidad (CHU). Por esta razón, el Ministerio del turismo (Mintur), aprovechando la creciente tendencia a nivel mundial del turismo cultural, identifica a la ciudad como un producto turístico, donde prevalece una combinación de atributos y valores que le permite al turista disfrutar de la idiosincrasia santiaguera, su cultura, historia y naturaleza. De ahí que se haya trazado como estrategia el rescate de inmuebles ubicados en el centro histórico urbano con altas potencialidades para el turismo. Por la posición privilegiada que ocupa dentro del centro histórico urbano, el hotel Imperial es uno de los mejores y más valiosos exponentes de la arquitectura ecléctica santiaguera, que por su monumentalidad e imponente decoración en fachada aporta un significativo valor ambiental. El edificio, según las regulaciones urbanísticas emitidas por la dirección del Plan Maestro de la Oficina del Conservador de la cuidad, no tiene valor arquitectónico interiormente; sin embargo, su fachada está catalogada con grado II de protección. Hace más de diez años se encuentra en desuso total y con un alto grado de deterioro de sus componentes estructurales y formales, como desconchado y grietas en muros de ladrillos, mala calidad de los materiales y humedad, losas de hormigón armado con ausencia de acero de retracción, oxidación y falta de recubrimiento; así como la falta de estudio referente al comportamiento estructural del edificio, lo cual imposibilita la ejecución de un proyecto encaminado a la reducción de las vulnerabilidades y el nivel de riesgo existente para su puesta en explotación.

El objetivo del trabajo fue la proposición de acciones de intervención estructural sismorresistente al hotel Imperial, de modo que se reduzcan las vulnerabilidades y el nivel de riesgo existente para prolongar su tiempo de vida útil y conservar sus valores patrimoniales y ambientales.

Figura.1 Vista del hotel Imperial

1.1. Caracterización estructural del edificio

Construido en su primera etapa en 1914, maravilló a la población por su imponente decoración y su altura, posee 4 niveles estructurales construidos por un sistema de pórticos, con columnas de hierro fundido de sección tubular, huecas, de 300mm de diámetro y 25mm de espesor, revestidas con malla de alambre y yeso para lograr el estilo arquitectónico previsto. Las vigas son de acero laminado de sección I de 508mm y 304mm de peralto, también revestidas con yeso, hormigón, y en determinados casos con ladrillos de barro para lograr la sección cuadrada. En algunos ejes de la estructura se pudo observar vigas dobles de sección I-508mm, las mismas se apoyan sobre ménsulas de hierro fundido a las columnas y en los elementos de mampostería que conforman las fachadas principales de la edificación con espesores de 70 cm en las fachadas ubicadas en la dirección paralela a la calle Enramada y Santo Tomás. Las restantes divisiones varían entre 25cm a 15cm de espesor, según la responsabilidad estructural de los mismos. En 1932 se realizó el proyecto de ampliación del hotel, que aumentó tres módulos en la dirección paralela a la calle Santo Tomás (Félix Pena), respetando el estilo arquitectónico original, pero utilizando como material el hormigón armado para los elementos estructurales que conforman esta ampliación del hotel. Esta ampliación incluyó un sótano. Los muros exteriores que conforman los arcos de

medio punto de la fachada están construidos con hormigón fundido in situ.

Evaluación de la tipología estructural y detalles constructivos

Se realiza una evaluación cualitativa de la tipología estructural (superestructura y subestructura) del sistema estructural estudiado, con el objetivo de evaluar las vulnerabilidades asociadas al sistema estructural.

Vulnerabilidad asociada al sistema estructural del inmueble

- •Regularidad en planta
- Regularidad vertical
- Solución de cimentación
- •Detallado del refuerzo de los elementos estructurales
- Unión Columna-Viga

Regularidad en planta

- •El sistema en general presenta un buen comportamiento de las formas de respuesta de las líneas de resistencia principales.
- •No existen entrantes ni salientes en planta que exceden el 20 % de la dimensión en planta del edificio en la misma dirección.
- •Se cumple la relación largo-ancho de la planta (25.02 / 22.53 =1.11 3).
- •El diafragma de los pisos no presenta aberturas que excedan el 20 % de la planta.

Por lo que se considera que el edificio tiene una planta regular.

Regularidad vertical

- •El edificio consta de 5 niveles estructurales, incluyendo el sótano.
- •La distribución de las masas es aproximadamente uniforme.
- •Cumple con la relación altura del edificio entre la dimensión menor de su base (26.18m /22.53m =1.16) <4.
- •Todas las columnas están restringidas en todos los pisos en las dos direcciones ortogonales por diafragmas horizontales y por vigas o losas planas.
- •Existe discontinuidad en algunos elementos verticales.

Solución de cimentación

La edificación posee dos niveles de cimentación. En la primera etapa de construcción las columnas se apoyan sobre bases de hormigón ciclópeo de 2.15x2.15x1.00m y los muros perimetrales sobre una zapata corrida de hormigón armado. En la segunda etapa la construcción está apoyada sobre pedestales de dimensión variable que se apoyan directamente sobre el terreno. Los mismos, según el diagnóstico estructural que se le realizó al inmueble, presentan aceros de 5/8' en los refuerzos longitudinales y 3/8' en los cercos, se desconoce su espaciamiento y otros datos relacionados con los detalles constructivos.

Detallado del refuerzo de los elementos estructurales

De los elementos del sistema estructural en la segunda etapa se desconoce exactamente de cada elemento las cuantías y disposición del refuerzo, tanto longitudinal como transversal, ya que el diagnóstico estructural no recoge exactamente dichas disposiciones; por lo tanto, se tomaron consideraciones según criterio compartido con los expertos que participaron en el análisis.

Unión columna-viga-losa

Se desconoce la solución dada exactamente a esta unión, pero de la inspección visual se puede inferir que el detallado o concepto de la unión ha garantizado la invariabilidad cinemática relativa de los elementos vinculados, al no apreciarse ningún tipo de grieta o fisura en esa zona. Estas uniones no presentan refuerzo transversal, por lo que no se garantiza un adecuado confinamiento del hormigón que asegure el trabajo de los elementos y el nudo bajo grandes desplazamientos laterales impuestos (peligro de fallo por cortante). Las losas que conforman los entrepisos y la cubierta de la edificación presentan problemas estructurales, baja resistencia, alto grado de corrosión de los refuerzos principales, poco recubrimiento y falta de acero de retracción o temperatura, así como la falta de conexión con las vigas del sistema. Es por eso que se aprecia principalmente en la parte superior de la losa grietas a todo lo largo de la viga.

Capacidad dúctil de la estructura portante

Según la NC 46:2014, este factor adopta valores que están en función de la capacidad de la estructura para disipar la energía a través del desarrollo de deformaciones plásticas. En el caso particular de la estructura analizada no tienen una probada capacidad para incursionar en el rango de comportamiento inelástico, asumiendo un valor de R=1.5. El bajo nivel de ductilidad del sistema estructural se relaciona también con la baja capacidad de los pórticos de admitir deformaciones plásticas debido, entre otras causas, a problemas de baja calidad del hormigón, presencia de aceros con altos grado de corrosión, baja cuantía de refuerzo de las columnas y vigas, así como otros aspectos asociados al detallado de las secciones, como la deficiente disposición del refuerzo a cortante que confinan el elemento.

METODOLOGÍA

Evaluación sísmica de la estructura del hotel Imperial

La evaluación del comportamiento estructural del hotel Imperial se realizo a partir de un modelo físico, aplicando la metodología de evaluación de la vulnerabilidad sísmica estructural de SCARLAT (1996) en su nivel III, para obtener resultados que permitan establecer una propuesta de intervención estructural, científicamente justificada, encaminada a prolongar el tiempo de vida útil y a conservar sus valores patrimoniales. Teniendo en cuenta el alto grado de deterioro del inmueble, años de construcción y la complejidad de los trabajos a realizar, era imprescindible y de vital importancia ejecutar estudios previos de investigación a los materiales empleados para determinar sus características. Para establecer la calidad y resistencia del hormigón utilizado se procedió a realizar ensayos destructivos y no destructivos a los elementos determinados por el investigador. Basados en estos resultados y utilizando como herramienta de cálculo el software SAP-2000, versión 14.1, se obtuvo un modelo físico lo más ajustado a las condiciones reales. Para ello se empleó el método de análisis modal simplificado como método del espectro de respuesta. En la obtención del modelo se consideraron las cuatro invariantes

del proceso de modelación.

- 1-Geometría
- 2-Materiales
- 3-Condiciones de apoyo y conexiones entre elementos
- 4-Cargas

Modelación de la geometría

Para la realización de este paso se tuvo en cuenta la modelación de las secciones y longitud de cada elemento. Los pedestales, vigas y columnas fueron modelados como elementos lineales. Los muros de fachada fueron discretizados para lograr mejores resultados en la respuesta de los muros. Estos fueron además modelados como elementos finitos, las losas se modelaron como un None Shell solamente para la transmisión de las cargas (ver figura 2). En el modelo se definen:

Número total de nudos: 11526

Número total de elementos lineales: 6484

Número total de elementos finitos tipo "shell": 5713

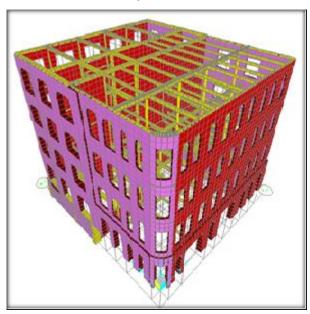


Figura 2. Modelo físico de la estructura del hotel Imperial

Modelación de los materiales

El modelo de análisis tiene en cuenta los materiales presentes en la edificación, pórticos de acero en la primera etapa de ejecución y pórticos de hormigón armado en la segunda etapa. Las losas que conforman el entrepiso presentan diferentes espesores; por tanto, no se consideran en el análisis de los materiales. Los muros de fachada e interiores están hechos con ladrillos de la época con espesores de 700mm, 250mm y 200mm; excepto en la segunda etapa de construcción del hotel en la fachada paralela a la calle Santo Tomás, que son de hormigón armado. No se pudo conocer el valor de la resistencia de los muros de albañilería, por lo que hubo que asumir un 70 % de la resistencia de estos y tomar como valores los utilizados hoy por la norma NC 283:2003.

Modelación de los vínculos entre los elementos y condiciones de apoyo

Para conformar el modelo físico de la estructura del hotel el investigador tuvo en cuenta, tras inspecciones realizadas e hipótesis tomada, las siguientes consideraciones:

- I. Pedestales: empotrados en la base.
- II. Columnas: empotradas en la base y continuas en el extremo superior.
- III. Vigas: articuladas en sus dos extremos.
- IV. Entrepiso: el estudio fue realizado considerando el cumplimiento de la hipótesis del entrepiso, infinitamente rígido en su plano.

Modelación de las cargas

 Las cargas se modelaron teniendo en cuenta el peso de los materiales existentes, los espesores de relleno y de las losas por niveles. según NC 284:2003 y NC-207:2002

Cargas permanentes

Losas de hormigón armado de espesores variables (100-170mm) y espesores de rellenos desde 20cm en el primer nivel hasta 54cm en la cubierta.

Nivel +0.00 $q = 4.32 \text{ kN/m}^2$

Nivel +5.15 $q = 7.92 \text{ kN/m}^2$

Ciencia en su PC, 4, octubre-diciembre, 2016. Yuliet García-Gracial, José María Ruiz-Ruiz y Mayra Mónica González-Fernández

Nivel +10.05 $q = 8.82 \text{ kN/m}^2$ Nivel +14.40 $q = 11.64 \text{ kN/m}^2$

Nivel +19.35 $q = 13.32 \text{ kN/m}^2$

Cargas de uso

La carga de uso para pasillo, habitaciones y galería será de 1.5 kN/m² y para la cubierta con drenaje por tragante será de 2.0 kN/m²

Carga ecológica de sismo

Se modelan las cargas sísmicas como cargas actuantes en el plano horizontal, actuando el 100 % de la carga sísmica en una de las direcciones principales del edificio, simultáneamente con el 30 % en la otra. Las cargas sísmicas son generadas por el SAP 2000 versión 14.1 a partir del espectro de diseño que establece en la NC 46-2014 para bases de suelo soportante tipo B, para el sismo básico con un 10 % de probabilidad de excedencia y un tiempo de vida útil de 50 años y ubicación en el municipio de Santiago de Cuba, correspondiente a la zona 5, con valores de aceleraciones espectrales de S_s=1.035g (para período de 0.2 segundos) y S₁=0.428g (para período de 1 segundo).

Método Scarlat III

Por ser una edificación que ha cumplido ya el tiempo de vida útil para el que fue diseñada, el análisis no debe realizarse para los valores de fuerza sísmica que da el código vigente, por lo que se considera un coeficiente adicional para tener en cuenta dicho por ciento.

 $F=0.7F_0$ (1+md+mc+mp+mh) donde:

F₀-Es la fuerza dada por los códigos de diseño de estructuras vigentes.

md- coeficiente que tiene en cuenta el tipo de documentación.

mc- coeficiente que tiene en cuenta el estado técnico presente en la edificación.

mp- coeficiente para estructura con elementos prefabricados.

mh- tiene en cuenta el efecto de martilleo.

Valores de coeficientes seleccionados

md=0.1 (tipo de documentación)

mc=0.1(estado satisfactorio de la edificación)

mp=0 (elementos prefabricados)

mh=0.(tiene en cuenta el efecto del martilleo)

F=0.84F₀; por tanto, la fuerza sísmica se afecta por 0.84

Método de cálculo

El método de cálculo utilizado fue el de análisis modal simplificado como método del espectro de respuesta, utilizando como fórmula de superposición modal la combinación cuadrática completa (CQC), que resuelve el problema de los valores propios por el método de los vectores de Ritz, considera en el análisis los primeras 36 modos de oscilación, que garantizan que la razón de masa participativa acumulada esté entre el 90 % y 95 %.

RESULTADOS

Evaluación de las características dinámicas y la seguridad sísmica

Como resultado se obtiene que la estructura tiene un comportamiento regular, donde se verificó que el no acoplamiento de las formas propias de oscilación y los valores del coeficiente sísmico en las dos direcciones no sobrepasan el 20 %; igualmente, se chequearon los desplazamientos horizontales extremos totales y relativos de los puntos esquinas de las plantas del edificio existente (variante I) para el nivel de peligro definido por la NC46: 2014 (nivel I) correspondiente a las combinaciones de cargas 2 y 3 (ver Tabla 1). Se comprobó que los elementos más vulnerables del edificio resultaron ser las columnas de hierro fundido del nivel +0.00 y el +5.15, las cuales requieren de una mayor sección para soportar las cargas impuestas, el chequeo de estas columnas ser realizó por la AISC-ASD89. De esta primera evaluación se determinó que para lograr un mejor comportamiento sísmico es premisa indispensable la diminución de las cargas existentes, así como disminuir el nivel de peligro para un tiempo de vida útil de 25 años (Variante-II).

Carga	Cortant	Cortant	Coef.	Coef.	máx	СХ	су	Ta	Tc
Vertical	e Basal	e Basal	sísmic	sísmic	H/60	(m)	(m)	(s)	(s)
(kN)	en X	en Y	o en X	o en Y	0 (m)				
	(kN)	(kN)							
30865.5	6225.21	5539.89	0.2016	0.179	0.033	0.015	0.018	0.46	0.41
9	1								

Tabla-1. Resultados del análisis dinámico. Variante-I

Chequeo de los parámetros de control de la variante II

Período fundamental de la estructura

El edificio analizado está conformado por una estructura mixta compuesta por muros de albañilería y pórticos de acero (ver Fig. 3). Los muros de las fachadas aportan gran rigidez al edificio. Se tomó para el cálculo y la evaluación del período fundamental de la estructura la fórmula referida en la NC 46-2014 para la tipología E4 y se verificaron las características dinámicas del edificio con las nuevas consideraciones (ver tabla-2).

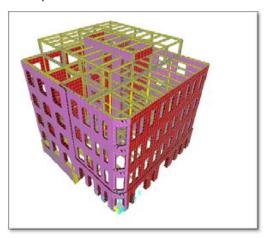


Figura 3. Modelo físico de la estructura intervenida

Carga	Cortant	Cortant	Coef.	Coef.	máx	СХ	су	Ta	Tc
Vertical	e Basal	e Basal	sísmic	sísmic	H/60	(m)	(m)	(s)	(s)
(KN)	en X	en Y	o en X	o en Y	0 (m)				
	(KN)	(KN)							
18229	1237.74	933.1	0.068	0.051	0.033	0.003	0.001	0.5	0.2
						7	8		5

Tabla 2 .Resultados del análisis dinámico. Variante-II

Se realizó un análisis de todos los elementos estructurales de la edificación y se obtuvo un adecuado comportamiento de los mismos. Las magnitudes de los desplazamientos garantizan que en el edificio no se produzcan efectos según orden significativo. Se demuestra que la evaluación de la variante-II garantiza la seguridad sísmica de la edificación y, por tanto, las acciones de intervención están encaminadas a la reparación de su estructura.

Propuesta de intervención

A continuación se explican brevemente las acciones de intervención para cada uno de los elementos estructurales.

Losas: retirar el hormigón de recubrimiento, tratar los aceros con cepillo de alambre para luego recubrirlas con inhibidor de óxido, colocar malla de gallinero de acero o plástica y luego restituir el recubrimiento con mortero estructural. En caso de que la pérdida de la sección transversal de las barras de acero sea mayor del 20 % del total del paño de la losa en análisis, se reforzará con vigas de acero. Esta acción se aprobará por el proyectista estructural, el cual dispondrá la ubicación de la viga, así como sus dimensiones.

Columnas y vigas de hormigón: tratamiento de las patologías, lo cual incluye retirar el recubrimiento de zonas afectadas, cepillado con alambre de acero, impregnación con inhibidor de óxido y restitución del recubrimiento con mortero estructural. Como última acción se colocarán fibras de carbono en las posiciones señaladas por el proyectista en los casos que los necesiten.

Columnas metálicas: colocar malla de gallinero de acero o plástica alrededor de todas las columnas, se revestirán con mortero de alta adherencia.

Vigas de acero: **c**epillado con alambre de acero, impregnación con inhibidor de óxido, anticorrosivo y 2 manos de pintura ignífuga.

Cimentación: se ejecutarán vigas de cimentación debidamente conectadas a las columnas a través de un marco de continuidad, para dar mayor rigidez a la base del edificio.

CONCLUSIONES

Las acciones de intervención propuestas responden a la evaluación de los parámetros de control analizados.

En la evaluación del comportamiento dinámico del edificio se obtuvo como resultado que los parámetros evaluados se comportan de manera adecuada.

Los elementos verticales resistentes del primer y segundo nivel de la parte más antigua del edificio fallan por capacidad.

Se propone como premisa indispensable de la intervención, a fin de mejorar el comportamiento de la estructura, la disminución de las cargas permanentes impuestas por los pesos muertos producidos por los grandes espesores de relleno en los entrepisos y la cubierta, así como el peso de los elementos no estructurales.

Con las soluciones propuestas para la intervención se obtienen reducciones apreciables en los valores de las solicitaciones debidas a cargas sísmicas para el nivel de peligrosidad escogida.

Se propone utilizar materiales para las acciones propuestas compatibles con los originales, que no dañen el medioambiente.

RECOMENDACIONES

Se recomienda que este trabajo sirva de referencia a proyectos de futuras intervenciones a edificaciones existentes con características similares, para así poder lograr un proyecto de rehabilitación estructural económicamente sustentable.

Ciencia en su PC, 4, octubre-diciembre, 2016. Yuliet García-Gracial, José María Ruiz-Ruiz y Mayra Mónica González-Fernández

REFERENCIAS BIBLIOGRÁFICAS

Comité Estatal de Normalización (2003). NC 284:2003. Edificaciones. Cargas de uso. La

Habana.

Cuba. Comité Estatal de Normalización (2003). NC 283:2003. Densidad de materiales

naturales, artificiales y de elementos de construcción como carga de diseño. La Habana

Cuba. Comité Estatal de Normalización (2014). NC 46:2014. Construcciones

sismorresistentes. Requisitos básicos para el diseño y construcción. La Habana.

Comité Estatal de Normalización (2002). NC-207:2002. Requisitos generales para el

diseño y construcción de estructuras de Hormigón. La Habana.

Manual de usuario del software SAP 2000, v14.1. Recuperado de

http://www.manualespdf.es/manual-sap2000/

Scarlat, A. (1996). Aproximate Methods in Structural Design. London: E & FN Spon.

Recibido: junio de 2016

Aprobado: septiembre de 2016

36