González Herrera, Roger; Klinck, Ben; Rodríguez Castillo, Ramiro
A Groundwater Hazard Assessment Scheme for Solid Waste Disposal
Universidad del Valle
Cali, Colombia

Available in: http://www.redalyc.org/articulo.oa?id=231117826009
A Groundwater Hazard Assessment Scheme for Solid Waste Disposal

Un Esquema para la Evaluación de Riesgo del Agua Subterránea por Disposición de Desechos Sólidos

ABSTRACT

An approach for a robust means of ranking an existing or prospective waste disposal site within a hazard framework is presented examining the controls on contaminant migration from waste facilities and the parameters which are important in establishing the hazard posed by a site to groundwater quality identified. The factors which need to be considered, have been grouped as follows: (a) site group: site size; site climate, waste composition and leachate composition; (b) geological and hydrogeological group: unsaturated zone character; aquifer properties; hydraulic gradient; recharge; (c) fate group: proximity of local population; distance to nearest abstraction borehole/spring; volume of groundwater abstracted; distance to the nearest surface water.

Roger González Herrera, MSc.
Facultad de Ingeniería de la UADY.
Mérida, 97111, Yucatán, México.

Ben Klinck, PhD.
British Geological Survey.

Ramiro Rodríguez Castillo, PhD.
Instituto de Geofísica de la UNAM.
Departamento de Recursos Naturales.
The hazard scheme proposed is based on the travel time of a conservative contaminant from a waste facility. It can be used to establish a hazard zone around a waste site for different hydrogeological and climatic settings. A generic, deterministic model was designed to examine a number of hydrogeological scenarios. The impact of waste disposal is assessed not only directly below the waste site, but also in the environs of the site and in this respect the approach is novel compared with existing schemes.

The case of Merida, Yucatán, Mexico, municipal waste disposal site is presented to demonstrate the proposed scheme and compare it with existing empirical methods (DRASTIC, GOD and WASP) in evaluating groundwater vulnerability.

KEY WORDS

Groundwater vulnerability, hazard ranking, leachate quality, modeling, waste disposal site.

1. INTRODUCTION

A procedure is suggested to hazard ranking a waste disposal site which can be adopted both to evaluate the impact of a single site on the groundwater system or to compare a number of sites for their suitability for waste disposal. This procedure is summarized as follows (chart in Figure 1):

Se presenta el caso del basurero municipal de Mérida, Yucatán, México, para demostrar el esquema propuesto y comparar la metodología con esquemas de evaluación empíricos existentes de vulnerabilidad del agua subterránea (DRASTIC, GOD y WASP).

PALABRAS CLAVE

Aguas subterráneas, clasificación de riesgo, calidad del lixiviado, modelación, sitio de disposición de desechos.

RESUMEN

Se presenta un método para clasificar un sitio de disposición existente o prospecto en un marco de riesgo a la contaminación del agua subterránea examinando los controles del transporte de contaminantes que emanan del sitio, así como los parámetros que son importantes para establecer el mencionado riesgo. Los factores que son necesarios considerar se agrupan de la siguiente manera: (a) grupo del sitio: tamaño del sitio; clima del lugar; composición de los desechos y composición del lixiviado; (b) grupo geológico e hidrogeológico: carácter de la zona no saturada; propiedades del acuífero; gradiente hidráulico y recarga; (c) grupo de riesgo: proximidad de la población local; distancia a la fuente de extracción más cercana; volumen de agua subterránea extraída; distancia al agua superficial más cercana.

El esquema de evaluación de riesgo propuesto se basa en el tiempo de recorrido de un contaminante conservativo proveniente de un sitio de disposición de desechos.

Se puede utilizar para delimitar una zona de riesgo alrededor de un basurero para diferentes escenarios climáticos e hidrogeológicos. Se diseñó un modelo determinístico, genérico, para examinar un número de escenarios hidrogeológicos. El modelo tiene simuladores de transporte de contaminantes uni- y bidimensionales. El impacto de la disposición de desechos se evalúa no solamente inmediatamente debajo del sitio, sino también en el ambiente circundante al mismo y en este aspecto es novedoso comparado con los esquemas existentes.
(i) carry out a preliminary desk study of the prospective area; (ii) if basic information is not available, a site visit is essential; (iii) apply GOD, using the information to rank the sites; (iv) the sites with the lowest GOD score should then be modeled using the WASP scheme or the 1-D transport numerical simulator. The sites with the lowest barrier factor scores in WASP and the longest travel times using the simulator should then be considered for waste disposal. The effect of the waste disposal operation on the fate group can be assessed using the 2-D contaminant transport simulator; (v) after preferred site selection, a more detailed site characterization programme can be performed to allow a site-specific hydrogeological model to be parameterized.

The above procedure is applied to the Merida municipal waste disposal site which is situated on the northern outskirts of the city of Merida (Figure 2) and used to be operated by the municipality. The site has a long history of uncontrolled dumping and waste burning with commercial, industrial and domestic waste being tipped. From 1993 to 1998 an attempt was made to place the waste into a compacted raise with a soil cover. This methodology reduced the risk of the waste catching fire and also nuisance from air borne pollution and smells.

![Figure 2. Location of the study site.](image)

2. SITE GROUP

The waste disposal site is estimated to cover an area of five hectares to an average depth of six metres. Leachate analysis are given in Table 1 and because of the very high evaporation rate from the waste are strongly mineralized. Data averaged over 50 years show that during most months evaporation exceeds precipitation (Salazar, 2002). Most of the infiltration into the waste occurs during the rainy season. Over the year recharge is of the order of 200 to 300 mma⁻¹ with strong leachates being produced. Rapid recharge to the underlying aquifer via fissures is assumed.

3. GEOLOGY AND HYDROGEOLOGY GROUP

The Merida landfill site is emplaced directly onto a karstic, Tertiary, marine limestone of Miocene—Pliocene age, (DGJTN, 1984), with a thin (< 1 m; DGJTN, 1985) to non existent soil cover. The following hydraulic data are used to assess the hazard ranking: (a) the hydraulic conductivity is very high due to the fissured nature of the rock. Mendez (1993) indicates values of the order of 10^{-3} to 10^{-4} ms⁻¹, while Sanchez (1992) quotes values ranging from 3.7×10^{-5} for calcarenites to 3.38×10^{-8} ms⁻¹ for recrystallised limestone.; (b) both matrix and fissure porosity are high, the former ranging between 40 and 50% (Sanchez, 1992; Brewerton, 1993); (c) the water table is about 5 metres below ground level; (d) the hydraulic gradient is low at 7.5×10^{-5} ms⁻¹ with flow in northwesterly and westerly direction towards the coast; (e) most of the recharge occurs in August and September. Rapid bypass flow can be assumed during rainfall events and a high percentage of rainfall is estimated to go to recharge, i.e. 150 mma⁻¹.

FATE GROUP

A contaminant plume has been detected moving away towards the west. The nearest population center under threat is Dzityá about two kilometres from the site (Gonzalez et al., 2002). Groundwater is the main source of water for agriculture, industry and domestic consumption.
5. HAZARD RANKING OF THE MERIDA WASTE DISPOSAL SITE

A weighted DRASTIC score (Aller et al., 1987) has been calculated as follows: Depth to groundwater score = 50; Net Recharge (150 mm a⁻¹) = 30; Aquifer media (karst) = 30; Soil media factor (thin) = 20; Topography factor (flat) = 10; Impact of vadose zone media factor (karst) = 50; Evaluation of Hydraulic Conductivity factor = 30.

Using GOD (Foster, 1987; Foster and Hirata, 1991) a rating of 1.0 is given for groundwater occurrence, 1.0 for the overall lithology and 1.0 for depth to groundwater. The overall score is 1.0 with an extreme aquifer pollution vulnerability.

The WASP index (Parson and Jolly, 1994a; 1994b) is calculated to be 9.7 with a highly unsuitable rating. Both the threat factor and the barrier factor scores are at a maximum of 10, the former because of the hazardous nature of the waste. The resource factor is 9.3.

This site is represented by a 225 m by 225 m square in the simulation. The hydraulic gradient was allowed to be determined by the recharge and was not fixed at 7.5x10⁻⁵ since this caused a large recharge mound around the waste disposal site. Recharge was set at 150 mm a⁻¹ regionally and 200 mm a⁻¹ over the site. Porosity was taken as 0.45 and density was assumed to be 2500 kgm⁻³. The base of the aquifer was set at zero masl and the eastern fixed head boundary was set to 1 m. Observation points were set at a distance of 2 km along the flow path, and 45° to it, and at a distance of 500 m at 90° to it. No borehole abstraction was considered. Times for C₁/C₂ to reach 0.1 were: 5.2x10⁸ s and 4.4x10⁹ s for a hydraulic conductivity of 1x10⁻³ and 1x10⁻⁴ m s⁻¹, respectively.

Generally, depending on the dispersion coefficients, the observation points away from the main flow path did not display significant contamination. Although contamination is obviously a problem close to the site, as is illustrated by the extreme ratings given by the other schemes, the distance to the fate group means that this site gives a large travel time. However, the limestone is known to be highly fissured and these fissures will provide rapid flow paths through the aquifer.

Infiltration through the 5 m of limestone making up the unsaturated zone was calculated to take 2.9x10¹⁰ s (9.33 years) assuming a worst-case hydraulic conductivity of 10⁻³ m s⁻¹, a porosity of 0.45, infiltration of 200 mm a⁻¹ and characteristics similar to a sandstone. This decreases to 6.53x10⁸ s (75 days) if a porosity of 1% is used. Again, it is believed that heavy rainfall events on the waste will cause rapid leachate discharge via fractures to the groundwater table.

6. CONCLUSIONS

This study has assessed whether it is possible to use a generic simulator for any site utilizing the same amount of information that might be available through a desk-study for other, more empirical assessment schemes. Whilst the results from the simulator can not be considered to be accurate scientific prediction, because of uncertainties in key parameters such as: dispersion coefficients, unsaturated zone characteristics and infiltration rate, the model has been successfully applied. Therefore it does provide a useful and cheap quantification tool to be used alongside other methods.

Using the model and its guidelines, it should be possible to derive an approximate time at which the waste disposal site starts to pose a hazard at a distance of interest. Results and the assessment of uncertainty from the numerical simulator in combination with a dose-response analysis could form the basis for a risk assessment.

7. ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial assistance provided by CONACyT (National Council of Science and Technology) to carry out research in the Yucatan karstic aquifer, through project 32489-T and project YUC-2002-C01-8724 through “Fondo Mixto CONACyT – Gobierno del Estado de Yucatán”. Ben Klinck publishes with the permission of the Director, British Geological Survey, and wishes to thank the Department for International Development, UK, for funding his participation in this project.

7. REFERENCES

Un Esquema para la Evaluación de Riesgo del Agua Subterránea por Disposición de Desechos Sólidos

AUTORES

Roger González Herrera, MSc. Facultad de Ingeniería de la UADY. Avenida de Industrias no Contaminantes por Periférico Norte. Tablaje Catastral 12685. Mérida, 97111, Yucatán, México. ponente y publicado artículos en revistas científicas de nivel nacional e internacional en algunas de las cuales ha sido revisor técnico. Su intereses la hidrodinámica de las zonas costeras, la intrusión salina, la evaluación de recursos de agua subterránea, la modelación del flujo del agua subterránea y solutos en acuíferos cársticos, y la aplicación de la ciencia a problemas prácticos de contaminación.
E-mail: gherrera@tunku.uady.mx

Ramiro Rodríguez Castillo, PhD. Físico, egresado de la Facultad de Ciencias de la UNAM, Maestría en Ciencias (Geofísica) de la misma Facultad, Doctorado en Geología de la Universidad de Bucarest, Rumania. Se desempeña como investigador titular “B” del Instituto de Geofísica de la UNAM. Es Nivel 2 del SNI y Secretario de la Comisión de Geofísica de la Academia de Ingeniería. Tiene publicados 23 artículos, 6 proceedings arbitrados, más de 60 trabajos en memorias de congresos nacionales e internacionales. I libro y 10 capítulos de libro. Ha dirigido 22 tesis de licenciatura (6 de ellas premiadas), 8 de maestría y tres de doctorado. Ha impartido cursos en diferentes Universidades nacionales y extranjeras. Su línea de investigación es la evaluación de vulnerabilidad acuífera y los procesos de contaminación de acuíferos. Delegación Coyoacan, México, 04510, D.F. gherrera@tunku.uady.mx