

Psychology & Neuroscience

ISSN: 1984-3054 landeira@puc-rio.br

Pontifícia Universidade Católica do Rio de

Janeiro Brasil

Machado de Sousa, João Paulo; Cecílio Hallak, Jaime Eduardo
Facial information processing in schizophrenia
Psychology & Neuroscience, vol. 1, núm. 1, enero-junio, 2008, pp. 21-26
Pontifícia Universidade Católica do Rio de Janeiro
Rio de Janeiro, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=207015669004

Complete issue

More information about this article

Journal's homepage in redalyc.org

Facial information processing in schizophrenia

João Paulo Machado de Sousa and Jaime Eduardo Cecílio Hallak

Universidade de São Paulo, Ribeirão Preto, Brazil

Abstract

The processing of facial identity and emotion in schizophrenia and its relation with these patients' cognitive and social function has been extensively studied over the last 25 years. In this paper, the results of 32 studies indexed in the PubMed database published between 2001 and 2005 are analyzed and synthesized. Following the description of the problem and presentation of current hypotheses, methodological aspects and findings concerning the processing of facial emotion and identity are discussed. The analyshows that, despite the growing attention dedicated to the theme and the provision of more specific results, the question of depender independence between the two processes - emotion and identity recognition - and between these and the pervasive cognitive defifound in schizophrenia remains unanswered. **Keywords:** schizophrenia, face, emotion, affect, identity.

Received 13 December 2007; received in revised form 27 February 2008; accepted 29 February 2008. Available online 20 May 2008.

Introduction

No other part of the human body is able to convey, from an immediate visual appraisal, so much essential information for survival and social functioning as the face. The facial features, which generate this information, may be divided in two groups: structural (the face's physical features) and dynamic (derived from the automatic or deliberate movement of the facial features).

These two groups may be better understood according to the type of information each transmits. Thus, structural features are those essentially responsible for the composition of an individual's facial identity. Besides identity, the structural features of the face still transmit information on the individual's gender and age, participating in the regulation of a broader social contact. The dynamic features of the face refer to the multiple possibilities of organization of the face's internal elements (eyes, mouth, eyebrows, etc.) as to create different facial expressions, indicators of the emotional context elicited by the environment.

The importance of the face in human interaction has drawn the attention of researchers for over a century. Darwin (1872) carried out a deep study on affect manifestations in humans and animals, suggesting that facial expressions represent innate and automatic behavioral patterns. According to this idea, it is reasonable to suppose that the

human capacity to quickly and precisely decode fa expressions such as fear, for instance, has been select throughout evolution due to its adaptive value.

Following Darwin's steps, other researchers for evidence that led them to propose that facial expressi are automatic representations derived from the individu emotional experience. Hence, the informative value of s expressions is not their essential function, but a second effect of an internal and individual emotional experie (Izard & Malatesta, 1987; Ekman, 1997).

In contrast, Blair (2003) suggests that facial expressi of emotion mainly serve a communicational purpor where the individual can transmit information on emotional valence of objects and situations to observe of the same species. Therefore, the conditions for emotional representation require not only an emotion event, but also a potential observer. Consistent with the empirical evidence suggests that emotional expressions not the automatic result of an internal emotional conditional depend on the social context or even on the deliberation of the person displaying the emotion.

Such a complex ability to decode important fa information in the environment, emotional or ident related, will rely on the harmonic functioning of strateg learned throughout development and the neural system underlying the processing of facial information.

Identity and emotion

Though apparently indistinct at first sight, evider suggests that the processing of facial identity and fact affect relies on diverse and interconnected, systems. The process of the proc

João Paulo Machado de Sousa and Jaime Eduardo Cecílio Hallak, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil. Correspondence concerning this article should be addressed to

22 Sousa and Hal

 \bigcirc

codes for recognition. According to this model, whenever the observer encounters an emotional face, this face undergoes a normalization process during which the dynamic features are left aside. The normalized face is then submitted to an appreciation based on the FRUs to then be identified. In short, the model proposes the functional independence between the processing of identity and emotion.

Despite the coherence of that model, the question of dependence/independence between the processing of emotion and identity remains unanswered. In a study to investigate the effects of expression on recognition, Endo, Endo, Kirita and Maruyama (1992) designed a task using familiar and unfamiliar faces representing three emotions: happiness, sadness and neutral affect. The results showed that the time for face recognition was strongly affected by emotional affect, neutral faces being recognized faster than emotional faces.

Pathology and facial information processing

Despite the above proposition that the human ability to decode faces is innate and results from successful adaptation, that ability likely improves after birth, throughout the developmental process. Additionally facial decoding may be subject to the same risks of failure observed in other cognitive and neuropsychological functions. Part of the healthy development of facial information processing involves the capacity to modulate and respond properly to the environment's social requirements. Saarni (1984) observed that facial disappointment expressed by a young child who receives a poorer than expected gift is much more easily perceived than the same feeling expressed by an older child. Accordingly, one may infer that certain conditions may have a negative influence on the development and enhancement of this perceptive modality. Thus leaving open the possibility of erroneous interpretation of the social context or even to the inability of accomplishing any functional appraisal at all.

Probably the most well documented example of such dysfunctions (Damasio et al., 1982; De Renzi et al., 1990; Farah, 1991, in Posamentier & Abdi, 2003) is prosopagnosia (from the Greek prosopon, 'face' + agnosia, 'ignorance'). In that condition the individual is unable to identify familiar faces, resorting to other clues (voice, gestures, etc.) in order to recognize people. Despite such impairment, however, the capacity to interpret facial emotions may remain perfectly healthy in these individuals. Besides prosopagnosia, which refers more specifically to the dysfunction in face identification, several studies have also supplied evidence of impaired facial emotion recognition in psychiatric conditions such as depression, social phobia, panic disorder, and schizophrenia. Such impairment, in contrast with prosopagnosia whose circumscription is quite precise, may have varied presentations and is object of disagreement among researchers.

Faces and schizonhrenia

lack of standardized stimuli in the beginning, and challenge of knowing exactly which cognitive proces were enrolled in each task's demands. These issues did hinder research from expanding and providing import findings since the middle 1980s, when better focu and systematic studies started to appear. However, so crucial questions remain. Facial information decod depends not only on the integrity of the percept system itself, but also on some cognitive functisuch as memory and attention. Generally speaking, schizophrenic patient presents important neurocognit impairments, rendering the distinction between effects of these and possible specific impairment in fac processing a difficult undertaking. Besides the question 'global deficit vs. specific deficit', schizophrenia may divided in subtypes, according to the group of promin symptoms. The current research on facial process in schizophrenia has been obliged to clearly define patient group that is studied since the impairment in f perception seems to be subject to the disease's differ presentations.

The objective of this review is to make a survey the studies on processing of facial identity and emot in schizophrenic patients published in the last 5 ye analyzing their methodological aspects and results, who point to answers for the questions posed above.

Method

Paper search and selection

The search was conducted on the Medline database us the keywords "schizophrenia", "affect", "identity", "fa and "facial", identifying a total of 97 papers, from wh 32 were selected. Inclusion criteria were empirical stude published in the last five years in English, Portuguese Spanish, involving the processing of facial identity and emotion in schizophrenia. The time range, set at five ye was determined in function of the publication of sim studies in 1994 (Phillips & David), 1997 (Mueser et and 2002 (Edwards et al.).

Population

The 32 studies involved a total of 2641 participa which were divided into three groups for this analy schizophrenia patients (SP), patients with other diagnot (POD) and healthy controls (HC). The two groups patients account for about half of the total, the remain half being composed by HC.

Among the 2503 participants whose gender was noted (one of the studies did not specify the gendistribution of a group of 138 healthy controls), 5 (1,496) were male, and 41% (1,007) female. It distribution of gender by group was more uneven amos SP, where there were almost two times more ment women (903 and 469, respectively). In the POD and

Facial information processing in schizophrenia

Regarding age, some studies provided means, while others informed the range, making it impossible to determine either a general mean or a global range. In the SP group, means varied between 17.6 (SD = 3.1) and 47.7 (SD = 7.1), and the range was 18-60. In the HC group, means varied between 21.7 (SD = 6.05) and 48.2 (SD = 9.6), while the age range was 18-45. Four studies had no control groups.

The POD group included 44 patients with affective disorders (1 study), 41 with depression (2 studies), 35 autistic patients (1 study) and 30 brain-lesioned patients (1 study). First-degree relatives of schizophrenic patients (134; 3 studies) and autistic patients (102; 1 study) were also included in this group since they were regarded as 'cases' in the studies they took part in. Given the small number of participants in each condition, specific information on gender and age are unimportant.

Tasks

A series of differences among the experimental designs adopted by each study was observed. Most authors adopted tasks specifically developed for their studies, despite the existence of consolidated tasks to evaluate facial information processing [e.g. Benton Facial Recognition Test (BFRT – Benton, Hamsher, Varney & Spreen, 1983), Kinney's Affect Matching Task (KAMT – Kinney, 1995)].

The different tasks used may be divided into four general categories, according to their requirements: 1) Emotion recognition: labeling of facial emotions using predefined categories or subjective judgment. 2) Emotion discrimination: response based on emotional face presented previously or simultaneously to a target stimulus. 3) Emotional intensity determination: response based on differences of emotional intensity represented in the stimulus.

Stimuli

The same diversity in the tasks chosen was observed in the stimuli that were used. The most used stimuli (9 studies) were, as expected, the series "Pictures of Facial Affect" by Ekman and Friesen (1976), followed by original or unidentified series (11 studies) of pre-existent tests like the BFRT or KAMT (4 studies), series by Matsumoto and Ekman (3 studies), series by Mazurski and Bond (2 studies), schematic faces (1 study), and series by Izard (1).

Results

Identity

The first main point is that research on facial information processing in schizophrenia focuses mainly on emotion recognition, with the processing of identity coming in second place. All the 32 studies investigated facial affect recognition, but only 50% also investigated non-emotional aspects, included in the category "identity." Among the 16 studies that investigated identity processing, seven (43.75%) found no differences between schizophrenics

al., 2003). The same procedure and results were found a study by Scholten, Aleman, Montagne and Kahn (200 comparing facial recognition abilities in male and ferr schizophrenics. Gur et al. (2002), using an age estimat paradigm, also failed to find differences between a groof patients and healthy controls.

 \bigcirc

Additionally, no differences were observed Combs and Gouvier (2004) when comparing measure of attention and facial identity processing. Still amount the studies that found no differences between patient and controls in identity processing, Schwartz, Mar Drapalski, Rosse and Deutsch (2002) observed to patients are as influenced as healthy controls by chan in facial configuration. This finding supports the idea to schizophrenics have a contextual appraisal of the far rather than a compartmented one.

Despite these negative results, a discretely hig proportion of studies investigating identity process (56.25%) did find differences between patients and contr. Kucharska-Pietura, David, Masiak and Phillips (20 state that schizophrenics are more impaired than contrin face recognition, and that such impairment correlawith illness' duration. Identity-related cognitive defi were investigated by Bozikas, Kosmidis, Anezoula Giannakou and Karavatos (2004), who verified mem and verbal fluency impairment in patients, and by Sac Steger-Wuchse, Kryspin-Exner, Gur and Katschnig (200 who reported impairment in verbal memory, abstractiflexibility and language processing.

Some studies suggest that facial recognition n be impaired due to restricted visual scanpath patte (Loughland, Williams, & Gordon, 2002; Loughla Williams, & Harris, 2004). In practice, schizophrer do not 'see' the face as healthy people do, fixating m on peripheral and less important zones than on the fafeatures that transmit information about identity. Curiou an attenuated form of these abnormal patterns was a observed in first-degree relatives of schizophrenic patie The results of two other studies lie within an intermed zone, indicating that schizophrenic patients have proble in the performance of affect matching tasks in different faidentities (Baudouin, Martin, Tiberghien, Verlut, & Fran 2002; Martin, Baudouin, Tiberghien, & Franck, 2005). proposed explanation is that these individuals' inability disregard irrelevant information for the execution of task is correlated with negative symptoms.

Emotion

All 32 studies investigated facial emotion process in schizophrenia. Among those, five (15.6%) failed to fulfiferences between patients and healthy controls: Fet al. (2006) found no differences in emotional intensity differences using a six-point Likert scale. Comparing patients with their first-degree relatives and healthy controls, Be and Poustka (2003), found similar performance in all the groups. Gur et al. (2002) reported no differences between

24 Sousa and Hal

 \bigoplus

effect of configurational changes in emotion recognition and concluded that changes in face position or combination of different faces do not influence the process. Lastly, Baudouin at al. (2002) propose that variations in emotional expressions do not affect the recognition of facial identity.

In spite of these negative results, most of the studies (84.4%) found differences in the processing of facial emotion in schizophrenics. With the development of the research in the field, the results of these studies may be analyzed separately, according to their specificity.

Schizophrenia, cognition and social functioning

A study involving samples of schizophrenic patients with single and multiple episodes found that the recognition of facial emotion correlates with social and cognitive functioning in schizophrenia (Addington, Saeedi, & Addington, 2006). Additionally, other studies showed that men and women are differentially impaired in social contact, with males being the most affected (Hooker & Park, 2002; Scholten et al., 2005). This difference between genders, also observed in healthy people, remains unchanged in schizophrenia.

Results show that the impairment in emotion recognition may be related to cognitive deficits in different domains such as verbal memory, language processing and attention (Combs & Gouvier, 2004; Bozikas et al., 2004; Sachs et al., 2004). Martin et al. (2005), although not indicating specific cognitive deficits, suggest that schizophrenics again have difficulties disregarding irrelevant facial information for the execution of certain tasks. In this study, patients had problems matching photographs of the same emotion represented by distinct facial identities.

Social functioning problems resulting from dysfunctional emotional perception in schizophrenia may still be linked to the visual scanpath patterns observed in these patients. According to two studies by Loughland et al. (2002, 2004), schizophrenics show restricted visual scanpaths which lead to deficits mainly, but not exclusively, in the recognition of neutral and happy faces. An attenuated version of such a pattern is also be observed in these patients' first-degree relatives.

Affect processing and symptomatology

As proposed in the introduction, the research on facial information processing in schizophrenia has evolved, supplying more specific results related to different aspects of the schizophrenia. Evidence shows that patients with chronic schizophrenia have greater impairment in affect recognition than those in the beginning of the illness, which in turn are more impaired compared to healthy people (Kucharska-Pietura et al., 2005). Hearing impaired schizophrenics showed greater deficits compared to patients with normal hearing (Kubota et al., 2003) while disorganized and paranoid patients proved more impaired than residual patients (Weniger Lange Ruther & Irle

linked to difficulty in sustaining concentration in task – resulting in more judgment mistakes) in one str (Gur et al., 2006), but decreased response speed in anot (Suslow, Roestel, & Arolt, 2003).

Some studies also pointed to deficits for specemotions. For example, patients with higher psychopa scores are more impaired in the recognition of sadn (Fullam & Dolan, 2006), schizophrenics in remiss have greater difficulties recognizing sadness and any but not other emotions (Bediou et al., 2005), patients we blunted affect and anhedonia show increased sensitive for negative emotions (Suslow, Droste, Roestel, & Ar 2005), and paranoid patients present abnormal amplituduring the visualization of neutral faces in ERP studies. (Herrmann, Reif, Jabs, Jacob, & Fallgatter, 2006).

Intervention

One of the studies (Wolwer et al., 2005) submitted a groups of patients to distinct training programs (one air at the remediation of cognitive deficits: CRT – Cognit Remediation Training, and another specifically at emot recognition: TAR – Training of Affect Recognition After verifying that schizophrenics were impaired in recognition of facial emotions, The TAR group displays ignificant improvement in the recognition of facial emotion approaching the performance of the control group.

Discussion

According to our analyses, we found that resear on facial information processing has been evolving providing specific results related to different aspects of schizophrenic disorder. The study on facial informat perception is divided in two wide domains: 1) process of identity and 2) processing of emotion. The analysindicate that there is substantially greater interest the research related to emotional information, possis motivated by the search for deeper comprehension of mechanisms which lead to the precarious social adaptate of the schizophrenic patient.

Besides impaired social functioning, cognitive defind different domains are observed in schizophrenia, so as attention, memory and language processing. To observation of these impairments has led researchers question whether the deficits in the processing of emot and identity are specific phenomenon or the result of glocognitive impairment. The results of the studies we analy do not allow for the elaboration of a definitive answering since they offer evidence pointing in diverse directions spite of this, there seems to be a solid correlation between memory impairment and identity processing, and between impaired attention and language and emotion processing. Further research dedicated to comprehensive cognitions assessment in conjunction with face processing tas might help establish the basis of this interaction.

which investigated both these domains found no differences between schizophrenics and healthy controls regarding identity processing, but found patients impaired in emotion recognition. The remaining two thirds found impairment in both domains. This numerical difference, however, is not enough to confirm the hypothesis of a global deficit in face perception, since there are important differences in the study designs.

The major troublesome factor for a global analysis of the results from the different studies is the plethora of tasks and stimuli used. The use of standardized tasks would facilitate the comparison of results, but is hindered by the virtual impossibility of developing a small number of instruments adequate for the investigation of quite different aspects of the same problem.

Since no doubts seem to be left regarding the correlation between schizophrenia and facial processing deficits, the current area of most interest is the investigation of differences among the different patient subgroups. The most robust evidence in this direction indicates that patients with negative symptoms are more impaired than those without these symptoms. This more pronounced impairment is be true both for the processing of identity and emotion as well and, even more specifically, for the perception of negative valence emotions. Besides that, paranoid schizophrenics seem to show increased sensitivity for negative facial stimuli and neutral faces, tending to overestimate the intensity of negative emotions and attribute emotional content where there is none. It is possible that these factors take part in the genesis of hallucinations and delusions in this group of patients. Lastly, some results indicate that all these deficits outlined above, both identity and emotionrelated, general or specific, could stem from abnormal patterns of visual face exploration. The visual fixation in unimportant regions of the face and the inability to disregard unrelated contextual information (such as the extraction of the emotional meaning of a face regardless of its identity, for example) provide strong evidence in this direction.

References

- Addington, J., Saeedi, H., & Addington D. (2006) Facial affect recognition: A mediator between cognitive and social functioning in psychosis? Schizophrenia Research, 85, 142-150.
- Baudouin, J.Y., Martin, F., Tiberghien, G., Verlut, I., & Franck, N. (2002). Selective attention to facial emotion and identity in schizophrenia. *Neuropsychologia*, 40, 503-511.
- Bediou, B., Krolak-Salmon, P., Saoud, M., Burt, M., Dalery, J., & D'Amato, T. (2005). Facial expression and sex recognition in schizophrenia and depression. *Canadian Journal of Psychiatry*, 50, 525-533.
- Benton, A.L., Hamsher, K. de S., Varney, N.R., & Spreen, O. (1983).
 Contributions to Neuropsychological Assessment. Oxford University Press, New York.
- Blair, R.J.R. (2003). Facial expressions, their communicatory functions and neuro-cognitive substrates. *Philosophical Transactions Royal Society London B*, 358, 561–572.

- Bozikas, V.P., Kosmidis, M.H., Anezoulaki, D., Giannakou, M. Karavatos, A. (2004). Relationship of affect recognition psychopathology and cognitive performance in schizophre Journal of the International Neuropsychological Society, 549-558.
- Bruce, V., & Young, B. (1986). Understanding face recognit British Journal of Psychology, 77, 305-327.
- Combs, D.R., & Gouvier, W.D. (2004). The role of attention affect perception: an examination of Mirsky's four factor me of attention in chronic schizophrenia. Schizophrenia Bulletin, 727-738.
- Darwin, C. (1872). The expression of the emotions in man animals. London: Albemarle.
- Edwards J, Jackson HJ, Pattison PE. (2002). Emotion recognivia facial expression and affective prosody in schizophrenimethodological review. Clinical Psychology Review, 22, 789-Review. Erratum in: Clinical Psychology Review, 22, 1267-8
- Ekman, P. (1997). Should we call it expression or communicate *Innovations in Social Science Research*, 10, 333–344.
- Endo, N., Endo, M., Kirita, T., & Maruyama, K. (1992). The eff of expression on face recognition. *Tohoku Psychologica Fo* 52, 37-44.
- Fullam, R., & Dolan, M. (2006). Emotional information processing violent patients with schizophrenia: association with psychopy and symptomatology. *Psychiatry Research*, 141, 29-37.
- Gur, R.E., McGrath, C., Chan, R.M., Schoroeder, L., Turner, Turetsky, B.I., Kohler, C., Alsop, D., Maldijian, J., & Gur, I (2002). An fMRI study of facial emotion processing in pati with schizophrenia. *American Journal of Psychiatry*, 159, 15 1999.
- Gur, R.E., Kohler, C.G., Ragland, J.D., Siegel, S.J., Lesko, Bilker, W.B., & Gur, R.C. (2006). Flat affect in schizophre relation to emotion processing and neurocognitive measu Schizophrenia Bulletin, 32, 279-287.
- Herrmann, M.J., Reif, A., Jabs, B.E., Jacob, C., & Fallgatter, (2006). Facial affect decoding in schizophrenic disorders: a susing event-related potentials. *Psychiatry Research*, 141, 247-5.
- Holt, D.J., Kunkel, L., Weiss, A.P., Goff, D., Wright, C., Shin, Rauch, S., Hootnick, J., & Heckers, S. (2006). Increased me temporal lobe activation during the passive viewing of emotiand neutral facial expressions in schizophrenia. Schizophre Research, 82, 153-62.
- Hooker, C., & Park, S. (2002). Emotion processing and relationship to social functioning in schizophrenia patie Psychiatry Research, 112, 41-50.
- Izard, C.E., & Malatesta, C. (1987). Perspectives on emotidevelopment I: differential emotions theory of early emotidevelopment. In J.D. Osofsky (Ed.), Handbook of in development. (pp. 494–554). New York: John Wiley.
- Kinney, J.M. (1995). Comprehension of affect in children pervasive developmental disorders: Specific deficits in percepmatching tasks. Unpublished doctoral dissertation, Washing DC: Human Neuropsychology Laboratory, American University
- Kubota, Y., Querel, C., Pelion, F., Laborit, J., Laborit, M.F., Go F., Okada, T., Murai, T., Sato, W., Yoshikawa, S., Toichi, M Hayashi, T. (2003). Facial affect recognition in pre-lingually people with schizophrenia. Schizophrenia Research, 61, 265-
- Kucharska-Pietura, K., David, A.S., Masiak, M., & Phillips, N. (2005). Perception of facial and vocal affect by people schizophrenia in early and late stages of illness. *British Jou of Psychiatry*, 187, 523-528.
- Loughland, C.M., Williams, L.M., & Gordon, E. (20 Schizophrenia and affective disorder show different vi scanning behavior for faces: a trait versus state-based distinct *Biological Psychiatry*, 52, 338-348.
- Loughland, C.M., Williams, L.M., & Harris, A.W. (2004). Vi scanpath dysfunction in first-degree relatives of schizophr probands: evidence for a vulnerability marker? Schizophr Research, 67, 11-21.

26 Sousa and Hal

Matsumoto, D., & Ekman, P. (1988). Japanese and Caucasian Facial Expressions of Emotion. Human Interaction Laboratory, University of California, San Francisco.

- Mazurski, E.J., Bond, N.W. (1993). A new series of slides depicting facial expressions of affect: a comparison with the pictures of facial affect series. Australian Journal of Psychology, 45, 41–47.
- Mueser KT, Penn DL, Blanchard JJ, Bellack AS. (1997). Affect recognition in schizophrenia: a synthesis of findings across three studies. *Psychiatry*, 60, 301-8.
- Phillips, M.L., & David, A.S. (1994). Understanding the symptoms of schizophrenia using visual scan paths. *British Journal Psychiatry*, 165, 673–675.
- Posamentier, M., & Abdi, H. (2003). Processing faces and facial expressions. *Neuropsychology Review*, 13,113-143.
- Saarni, C. (1984). An observational study of children's attempts to monitor their expressive behavior. *Child Development*, 55, 1504-1513.
- Sachs, G., Steger-Wuchse, D., Kryspin-Exner, I., Gur, R.C., & Katschnig, H. (2004). Facial recognition deficits and cognition in schizophrenia. Schizophrenia Research, 68, 27-35.

- Scholten, M.R., Aleman, A., Montagne, B., & Kahn, R.S. (20 Schizophrenia and processing of facial emotions: sex mate Schizophrenia Research, 78, 61-67.
- Schwartz, B.L., Marvel, C.L., Drapalski, A., Rosse, R.B. Deutsch, S.I. (2002). Configural processing in face recogni in schizophrenia. Cognitive Neuropsychiatry, 7, 15-39.
- Suslow, T., Roestel, C., & Arolt, V. (2003). Affective primin schizophrenia with and without affective negative sympto. European Archives of Psychiatry and Clinical Neuroscie. 253, 292-300.
- Suslow, T., Droste, T., Roestel, C., & Arolt, V. (2005). Auton processing of facial emotion in schizophrenia with and wit affective negative symptoms. *Cognitive Neuropsychiatry*, 10, 35.
- Weniger, G., Lange, C., Ruther, E., Irle, E. (2004). Differer impairments of facial affect recognition in schizophrenia subty and major depression. *Psychiatry Research*, 128, 135-146.
- Wolwer, W., Frommann, N., Halfmann, S., Piaszek, A., Streit, M. Gaebel, W. (2005). Remediation of impairments in facial at recognition in schizophrenia: efficacy and specificity of a training program. Schizophrenia Research, 80, 295-303.

