

Entramado

ISSN: 1900-3803

comunicacion.ayc.1@gmail.com

Universidad Libre

Colombia

Herrera-Márquez, John Jairo; Salas-Navarro, Leidy Carolin; Domínguez-Moré, Gina Paola; Torres-Saumeth, Katherine María
Parques científicos-tecnológicos y modelo triple-hélice. Situación del Caribe colombiano Entramado, vol. 11, núm. 2, julio-diciembre, 2015, pp. 112-130
Universidad Libre
Cali, Colombia

Disponible en: http://www.redalyc.org/articulo.oa?id=265443638008

Número completo

Más información del artículo

Página de la revista en redalyc.org

Parques científicos-tecnológicos y modelo triple-hélice. Situación del Caribe colombiano*

John Jairo Herrera-Márquez

Químico Farmacéutico, Universidad del Atlántico. Miembro – Joven Investigador del Grupo de Investigación en Administración y Gestión Farmacéutica (A&G F), Universidad del Atlántico. Barranquilla, Colombia. johnherrera@farmaceuticos.com.

Leidy Carolin Salas-Navarro

Química Farmacéutica, Universidad del Atlántico. Miembro – Joven Investigadora del Grupo de Investigación en Administración y Gestión Farmacéutica (A&G F). Barranquilla, Colombia. Icsalas I 7@hotmail.com.

Gina Paola Domínguez-Moré

Magíster en Ciencias Farmacéuticas, Universidad Nacional de Colombia. Docente Ocasional Facultad de Química y Farmacia Universidad del Atlántico, Miembro del Grupo de Investigación en Administración y Gestión Farmacéutica (A&G F). Barranquilla, Colombia. bioequivalencia@mail.uniatlantico.edu.co

Katherine María Torres-Saumeth

Magíster en Administración de Empresas, Universidad del Norte. Máster en Atención Farmacéutica, Universidad de Granada (España)-Convalidado a Maestría en Farmacología. Docente de Planta Facultad de Química y Farmacia Universidad del Atlántico, Directora del Grupo de Investigación en Administración & Gestión Farmacéutica (A&G F). Barranquilla, Colombia.

Autor para correspondencia: katherinetorres@mail.uniatlantico.edu.co, ksaumeth@hotmail.com.

RESUMEN

Los Parques de Ciencia y Tecnología se han constituido en un fenómeno mundial debido al desarrollo económico y social que han logrado los países al implementar este sistema. El objetivo del presente artículo es describir el origen y evolución de los Parques de Ciencia y Tecnología más representativos del mundo, el papel del modelo Triple Hélice en su desarrollo y la viabilidad de estas iniciativas en Colombia. Para allegar esta información se realizó una revisión bibliográfica en artículos y libros publicados entre los años 2000 y 2015, en conjunto con información de instituciones gubernamentales nacionales e internacionales y datos propios obtenidos a partir de encuestas. Se propone una definición de Parque de Ciencia y Tecnología como una institución que cuenta con espacio inmobiliario con beneficios tributarios, donde se instalan universidades y empresas que, haciendo uso de políticas gubernamentales de ciencia y tecnología, presta servicios especializados y desarrolla procesos de innovación. Dada la necesaria interacción entre la universidad, la industria y el gobierno, los Parques de Ciencia y Tecnología son un escenario óptimo para la aplicación del modelo Triple Hélice. En la Región Caribe colombiana se dan condiciones propicias para poner en marcha proyectos de parques porque existen necesidades en la empresa, capacidades en las universidades y políticas de ciencia, tecnología e innovación apropiadas; sin embargo, se requieren grandes esfuerzos por parte de todos los actores para lograr implementar modelos de operación sustentables.

PALABRAS CLAVE

Parque de ciencia y tecnología, investigación, innovación, Triple hélice, Caribe colombiano.

Códigos JEL

MI, MI90

Recibido: 13/03/2015 **Aceptado:** 05/06/2015

* Artículo de revisión resultado del Proyecto de Caracterización de los servicios demandados de los Renglones Ciencias Biomédicas y Biofarmacéuticas y Biomedicina Molecular del Clúster de Farmacia & Salud de un Parque de Ciencia y Tecnología en el Caribe Colombiano. Universidad del Atlántico. Barranquilla, Julio 2012 – Octubre 2013. Financiación por autores.

http://dx.doi.org/10.18041/entramado.2015v11n2.22234 Este es un artículo Open Access bajo la licencia BY-NC-SA (http://creativecommons.org/licenses/by-nc-sa/4.0/)

Cómo citar este artículo: HERRERA-MÁRQUEZ, John Jairo; SALAS-NAVARRO, Leidy Carolin; DOMÍNGUEZ-MORÉ, Gina Paola; TORRES-SAUMETH, Katherine María. Parques científicos-tecnológicos y modelo triple-hélice. Situación del Caribe colombiano. En: Entramado. Julio - Diciembre, 2015 vol. 11, no. 2, p. 112-130, http://dx.doi.org/10.18041/entramado.2015v11n2.22234

Science & technology parks and Triple Helix Model. The colombian Caribbean situation

ABSTRACT

The Science and Technology Parks have been established as a global phenomenon, due to economic and social development achieved by the countries to implement this system. The aim of this paper is to describe the origin and evolution of the more representative Science and Technology Parks around the world, the role of the Triple Helix model in its development and the viability of these initiatives in Colombia. To obtain this information a literature review was conducted in articles and books published between 2000 and 2015, along with information from national and international policies and own data obtained from surveys. A definition of Science and Technology Park is proposed: an institution with real space with tax benefits where universities and companies are installed to provide specialized services and to develop innovative processes by making use of governmental policies on science and technology. Due to the mandatory interaction between university, industry and government, Science and Technology Parks are an optimal setting for the Triple Helix model application. In the Colombian Caribbean region there are conditions for implementing projects of parks because exist needs in the companies, capacities in the universities and appropriate policies about science, technology and innovation; however, great efforts are required by all the stakeholders to get the implementation of sustainable models.

Keywords

Science and Technology Park, research, innovation, triple helix, Colombian Caribbean

JEL CLASSIFICATION

MI, MI90.

Parques científicos-tecnológicos e modelo da hélice tripla. Situação do Caribe colombiano

RESUMO

Os Parques de Ciência e Tecnologia se tornaram um fenômeno mundial devido ao desenvolvimento econômico e social que os países conseguiram ao implementar esse sistema. O objetivo do presente artigo é descrever a origem e evolução dos Parques Científicos e Tecnologia mais representativos do mundo, o papel do modelo da Hélice Tripla em seu desenvolvimento e a viabilidade dessas iniciativas na Colômbia. Para obter essa informação foi realizada uma revisão bibliográfica em artigos e livros publicados entre os anos 2000 e 2015, em conjunto com a informação de instituições governamentais nacionais e internacionais e dados próprios obtidos a partir de inquéritos. É proposta uma definição de Parque de Ciência e Tecnologia como uma instituição que conta com espaço imobiliário com benefícios fiscais, onde se instalam universidades e empresas que, fazendo uso das políticas governamentais de ciência e tecnologia, prestam serviços especializados e desenvolvem processos de inovação. Devido à interação necessária entre a universidade, a indústria e o governo, os Parques de Ciência e Tecnologia são um cenário ideal para a aplicação do modelo da Hélice Tripla. Na região do Caribe colombiano existem condições propícias para criar projetos de parques porque existem necessidades na empresa, capacidades nas universidades e políticas de ciência, tecnologia e inovação apropriadas; no entanto, são necessários grandes esforços de todos os intervenientes para conseguir implementar modelos de operação sustentáveis.

PALAVRAS-CHAVE

Parque de ciência e tecnologia, investigação, inovação, Hélice Tripla, Caribe colombiano

Classificações JEL

MI, MI90

Introducción

La investigación, el desarrollo y la innovación (I&D+i), son factores claves para el crecimiento económico de un país o región (CEIM, 2001; Luengo y Obeso, 2013), y así mismo, la obtención de productos y tecnologías nuevas y avanzadas son determinantes para su posición competitiva (Heijs, 2001). El entendimiento de esta condición ha llevado a la generación de modelos que permiten la interacción entre un conjunto de organizaciones que, aplicando capacidades científicas, técnicas y sociales en un determinado contexto geográfico, realizan actividades orientadas a la generación, transmisión, difusión, medición y gestión del conocimiento

para generar productos y procesos innovadores. Este tipo de modelos de innovación ha llevado a la conformación en muchos países de los denominados Parques de Ciencia y Tecnología (Ondátegui, 2001; Almeida, Santos y Rui, 2008; Ramírez y García, 2010).

Desde la primera iniciativa de creación, los parques de ciencia y tecnología se han constituido como un fenómeno de interés mundial, debido a su aporte al desarrollo económico y social de los países que han decidido implementar este nuevo sistema de progreso. Hasta el día de hoy, son muchos los casos registrados a nivel mundial de ciudades y regiones donde, a través de la puesta en marcha de parques de cien-

cia y tecnología y de las actividades de I&D+i desarrolladas en ellos, han alcanzado, no solo una mejora en sus niveles competitivos, sino también un mejoramiento visible de la calidad de vida de sus habitantes (Ondátegui, 2001; Bellini, Teräs y Ylinenpää, 2012; National Research Council, 2013; Millier, Dickinson y Blais, 2013).

El origen de los parques alrededor del mundo ha estado influenciado por las condiciones históricas, políticas, sociales y culturales de las regiones y países donde han sido creados; esta diversidad de condiciones ha dado lugar a la aparición de varias figuras tales como parque de investigación, parque científico, tecnópolis, ciudad de la ciencia, parque tecnológico, entre otras (Albahari, Pérez y Landoni, 2012). Las distintas denominaciones utilizadas para llamar a este tipo de instituciones basadas en la investigación, el desarrollo tecnológico y la innovación, han dificultado el entendimiento sobre su definición, objeto y alcance.

A pesar de lo anterior es posible identificar que el éxito de muchas de las iniciativas de parques, en sus distintas denominaciones, ha estado soportado en políticas de gobierno que han favorecido la capitalización del conocimiento, promoviendo procesos de transferencia desde los generadores hacia los usuarios (National Research Council, 2009). Un modelo exitoso para la consolidación de estos procesos de transferencia es el modelo Triple Hélice el cual se basa en la interacción mutua entre la academia, la industria y el estado, para generar innovación a distintos niveles (Luengo y Obeso, 2013; González, 2009), como consecuencia de la unión entre el conocimiento, los recursos económicos, el acceso al mercado y los incentivos por políticas públicas de innovación (González, 2009).

Sin embargo, la implementación del modelo Triple Hélice requiere de la existencia y reconocimiento de capacidades en la academia que sean útiles y transferibles a la empresa, del entendimiento de la innovación como mecanismo de éxito y crecimiento económico por parte de la industria, y de la existencia de políticas gubernamentales que faciliten la interacción entre la universidad y la empresa.

En la Región Caribe colombiana se han puesto en marcha recientemente iniciativas para la creación de parques científicos y tecnológicos, por lo cual es importante analizar si existen las condiciones apropiadas para implementar el modelo de Triple Hélice que ha sido exitoso en economías desarrolladas.

El presente artículo tiene como objetivos analizar las características de las diversas denominaciones y definiciones que existen para los parques alrededor del mundo; presentar una revisión del origen de los parques más representativos y el papel del modelo Triple Hélice en su desarrollo;

y finalmente hacer un análisis de la posición actual de los distintos actores de este modelo en Colombia, para concluir sobre la viabilidad de este tipo de iniciativas en el país.

Para obtener esta información se realizó un estudio de tipo descriptivo con un diseño metodológico de tipo no experimental, retrospectivo. La recolección de la información se realizó mediante revisión bibliográfica en bases de datos, páginas web, libros, artículos publicados y documentos sobre políticas estatales y reglamentaciones legales de ciencia y tecnología a nivel nacional e internacional entre los años 2000 y 2015. Las bases de datos consultadas fueron Springer, Science Direct y Google Académico. Las fuentes de información y criterios de búsqueda fueron diferentes para cada numeral desarrollado en el artículo, en cada caso las palabras clave se buscaron completas y restringidas al título, así: numeral I, se consultó directamente en las páginas de las asociaciones internacionales que agrupan a los parques de ciencia y tecnología y se realizó búsqueda en las bases de datos mencionadas con la palabra clave "Science and Technology Park"; numerales 2 y 3, se consultó directamente en las páginas web de cada parque de ciencia y tecnología y se realizó búsqueda en las bases de datos mencionadas con la palabra clave "Science and Technology Park"; numeral 4, se realizó una búsqueda en las bases de datos con las palabras clave "Triple Helix" y "Science and Technology Park". Para el análisis de los actores de la Triple Hélice en Colombia y la Región Caribe se utilizó como fuente de información la plataforma Scien-TI – Colombia de Colciencias, las políticas de ciencia, tecnología e innovación nacional e internacionales y datos propios recolectados por el grupo de investigación a través de proyectos originales. Los criterios de selección de las fuentes de información fueron los siguientes: para los libros se tuvieron en cuenta únicamente aquellos que registraran ISBN o pertenecieran a editoriales universitarias o de organismos oficiales; para el caso de las revistas se consideraron únicamente las que presentaron ISNN; en ambos casos se aceptaron escritos en español o inglés y se seleccionaron sólo aquellos en cuyos resúmenes o índices se evidenciaran la utilidad y la relevancia para los temas objeto de estudio y que tuvieron acceso libre a su versión completa, se excluyeron artículos que presentaban revisiones sobre una institución en particular. Para la consulta en las páginas web se acudió únicamente a sitios oficiales de parques de ciencia y tecnología, organizaciones y entidades gubernamentales. La información se analizó teniendo en cuenta criterios cualitativos de categorización de acuerdo con el contenido de los numerales del artículo, se estableció lo relevante de cada fuente de información en función de cada uno de los objetivos de la revisión y, en algunos casos se hizo una sistematización mediante tablas y figuras. Se incluyó un análisis de correlación para comparar estrategias de ciencia y tecnología entre países con distintos grados de desarrollo e identificar factores diferenciadores que podrían ser determinantes para la ubicación en un ranking de innovación.

Como resultado de esta revisión se estableció una definición del término "Parque de Ciencia y Tecnología", se identificaron las características diferenciadoras entre parque científico y parque tecnológico y las características conceptuales y de localización de las demás denominaciones y modelos de parques menos comunes. Se estableció la cronología mundial de la aparición de los parques y la llegada e influencia de este fenómeno en Colombia; se explicó el modelo de la Triple Hélice y su relación con los parques de ciencia y tecnología y, finalmente, se planteó el estado actual de los actores del modelo en la Región Caribe colombiana.

I. ¿Qué es un Parque de Ciencia y Tecnología (PCT)?

En la actualidad no existe un consenso absoluto acerca de la definición de los llamados parques de ciencia y tecnología; sin embargo, asociaciones internacionales que agrupan este tipo de instituciones, definen algunas condiciones esenciales que los caracterizan (Colombia, Ministerio de Desarrollo Económico, 2003; AURP, 2012; IASP, 2012; UKSPA, 2012; APTE, 2012), y aunque en la mayoría de los casos tales condiciones son complementarias, pueden encontrarse puntos de desacuerdo, especialmente en lo que respecta al uso de los términos ciencia y tecnología. La Tabla I resume las características vinculadas a algunas de las definiciones aportadas por asociaciones de parques e instituciones nacionales.

Se puede observar que expresiones como parque de investigación, parque científico, parque tecnológico, o parque científico y tecnológico son utilizadas para referirse a "clusters" de empresas basadas en el conocimiento que son definidas en tres aspectos: los recursos que utiliza, los actores que involucra y el propósito de sus actividades (Figura 1).

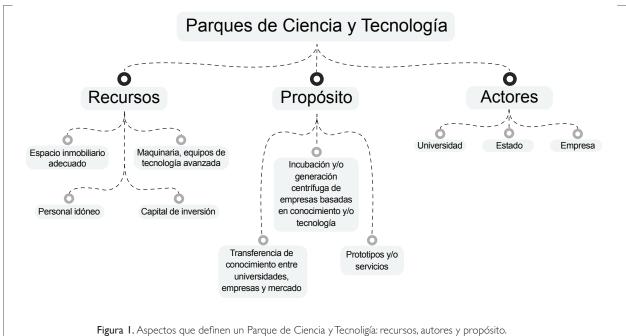

En el sentido más amplio, un parque de ciencia y tecnología puede definirse como una institución que cuenta con un espacio inmobiliario con beneficios tributarios, donde se instalan grupos de investigación de universidades, centros de investigación y centros de desarrollo tecnológico², em-

 Tabla I.

 Características de los Parques de Investigación, Ciencia y/o Tecnología según Asociaciones Internacionales e instituciones nacionales.

Asociación y/o Organización	País Sede	Denominación	Características del Parque			
Colombia, Ministerio de Desarrollo Económico, (2003).	Colombia	Parque tecnológico	Aglutinación de unidades de I+D. Conexión con una Universidad. Zonas francas tecnológicas. Infraestructura complementaria. Creación de nuevas empresas de base tecnológica.			
AURP, 2012	USA	Parque de investigación	Instalaciones de Alta tecnología. Integra Universidad y/o empresas de base tecnológica. Promueve el crecimiento de nuevas empresas. Realiza transferencia de tecnología y conocimiento. Promueve el desarrollo económico impulsado por la tecnología.			
IASP, 2012	España y China	Parque científico	Gestionados por profesionales especializados. Fomento de competitividad. Proporciona servicios de valor agregado. Ejecuta mecanismos de incubación y spin-off. Promueve la interacción Universidad – Empresa/ mercado.			
UKSPA, 2012	Reino Unido	Parque científico	Reúne empresas basadas en conocimiento. Brinda asesoramiento para crecimiento de otras empresas. Asociados a Centros de Tecnología (Universidad o Instituto de investigación).			
APTE, 2012	España	Parque científico y tecnológico	Espacio físico. Participación de Universidades y/o Centro de investigación. Desarrollo de empresas basadas en conocimiento. Fomento de innovación. Oficina de Transferencia Tecnológica.			

Fuente: Recopilación de los autores.

Fuente: Los autores.

presas basadas en el conocimiento y/o empresas de base tecnológica³ que, haciendo uso de políticas gubernamentales de ciencia y tecnología, prestan servicios especializados y desarrollan procesos de innovación4 que van desde la gestión del conocimiento hasta la transferencia de tecnología⁵ hacia el sector industrial, con una dinámica tal que permite aumentar la competitividad y contribuir al desarrollo económico y calidad de vida de la región donde se encuentre instalado.

Sin embargo, es posible resaltar al menos una diferencia entre las categorizaciones de parque científico y parque tecnológico expresadas en la Tabla I, en términos de la relación entre los actores que conforman dichas instituciones. Dicho más claramente, un parque tecnológico puede o no asociarse con universidades y centros de investigación, mientras que un parque científico o de investigación las integra dentro de su propia estructura.

La evidencia histórica sobre la creación de los parques científicos demuestra la importancia de la vinculación con la universidad para estas instituciones (Almeida et al., 2008; Pineda, Morales y Ortiz, 2011). De hecho, la mayoría de los parques de ciencia que existen actualmente, han sido iniciativas de universidades con escuelas de ciencias o ingeniería (IASP, 2015; IASP, 2012), Tal es el caso de Silicon Valley, el primer parque científico registrado, que fue conocido inicialmente como el parque de ciencia de la Universidad de Stanford (López, 2004).

En concordancia con lo anterior, uno de los objetivos principales de los parques de ciencia es precisamente promover la cooperación entre universidades e industria para realizar actividades de investigación y desarrollo y estimular la aplicación de nuevas tecnologías desde la universidad al servicio de las empresas (Morales, Plata y Casallas, 2011; Rodeiro y Calvo, 2012).

En el caso de los parques tecnológicos, pueden definirse como un desarrollo inmobiliario que comparte las características de parque de ciencia en cuanto al perfil de alta tecnología de las empresas asociadas, pero no necesariamente está ligado a una universidad y es menos restrictiva en cuanto a la instalación de empresas productoras, en lugar de centros de investigación y desarrollo (Almeida et al., 2008). Con base en lo anterior, se puede resumir que las diferencias entre parque tecnológico y parque científico están básicamente en el vínculo con universidades, la dimensión de la infraestructura, la admisión de actividades productivas y el enfoque de la oferta comercial (ver Tabla 2, pág. 117) (Roure, Condom, Rubirarta, Vendrell, 2005; Cortés, 2011). En un parque de ciencia y tecnología se pueden dar, de forma combinada, las actividades de I&D+I junto con la comercialización y alquiler de espacios inmobiliarios.

A los parques de ciencia y parques de tecnología se suman otras denominaciones y modelos menos comunes, adoptados en distintos países, que comparten, aunque no de manera exclusiva, el propósito explicado para los parques de ciencia y tecnología. La Tabla 3 (ver pág. 117) describe las

Tabla 2.Características diferenciadoras entre Parques Científicos y Parques Tecnológicos.

Parque Científico	Parque Tecnológico			
Dimensiones medias o pequeñas. Muy vinculado a una universidad. Enfocado hacia actividades empresariales de I&D+I y a la generación de spin-offs. Poco énfasis en actividades manufactureras.	Dimensiones medias y grandes. No necesariamente vinculado a Universidad. Enfocado en la comercialización de suelo y espacios construidos en venta o alquiler para empresas basadas en el conocimiento o empresas de base tecnológica. Admite actividades productivas y manufactureras (industria).			

Modificado de: Roure et al, 2005.

Tabla 3.Otros tipos de Parques.

Tipo de parque	Características conceptuales	Características de localización
Hi-Tech Industry Parks (China) (Wang y Leng, 2011; Zhang y Sonobe, 2011).	Conjunto de empresas de alta tecnología (electrónica, tecnologías de la información, tecnología aeroespacial y biotecnología). Realizan pocas actividades de investigación y desarrollo con un mayor enfoque hacia la producción industrial de alto valor agregado.	Aglomeración de empresas en una zona específica con infraestructura e instalaciones modernas, de gran tamaño y de alto valor.
Technopoles (Francia) (Benko, 2000; Cooke, 2001; Insee, 2012).	Conjunto de empresas manufactureras de alta tecnología (aeroespacial, electrónica, computación, productos farmacéuticos, instrumentos médicos de precisión, ópticos y relojes). Se enfocan principalmente en la creación de nuevas empresas. Aunque teóricamente la cercanía promueve las relaciones entre empresas, históricamente los Technopoles han seguido un sistema de innovación lineal con escasa interacción entre quienes lo conforman.	Aglomeración de empresas de pequeño y mediano tamaño en una ciudad o zona urbana.
Science City (Japón) (City of Tsukuba, 2015; Kansai Science City, 2015).	Ciudad totalmente nueva o existente desarrollada con el propósito de convertirse en un centro para actividades de investigación de alto nivel y otras académicas y culturales en torno a la ciencia.	Cuentan con institutos, universidades, hospitales, hoteles, librerías, espacios culturales, zonas de reserva naturales y otros escenarios que caracterizan una ciudad completa.

Fuente: Recopilación de los autores.

actividades y características conceptuales y de localización asociadas a cada uno de ellos.

A pesar de las distintas denominaciones, en adelante se empleará el nombre Parques de Ciencia y Tecnología (PCT) como término genérico para englobar los distintos tipos teniendo en cuenta sus características comunes en cuanto a las actividades de alto valor agregado que en todos ellos ocurren.

2. Parques de Ciencia y Tecnología en el mundo

En la actualidad existen registrados muchos PCT a nivel mundial, sin embargo la primera iniciativa surge en los Es-

tados Unidos en el año de 1949 con la Universidad de Stanford, en California; allí se generó el desarrollo de Silicon Valley (Santa Clara, California-Estados Unidos), un gran parque que hoy agrupa más de 300 empresas de alta tecnología electrónica. Silicon Valley dejó un gran legado de desarrollo en el ámbito de la implementación de nuevas tecnologías desde los años de 1960, generando un crecimiento económico y tecnológico de grandes magnitudes, tanto así que en todo el mundo se ha querido reproducir este modelo, conllevando a la creación de muchos parques científicos y tecnológicos (Adán, 2012; López, 2004).

En el continente europeo, los primeros parques fueron el Cambridge Science Park, en Inglaterra, y el Heriot-Watt University Research Park, en Escocia; creados más de dos décadas después de Silicon Valley, en 1972 (Adán, 2012);

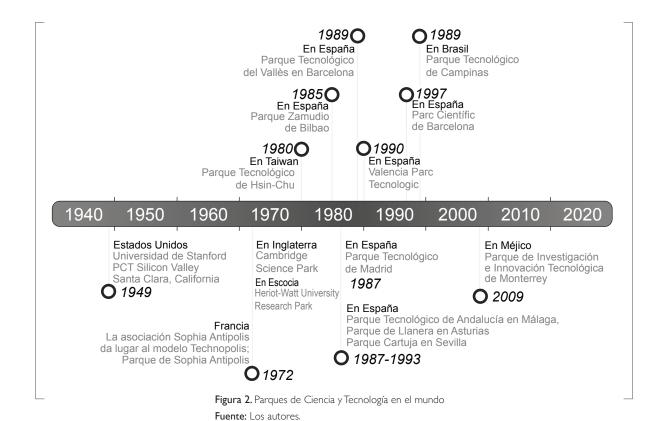
ambos surgieron como iniciativas semiespontáneas de la universidad y tuvieron un proceso de implantaciones productivas inicialmente lento, debido a la escasa participación de la empresa privada. En la década de los ochenta hubo una rápida proliferación de PCT en Inglaterra, por iniciativa de las universidades que se dedicaron a transformar conocimientos científicos y tecnológicos en riqueza económica. Actualmente la United Kingdom Science Park Association (UKSPA) reporta la existencia de más de 100 PCT, con un gran número de empresas afiliadas (Almeida *et al.*, 2008; Ondátegui, 2001).

Por su parte en Francia, la asociación Sophia Antipolis dio lugar en 1972 al modelo de technopolis o tecnopolos, más conocido tanto en ese país y fuera de sus fronteras como el Parque de Sophia Antipolis, que ha servido de inspiración a otras muchas iniciativas que fueron promoviéndose con el fin de cambiar la estructura económica de la región (López, 2004).

Siguiendo en el marco europeo, España llega a desarrollar parques tecnológicos a partir de las Comunidades Autónomas sin participación de las universidades ni apoyo de la administración central; el primero de ellos fue el Parque Zamudio de Bilbao, creado en 1985 (Roure et al., 2005). No obstante el primer parque que funcionó desde sus inicios con participación de empresas que ubicaron sus instalaciones dentro de este eje de ciencia y tecnología fue el Parque Tecnológico del Vallès, en Barcelona. A éste le siguieron los parques Tres Cantos en Madrid y Paterna en Valencia, para conformar una primera generación de PCT en España. Entre 1987 y 1993 surgieron otros como el Parque Tecnológico de Andalucía, en Málaga, el de Llanera en Asturias y el parque Cartuja, en Sevilla, este último fue el primero en recibir apoyo del gobierno español como parque tecnológico. Solo hasta 1997 surgió el primer PCT fundado por una universidad: el "Parc Científic de Barcelona" (Adán, 2012; Comisiones obreras de Castilla y León, 2007). En la actualidad, en España existen 67 parques consolidados, todos ellos miembros de la Asociación de Parques Científicos y Tecnológicos de España (APTE) (APTE, 2014).

Para el continente asiático el Parque Tecnológico de Hsin-Chu, instalado en diciembre de 1980 como el primero de su tipo en Taiwan, replicó el modelo de Silicon Valley y es hoy uno de los más exitosos, con más de 500 empresas incubadas que emplean a más de 150.000 personas. En este Silicón taiwanés están localizados centros tecnológicos públicos y de empresas de alta tecnología como Acer, uno de los mayores productores de computadores del mundo (Hsinchu Science Park, 2014).

A mediados de los años ochenta, el desarrollo de PCT empieza a tomar auge en Suramérica. La primera propuesta,


dirigida específicamente a la creación de parques en esta región, tuvo lugar en Brasil en 1984 con el "Programa de implementación de parques tecnológicos" que llevó a la fundación de ellos en varios municipios de Brasil; sin embargo, casi ninguna iniciativa superó la crisis de los ochenta debido a la falta de políticas gubernamentales efectivas y a la resistencia en entornos académicos hacia la constitución de una vinculación entre universidad e industria (Melo, 2013). A partir del siglo XXI tanto en Brasil como en Méjico, principalmente, se inició una época de cambios estratégicos que llevó a la consolidación de parques científicos y tecnológicos, los más importantes son: el parque tecnológico de Campinas (Brasil) y el Monterrey PIIT (Méjico) (Rodríguez-Pose y Hardy, 2014); en el caso de Brasil, otros 27 parques se encuentran en operación (Zouain y Plonsk, 2015). En general, en Suramérica el desarrollo de los parques ha sido extremadamente lento y complejo. A excepción de los casos de Brasil y Méjico en el resto de los países latinoamericanos, incluido Colombia, sólo se podría hablar de proyectos en distintas fases de desarrollo, que en muchos casos no han pasado la etapa de factibilidad técnica (Ondátegui, 2001).

En la Figura 2, pág. I 19, se presenta la línea de tiempo de los PCT en el mundo.

3. Parques de Ciencia y Tecnología en Colombia

El primer parque de ciencia y tecnología instalado en Colombia fue el Parque Tecnológico de Antioquia, que se constituyó en 1998 como pionero en el país (Parque Tecnológico de Antioquia, 2012). Un año después, la gobernación de Santander, la Universidad Pontificia Bolivariana y la Universidad Industrial de Santander (UIS), ponen en marcha la creación del parque de Guatiguará que en la actualidad constituye el proyecto urbanístico, tecnológico y empresarial más avanzado dentro de las políticas de parques tecnológicos en el país (Morales *et al.*, 2011, Parque Tecnológico de Guatiguará, 2013).

Desde entonces, el gobierno nacional ha adquirido un compromiso con el desarrollo de los parques, debido a los beneficios que estos confieren a las regiones, a través de la creación de leyes como la 590 de 2000 (Colombia, 2000) y la 905 de 2004 (Colombia, 2004), que promueven el desarrollo de las micro, pequeñas y medianas empresas; de la política de parques tecnológicos del Ministerio de Desarrollo Económico, hoy Ministerio de Comercio, Industria y Turismo (Colombia, 2003); y del Plan Nacional de Desarrollo (PND) 2010-2014 que establece que aquellos parques tecnológicos que logren estímulos en el sector productivo, como inversión y empleo; contarán con incentivos tributa-

rios propios de una zona franca (Colombia, 2011). Las bases del PND 2014-2018 mantienen la disposición de establecer lineamientos que permitan que los parques tecnológicos se configuren como herramienta de desarrollo económico y social del territorio a través de la aplicación de la ciencia y la tecnología para mejoramiento de la productividad y la competitividad de las regiones, incluyendo el diseño de modelos de financiación para estas iniciativas (Colombia, DNP, 2015).

Sumado a los parques de Antioquia y Santander, en el 2004 se crea el Parque Tecnológico de la Umbría, en el departamento del Valle del Cauca, gestionado por la Universidad de San Buenaventura de Cali. En la actualidad hay tres organizaciones empresariales ubicadas en este parque; además, cuenta con una oficina de emprendimiento que ha impulsado la incubación de tres nuevas empresas de las áreas jurídica, informática y publicidad. El Parque Tecnológico de la Umbría es el único parque colombiano asociado a IASP aunque en la categoría de miembro afiliado, destinada para parques que aún no están en operación (Parque Tecnológico de la Umbría, 2015).

En el 2006 se desarrolla la red Tecnoparque de Colombia a cargo del Servicio Nacional de Aprendizaje (SENA), que, a pesar de su nombre, más que un parque es un programa para la aceleración de proyectos que facilita información, recursos e infraestructura tecnológica para el desarrollo de ideas innovadoras y productivas en las áreas electrónica, telecomunicaciones, tecnologías virtuales, ingeniería y diseño, biotecnología y nanotecnología (SENA, 2015).

En Colombia existen otras iniciativas de creación de parques, sin embargo estas no superan la factibilidad técnica, tal es el caso del Parque Tecnológico de la Sabana de Bogotá y el Parque Tecnológico del Caribe (Acosta, 2011). El primero de ellos es un proyecto liderado por el SENA, la Universidad Nacional de Colombia y la Corporación Colombiana de Investigación Agropecuaria (Corpoica), que busca desarrollar un corredor tecnológico para el sector agroindustrial de la sabana de Bogotá, e implementar una estrategia tecnológica en el sector productivo agropecuario (Morales et al., 2011; Acosta, 2011). Por su parte, la Universidad del Atlántico ha adoptado el proyecto Parque Tecnológico del Caribe que ha estado en los planes de desarrollo del departamento del Atlántico por dos periodos (Gobernación del Atlántico, 2008; Gobernación del Atlántico, 2012). Otra iniciativa reciente es el proyecto Parque Científico y Tecnológico de la Universidad Militar Nueva Granada (Universidad Militar Nueva Granada, 2013).

Los PCT en Colombia, a pesar de ser relativamente nuevos, han establecido pequeñas bases para un cambio en el modelo de crecimiento económico del país, hacia uno sustentado en la capitalización del conocimiento; sin embargo, para su consolidación se requieren esfuerzos más agresivos en cuanto a la generación y promoción de políticas propias, programas y herramientas de funcionamiento que faciliten la vinculación de actores, más allá de las universidades que hasta ahora han apalancado estos procesos y que en la mayoría de los casos no tienen capacidad económica para aportar el capital semilla necesario en cualquier proyecto. El éxito de los PCT en nuestro país vendrá dado por el trabajo coordinado entre empresas, administraciones públicas, universidades y organismos de investigación; la vinculación entre estos actores se conoce como el modelo Triple Hélice (Morales *et al.*, 2011; Rodeiro y Calvo, 2012).

En la Figura 3 se presenta la línea de tiempo de los PCT en Colombia.

4. El modelo de la Triple Hélice y su relación con los PCT

El conocimiento ha sido utilizado desde siempre por la sociedad como base para las mejoras sociales y económicas; sin embargo en las sociedades modernas la ciencia y la tecnología se han convertido en la base de la economía y de la sociedad (Adán, 2012).

La necesidad de modelos económicos y de desarrollo basados en el conocimiento otorga a la universidad una nueva misión; además de los roles tradicionales de docencia e investigación, se suma el papel de transferir de manera directa el resultado del conocimiento y la tecnología hacia la industria y hacia la sociedad en general, gozando de beneficios propios conferidos por el gobierno local o nacional; esta nueva misión ha dado lugar al modelo Triple Hélice basado en la interacción entre la universidad, la empresa y el Estado (Adán, 2012; Rodeiro y Calvo, 2012).

La Triple Hélice (TH) (ver Figura 4) es un modelo de innovación en espiral que capta las múltiples y recíprocas interacciones entre la universidad como primera hélice, las empresas e industrias como segunda hélice y las administraciones o gobiernos como tercera hélice; en diferentes puntos del proceso de capitalización del conocimiento (Etzkowitz, 2002; Chang, 2010; Rivera, Ocampo y Arredondo, 2015).

La universidad juega un importante papel en las actividades socioeconómicas de un país, en tanto que, además de generar actividades propias de enseñanza-aprendizaje e investigación y desarrollo, participa en la creación de nuevas empresas (spin-off) basadas en el conocimiento a través de mecanismos de incubación⁶; con esta dinámica se logra no solo el crecimiento de las instituciones que conforman esta primera hélice, sino también de las empresas involucradas en la TH que resultan beneficiarias de los resultados de las investigaciones que se obtienen en la universidad (Díez y Fernández, 2015; Vásquez-Urriago et al., 2014). Estas empresas, que constituyen una segunda hélice del modelo, estimulan su crecimiento y competitividad a través de

Figura 4. Modelo Triple Hélice. Representación de la interacción entre la universidad, la empresa y el estado en un proceso de capitalización del conocimiento que inicia con la identificación de la necesidad hasta la puesta en el mercado del producto, proceso o servicio que la resuelva. Los miembros de la triple hélice no mantienen una posición fija a lo largo de la cadena sino que cada uno la soporta en distintos puntos. Los procesos de transferencia en cada nivel de la innovación están apoyados en las oficinas de transferencia de resultados de investigación (OTRI) que suelen estar ubicados en los parques de ciencia y tecnología.

Fuente: Los autores, basado en Etzkowits (2008) y Du Preez y Louw (2008).

mecanismos de cooperación con las universidades, financiando procesos de I&D+i que resuelven problemas de su quehacer cotidiano, o generan nuevas tecnologías para ser comercializadas (Chang, 2010).

El adecuado funcionamiento del modelo implica una participación activa del gobierno, la tercera hélice, a través de la legislación, instrumentos e incentivos fiscales propicios para el fomento y dinamismo de las relaciones universidad-empresa (Chang, 2010).

Los espacios de convergencia entre las tres hélices son las oficinas universitarias de transferencia de resultados de investigación (OTRI) u oficinas de transferencia tecnológica (OTT)⁷, que normalmente se ubican en escenarios pertinentes tales como los PCT (Adán, 2012).

El modelo de la Triple Hélice describe el modo en que la innovación está guiada cada vez más por la interacción entre la universidad, la industria y el gobierno. Por ello, conforme ha ido aumentando la participación de la universidad en la configuración del sistema de innovación, y las relaciones dinámicas entre ésta, la industria y el gobierno, los PCT también han adquirido un mayor protagonismo constituyéndose en escenario óptimo para la aplicación del modelo Triple Hélice (Chang, 2010; Adán y Bellavista, 2011; Adán, 2012).

Cada uno de los ejes de la triple hélice tiene características culturales diferentes, derivadas de su misión principal, es así que la universidad y el Estado tienen una orientación cultural dirigida hacia objetivos de crecimiento y desarrollo del entorno, mientras que la cultura empresarial está orientada a la competitividad del negocio (Erosa, 2012). Es, por tanto, un reto para la implementación del modelo Triple Hélice el entendimiento de las características culturales de cada eje y la creación de sinergias entre estas en un objetivo común; en este contexto es la innovación la actividad que responde a objetivos comunes de los tres ejes.

En complemento al modelo Triple Hélice, otras tendencias han incluido un cuarto eje que agrupa a la sociedad junto con las políticas basadas en la cultura y en los medios de comunicación, con enfasis en la relación entre cultura y cultura de la innovación, conocimiento de la cultura y cultura del conocimiento, valores y estilos de vida, multiculturalismo y creatividad, arte y universidades de artes, sistemas de innovación de varios niveles con universidades de las ciencias y universidades de las artes, y en la sociedad como usuaria del

conocimiento (Morales, Sanabria y Martínez, 2015; Carayannis y Campbell, 2011).

A continuación se presenta un análisis sobre las condiciones de la triada universidad- empresa-estado en la Región Caribe colombiana.

4.1. Análisis sobre los actores de la triple helice en Colombia – Región Caribe

Como se mencionó anteriormente, el modelo TH se basa en la transferencia de conocimiento o transferencia tecnológica desde la universidad (grupos y centros de investigación) hacia la empresa, con el apoyo del Estado (Etzkowitz, 2002; Chang, 2010; Rivera et al., 2015) y es un modelo común dentro del escenario de un PCT (Chang, 2010; Adán y Bellavista, 2011; Adán, 2012). Por esta razón, para una implementación exitosa de este modelo en un PCT se requiere de la existencia y reconocimiento social de las capacidades científicas y tecnológicas de las universidades, de la capacidad de adopción de nuevos productos y procesos por parte de la empresa y de las políticas de estado que facilitan este proceso de transferencia. A continuación se presenta una revisión del estado de las tres hélices del modelo TH en la Región Caribe colombiana.

4.1.1. Capacidades de ciencia y tecnología de la Universidad – Centros y grupos de Investigación.

Una revisión sobre los PTC existentes en el mundo muestra que la mayoría de ellos se especializan en el sector electrónico-informático y de telecomunicaciones y en áreas relacionadas con las ciencias biomédicas (biología, bioquímica, biofarmacia y biotecnología) (AURP, 2012; IASP, 2012; UKSPA, 2012; APTE, 2012). Debido al enfoque del Grupo de Investigación en Administración y Gestión Farmacéutica (A&G F) hacia las ciencias biomédicas, se ha recopilado información sobre centros de investigación, centros de desarrollo tecnológico y centros de excelencia⁸ de la Región Caribe colombiana dedicados a la investigación en esta área, con el objetivo de identificar las capacidades disponibles para ofrecer a la industria. La Tabla 4, pág. 123, resume el resultado de esta búsqueda.

Adicionalmente, se han identificado 71 grupos de investigación en la Región Caribe, con líneas enfocadas al estudio de las ciencias biomédicas. Una encuesta sobre una muestra representativa de estos grupos determinó que sus capacidades científicas y tecnológicas están concentradas principalmente en el desarrollo de técnicas moleculares para diagnóstico de patologías (Herrera y Salas, 2013).

En conclusión, las líneas de investigación generales identificadas como fortalezas entre los centros y grupos de investigación en ciencias biomédicas de la Región Caribe colombiana son: evaluación de bioactividad; seguridad alimentaria; biología molecular, genética y bioinformática; inmunoensayos; biología celular e histología (Herrera y Salas, 2013).

4.1.2. La posición de la empresa

Es claro que una de las hélices del modelo TH está conformada por las empresas como demandantes de tecnología y fuente principal de recursos financieros; por ello es interesante analizar cuál es la posición actual de la industria de la Región Caribe colombiana frente a los procesos de I&D+i. Trabajos de campo realizados por el Grupo de Investigación en Administración Farmacéutica (A&G F) sobre empresas del sector cosmético, farmacéutico y clínico, muestran que actualmente las empresas pertenecientes a estos sectores en la Región Caribe tienen poca participación en procesos de innovación. En promedio, entre 2010 y 2011, la inversión en actividades de I&D+i en empresas encuestadas pertenecientes al sector cosmético fue de treinta millones de pesos (\$30.000.000)9. Adicionalmente, en una encuesta realizada entre laboratorios farmacéuticos e instituciones prestadoras de servicios de salud para indagar sobre las necesidades que la industria esperaba satisfacer con un PCT, se encontró que, en el corto plazo, el principal interés de los encuestados estuvo en el posible alquiler de espacios inmobiliarios dentro del parque, por encima de cualquier otro servicio de apoyo a actividades de I&D+i (Herrera y Salas, 2013). A pesar de lo anterior, estos mismos estudios han evidenciado el creciente interés de la empresa por participar como eslabón en el modelo TH, es así que el 70% de los encuestados del sector cosmético manifestó querer desarrollar nuevos proyectos de I&D+i durante los próximos tres años, en conjunto con universidades 10. Asimismo, más del 50% de los participantes del estudio sobre el sector clínico y farmacéutico manifestó su disposición para participar en proyectos Universidad – Empresa – Estado (Herrera y Salas, 2013). Lo anterior evidencia que si bien en la actualidad la dinámica de la relación entre la universidad y la empresa en la Región Caribe colombiana es más bien estática, actualmente se está en un momento coyuntural en el que se ha generado conciencia sobre la importancia de la innovación en el crecimiento económico.

4.1.3. Políticas del Estado

Desde el 2009, Colombia cuenta con un documento Conpes especial para su política de Ciencia, Tecnología e Innovación (CTI), cuyo objetivo es establecer las estrategias del Estado para incrementar la capacidad del país de generar y usar conocimiento científico y tecnológico, con miras a obtener

 Tabla 4.

 Centros de excelencia, investigación y desarrollo tecnológico de la Región Caribe Colombiana.

N°	Centros	Descripción	Líneas de investigación	Instituciones vinculadas	Avalado en sistema de ciencia y tecnología nacional	
	CE: Centro Nacional de Investigaciones para la Agroindustrialización de Especies Vegetales Aromáticas Medicinales Tropicales – CENIVAM.	Reúne 9 grupos de investigación a nivel nacional y su objetivo central es establecer el conocimiento científico y tecnológico para desarrollar en Colombia la agroindustria de aceites esenciales, extractos y derivados naturales con diversa actividad biológica.	Etnobotánica y taxonómica.	Universidad Industrial de Santander.		
			Evaluación de bioactividad de extractos y P.A.	Universidad de Antioquia.	Si	
1			Extracción, caracterización y fraccionamiento de aceites esenciales.	Universidad Tecnológica del Choco.		
			Síntesis derivación y transformación catalítica de compuestos aislados de plantas seleccionadas.	Universidad de Cartagena.		
			Transferencia de tecnología planta piloto para obtención de aceites esenciales.	Universidad Tecnológica de Pereira.		
	CI: Centro de bioingeniería Universidad Autónoma del Caribe CEBI-UAC.	Centro de investigación que centra sus estudios al área del conocimiento de ingeniería e ingeniería biomédica.	Ingeniería Clínica y Gestión Hospitalaria.		No	
2			Bioinstrumentación.	Universidad Autónoma Del Caribe.		
			Bioinformática y Telemedicina.			
		Centro de investigación que centra sus estudios al área del conocimiento de las ciencias de la salud y la medicina.	Insuficiencia cardiaca.	Universidad De Cartagena.		
	CI: Centro de Investigaciones Biomédicas- CIB.		Enfermedad coronaria.	onaria. E.S.E Hospital Universitario del Caribe.		
3			Hipertensión arterial.	Sociedad Colombiana de Cardiología y	No	
			Obesidad, Hipertensión arterial y diabetes.	cirugía cardiovascular.		
	Cl: Observatorio del Caribe Colombiano- OCC.	Centro de pensamiento e investigación que se dedica al estudio, la reflexión y la divulgación del conocimiento sobre la realidad del Caribe colombiano.	Análisis económico, social y ambiental para políticas públicas.	Colciencias.		
			Pobreza y desigualdad.	Universidad del Atlántico.	Si	
			Cultura caribe y desarrollo.	Universidad de Cartagena.		
4			Economía energética regional.	Cámara de comercio de Cartagena.		
			Ciencia, tecnología e innovación para el Caribe colombiano.	Cámara de comercio de Sincelejo.		
			Desarrollo rural y seguridad alimentaria y nutricional.	ProBarranquilla.		
				Universidad de Magdalena.		
				Universidad de Córdoba.		
				Universidad Popular del Cesar.		
			Planeación estratégica y prospectiva.	Universidad de la Guajira.		
			L La agrica.	Cámara de comercio de Montería.		
				Cámara de comercio de la Guajira.		
				Cámara de comercio de Barranquilla.		

Fuente: Recopilación de los autores. Basado en Plataforma ScienTI – Colombia (2015).

desarrollo económico y social basado en el conocimiento. Dichas estrategias van dirigidas a fomentar la innovación en el aparato productivo colombiano; fortalecer la institucionalidad del Sistema Nacional de Ciencia, Tecnología e Innovación (SNCTI); fortalecer el recurso humano para la investigación y la innovación; promover la apropiación social del conocimiento; focalizar la acción del Estado en el desarrollo de sectores estratégicos caracterizados por la producción de bienes y servicios de alto contenido científico y tecnológico; y fortalecer las capacidades en CTI a través del diseño y ejecución de planes de cooperación para la investigación, el fortalecimiento de los sistemas regionales de ciencia y tecnología, la adquisición de equipos robustos y el desarrollo mutuo de capacidades institucionales y humanas con los países de la región, entre otras acciones (Colombia. Conpes, 2009).

El Conpes 3582 ha priorizado el fortalecimiento sostenible de la relación universidad-empresa, para lo cual ha propuesto desarrollar y promover un portafolio de incentivos para la innovación en el sector productivo. En este sentido, el Departamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias) ha trabajado desde mediados de los noventa en la creación del instrumento de cofinanciación, a través del cual se apoyan proyectos colaborativos academia-empresa. Además, el Ministerio de Educación Nacional, desde el 2007, viene apoyando la creación y fortalecimiento de alianzas a través de los comités universidad-empresa-estado en distintos departamentos de Colombia, los cuales facilitan el encuentro y la articulación de actores privados y públicos alrededor de las necesidades de las empresas y de las capacidades existentes en las universidades (Colombia. Conpes, 2009).

En el nuevo Conpes se propone como instrumento específico para fomentar la relación Universidad-Empresa financiar proyectos que contengan componentes de vigilancia tecnológica a los sectores productivos, que les permita identificar de manera sistemática oportunidades de modernización y transferencia de tecnología, como una actividad incorporada dentro de su modelo de gestión. Además, el portafolio de incentivos dispuesto para las empresas tiene en cuenta esquemas de garantías a los créditos que se soliciten para financiar proyectos que tengan por objetivo adaptar las tecnologías nacionales e internacionales existentes (Colombia. Conpes, 2009).

Un avance importante que ha materializado en parte esta política de CTI es el nuevo sistema de distribución de regalías, que asigna el 10% de los ingresos de recursos no renovables a un fondo para CTI lo que genera un aumento importante de los recursos disponibles para esta causa. Asimismo, se han formalizado ocho Comités Universidad-Empresa-Estado (CUEE) distribuidos entre las regiones

de Cundinamarca, Antioquia, Eje cafetero, Valle del Cauca, Región Caribe, Santander, Tolima, Huila, Nariño, Cauca; destinados a construir espacios de sinergia entre los grupos de investigación y las empresas del sector productivo para estimular la generación y promoción de proyectos de investigación innovadores (OCDE, 2014; Ramírez y García, 2010; Pineda *et al.*, 2011).

Recientemente se ha expedido un nuevo documento Conpes 3834, con lineamientos de política para estimular la inversión privada en ciencia, tecnología e innovación a través de deducciones tributarias; estos lineamientos pretenden, entre otros aspectos, extender la aplicación de tales deducciones a las actividades de innovación empresarial. Este nuevo enfoque tendrá posiblemente un impacto positivo en los indicadores de inversión en CTI de Colombia, pero podría convertirse en un desacelerador de las relaciones universidad-empresa (Colombia. Conpes, 2015). Por otro lado, el Conpes 3834 ha planteado una acción concreta para promover el fortalecimiento de los parques científicos y tecnológicos; se trata de la puesta en marcha de un proyecto piloto que otorgará a las empresas ubicadas en tres PTC seleccionados por Colciencias, la calificación automática de proyectos de I&D+i igual a la otorgada a empresas consideradas como altamente innovadoras¹¹ para ampliar la posibilidad de beneficios tributarios para quienes se ubiquen en los parques.

A pesar de lo anterior, hasta el momento no se han obtenido resultados de impacto sobre la posición de Colombia frente a otros países con experiencia exitosa en la implementación de PCT bajo el esquema de la Triple Hélice. Una comparación entre los componentes de la política de CTI de Colombia frente a países como Reino Unido, Francia, Estados Unidos y Brasil, permite identificar los factores diferenciales que podrían ser determinantes en el resultado del ranking del índice global de innovación y sofisticación establecido por el "World Economic Forum" (2014). En este análisis se puede observar que los países con mejor ubicación en el ranking presentan dentro de sus estrategias para la promoción de la CTI aspectos como la inversión en investigación básica y el fortalecimiento de la infraestructura pública (Ver Tabla 5, pág. 125).

Sobre el primer aspecto, Colciencias ha reconocido la importancia de la investigación básica como base fundamental de los procesos de desarrollo científico y tecnológico, sin los cuales es impensable la inserción del país en las dinámicas globales de desarrollo; para fortalecer este aspecto ha creado y reajustado recientemente el Programa Nacional de Ciencias Básicas cuyo plan estratégico se encuentra en elaboración (Colciencias, 2014a). Sin embargo, históricamente los esfuerzos de Colciencias para promover la investigación básica han sido hasta ahora tímidos, es así que

 Tabla 5.

 Comparación de estrategias de ciencia tecnología en innovación entre países pioneros en PCT, Brasil y Colombia.

Ranking de innovación/Estrategia	Reino Unido (2011)	Estados Unidos (2011)	Francia (2009)	España (2010)	Brasil (2012)	Colombia (2009)	¿Factor Diferencial?
Ranking de innovación y factor de sofisticación*	5	8	19	39	56	64	
Formación de talento humano para la CTI.		Х	Х	Х	Х	Х	
Fortalecimiento de capacidades de nvestigación en universidades.	Х			Х	Х	Х	
Inversión en investigación básica.	Х	Х	Х				SI ****
Fomento de CTI en las empresas mediante sistema de créditos y/o ncentivos.	Х	Х	Х	Х	х	Х	
Soporte a empresarios/empresas nnovadoras.	Х	Х	Х	Х	Х	Х	
Apoyo a Centros de investigación y Parques Científicos y Tecnológicos.	Х	Х	Х	Х	Х	Х	
Promoción de la internacionalización de empresa y/o productos de CTI.	Х	Х	Х	Х	Х	Х	
Fortalecimiento de la relación Universidad-Empresa.			Х	Х	Х	Х	
nversión en seguridad y defensa.	Х	Х	Х	Х	Х	Х	
nversión en Infraestructura pública.	Х	Х					SI ***
Fomento a la investigación multidisciplinar.	Х		Х			Х	
Medición sistemática de resultados.			Х	Χ		Х	
Contratación pública de empresas nnovadoras.	X	Х	X	X	X		SI **
Ayudas financieras a Oficinas de transferencia de resultados de nvestigación (OTRIS).	Х			Х			
Promoción de la protección a la propiedad industrial.	Х	Х		Х	Х	Х	
Implementación de mercado bursátil especial para empresas innovadoras de capitalización media.				Х			
Financiación del costo de nvestigadores en proyectos ndustriales innovadores.				Х			
ncremento de los recursos públicos para investigación e innovación.	X				Х	Х	
Desarrollo del mercado de servicios científico-tecnológicos.	Х				Х	Х	
Fortalecimiento de infraestructura para CTI.	Х	Х	Х	Х	Х	Х	

Fuente: Recopilación de los autores.

^{*}Ranking del índice global de innovación y sofisticación establecido (WEF, 2014). La "x" indica que la estrategia está presente en las políticas de ciencia y tecnología del país. Se realizó un análisis de correlación para identificar los factores diferenciadores que podrían ser determinantes en la obtención de un mejor índice de innovación.**p<0,005, ****p<0,00005, ****p<0,00000005.

en los últimos diez años Colciencias ha llevado a cabo tan sólo dos convocatorias para financiación de proyectos en ciencias básicas, la más reciente en 2014, con un presupuesto de \$17.197.202.226 (Colciencias, 2014b).

En cuanto al fortalecimiento de la infraestructura pública (carreteras, rieles y pistas de aterrizaje) son reconocidos por Estados Unidos y Reino Unido como un apoyo fundamental para hacer a las empresas nacionales más eficientes e innovadoras (USA, 2011; UK, 2011). En Colombia, la infraestructura pública es vista totalmente separada de las políticas de CTI.

De manera semejante, Colombia no contempla dentro de sus políticas de CTI la contratación pública de empresas innovadoras, aunque no puede desconocerse que en el país se han puesto en marcha estrategias para fomentar el emprendimiento innovador, tales como la creación de incubadoras de empresas como Incubar y CREAME, que, junto con otras incubadoras a lo largo del país, han contribuido a la creación de más de 342 empresas de diferentes áreas productivas. Asimismo, vale la pena destacar la puesta en marcha de programas de emprendimiento dirigidos por empresas, como es el caso del programa Jóvenes con Empresa, llevado a cabo entre 2005 y 2009, por el Banco Interamericano de Desarrollo (BID) y la Fundación Corona (Colombia, Conpes, 2009; Morales *et al.*, 2011; Peña *et al.*, 2011).

Si bien es claro que en Colombia se están dando avances positivos para la integración de las actividades entre la universidad, la empresa y el estado, existen factores que limitan esta relación y que deben ser superados a corto plazo. Quizá los principales obstáculos han sido la falta de confianza entre los actores para la cooperación mutua, la carencia de operatividad de las políticas existentes y su amenazada sostenibilidad a largo plazo (Universidad Nacional de Colombia, 2008).

5. Conclusiones

Los parques científicos y tecnológicos son instrumentos del sistema de ciencia y tecnología para la capitalización del conocimiento como herramienta de desarrollo económico y social. Se puede diferenciar entre parques científicos y parques tecnológicos en función de la presencia o ausencia en su estructura orgánica fundamental de la universidad, representada en grupos y centros de investigación.

También se hizo claridad en cuanto a la conceptualización de otras denominaciones tales como: centro o instituto de investigación, centro de desarrollo tecnológico y empresas de base tecnológica; su relación en función de sus produc-

tos, ya sea de investigación científica; desarrollo, apropiación o transferencia de tecnología.

A nivel mundial se logró identificar los diferentes parques científicos y tecnológicos, y de otros tipos, así como sus características conceptuales y de localización, sus fechas de creación, su orientación y aportes. Cada uno de ellos ha sido producto no solo del cambio y reorientación de la estructura económica de la ciudad, zona o región donde se han establecido; sino también de un fuerte apoyo de los gobiernos en especial de los países más industrializados y desarrollados (Estados Unidos, Reino Unido, Francia, España, Taiwán). En Latinoamérica, el desarrollo de los parques ha sido extremadamente lento y complejo, sólo Brasil y Méjico han logrado consolidarlos.

En Colombia se dan condiciones propicias para poner en marcha proyectos como estos porque existen necesidades en la empresa, capacidades en las universidades y políticas de CTI apropiadas; sin embargo, se requieren grandes esfuerzos por parte de todos los actores para lograr implementar un modelo de Triple Hélice sustentable, que soporte la institucionalidad de un parque científico y tecnológico en el Caribe. Específicamente en la región Caribe, se hace necesario superar las barreras en cuanto a agilización en los procesos de toma de decisiones y acuerdo entre las partes, identificar la figura de constitución más adecuada en el marco de las normas legales y comerciales, e identificar las necesidades específicas en cuanto a infraestructura, tecnología, talento humano, su formación y capacitación.

La apuesta por PCT es arriesgada porque compromete a los actores a responder por lograr hacer realidad una visión de futuro compartida, pero construida sobre bases sólidas en el presente donde se materialice el fortalecimiento de políticas públicas, planes de reordenamiento territorial, normas y financiamiento gubernamental, aportes del sector empresarial y el desarrollo y generación de productos o servicios obtenidos como resultado de procesos de investigación e innovación de grupos y centros de investigación para resolver problemas de tipo social y/o productivo.

Se plantean como recomendaciones hacer un análisis, desde el punto de vista político y económico, del momento histórico en el que surgieron cada una de las iniciativas a nivel mundial, de tal forma que se tenga un panorama más amplio de las condiciones que favorecen el éxito de estos proyectos; evaluar el impacto social, económico y cultural en las regiones y países que los han impulsado; e incluir como parte del análisis de los actores una revisión de los aspectos considerados por el modelo de cuatro hélices en relación con la sociedad, la cultura y los medios de comunicación.

En referencia a futuras líneas de investigación a partir del presente artículo, se visionan la finalización de los estudios de caracterización de los servicios demandados de los diferentes renglones del Clúster de Farmacia & Salud en el marco de un parque de ciencia y tecnología en el Caribe colombiano, con la finalidad de establecer el portafolio de servicios a ofrecer, a partir del establecimiento de la demanda y del inventario de capacidades de cada uno de los actores mencionados.

Conflicto de intereses

Los autores declaran no tener ningún conflicto de intereses.

Notas

- Centro o Instituto de Investigación: Es una organización dedicada a adelantar investigación científica, dotada de administración, recursos financieros, humanos e infraestructura destinada al desarrollo de este objeto (Colciencias, 2011).
- Centro de Desarrollo Tecnológico: es una organización dedicada a desarrollar tecnología, proyectos de innovación tecnológica, proyectos de apropiación pública de la ciencia o de transferencia de tecnología en el marco de un proyecto de innovación, dotada de administración y de recursos financieros, humanos e infraestructura, destinada al desarrollo de este objeto (Colciencias, 2011).
- Las empresas de base tecnológica son aquellas organizaciones generadoras de valor que mediante la aplicación sistemática de conocimientos tecnológicos y científicos, están comprometidas con el diseño, desarrollo y elaboración de nuevos productos, servicios, procesos de fabricación y/o comercialización (Colciencias, 2007).
- La innovación se refiere a la introducción de un nuevo o significativo método de producción que incluye invención explotación técnica y comercial (Luengo y Obeso, 2013).
- Se entiende por transferencia tecnológica el movimiento o difusión de una tecnología o producto desde el contexto de su invención original a un contexto económico y social diferente (López, Mejía y Schmal, 2006).
- Mecanismos enfocados a la creación de empresas o apoyo en su fase de formación, dedicadas al desarrollo de la innovación tecnológica y la generación del valor agregado en la producción y comercialización de bienes y servicios (Peña, Álvarez, Bravo y Pineda, 2011).
- Organismos intermediarios entre la universidad y la industria que representan los intereses de ambas partes, facilitando la transferencia comercial del conocimiento a través del licenciamiento de las invenciones a la industria u otras formas de propiedad intelectual, producto de la investigación universitaria. (López et al., 2006).
- Red nacional de grupos de investigación del más alto nivel, articulada alrededor de un programa común de trabajo en un área científica y tecnológica considerada como estratégica para el país. (Colombia Aprende; La red del conocimiento, 2012).
- Datos propios, encuesta de Desarrollo, Caracterización e Innovación Tecnológica. Proyecto centro Red Para la Innovación de la Cadena de Bioingredientes, Cosmética y Aseo – CRIBICA. Nodo Caribe. Colombia. 2012.

- Datos propios, encuesta de Desarrollo, Caracterización e Innovación Tecnológica. Proyecto centro Red para la Innovación de la Cadena de Bioingredientes, Cosmética y Aseo – CRIBICA. Nodo Caribe. Colombia. 2012.
- 11. Según el Conpes 3834, para ser reconocida como altamente innovadora una empresa debe: contar con procesos y estructura organizacional definidos para la innovación; contar con presupuesto anual asignado para actividades de I&D+I no inferior al 0,3% de las ventas brutas o evidenciar una tasa de crecimiento anual de su presupuesto de I&D+I no inferior al 10%, acumulado en los últimos tres años; acreditar la idoneidad profesional de las personas vinculadas al proceso de I&D+I en términos de: formación académica, conocimientos específicos o experiencia certificada relacionada con I&D+I; comprobar la introducción de innovaciones en el mercado (en alguna de las categorías definidas en el manual de Oslo) equivalentes a por lo menos el 10% del portafolio de productos o servicios de la empresa, durante los últimos tres años (Colombia. Conpes, 2015).

Referencias bibliográficas

- ACOSTA, Jaime. Políticas productivas de innovación y regiones y el desarrollo de parques científicos y tecnológicos entre nación, regiones, empresas y universidades. Alusión a los proyectos de parques en Bogotá. Bogotá D.C., 2011. 24 p.
- ADÁN, Carmen. El ABC de los parques científicos. En: Seminarios de La Fundación Española de Reumatología. Mayo, 2012. vol. 13, no. 3, p. 85–94.
- ADÁN, Carmen; BELLAVISTA, Joan. Las tres hélices en los parques científicos y tecnológicos de Cataluña. En; Revista Económica, el monográfico: Economía del Conocimiento y el Territorio. 2011. vol. 64, p. 121-129.
- ALBAHARI, Alberto; PÉREZ-CANTO, Salvador y LANDONI, Paolo. Science and Technology Parks impacts on tenant organizations: a review of literature. <u>En</u>: MPRA. Octubre, 2012. Paper no. 41914, p. 1-29.
- ALMEIDA, Alexandre; SANTOS, Cristina y RUI, Mario. Bridging science to economy: the role of science and technologic parks in innovation strategies in "follower" regions. Portugal: Universidade do Porto, Faculdade de Economia do Porto, 2008. 18 p. FEP Working Papers 302
- ASOCIACIÓN DE PARQUES CIENTÍFICO Y TECNOLÓGICO DE ESPAÑA (APTE). Definición de parque [online]. Campanillas (Málaga): APTE, s.f- [consultado Febrero 3, 2012]. Disponible en internet: http://www.apte.org/es/definicion-de-parque.cfm.
- ASOCIACIÓN DE PARQUES CIENTÍFICO Y TECNOLÓGICO DE ESPAÑA (APTE). Directorio Asociación de Parques Científicos y Tecnológicos de España [online]. Campanillas (Málaga): APTE, 2014-[consultado Enero 22, 2015]. Disponible en internet: http://asp-es. secure-zone.net/v2/index.jsp?id=5766/10010/25739&Ing=es.
- 8. ASSOCIATION OF UNIVERSITY RESEARCH PARKS (AURP). What is a Research Park? [online]. Tucson (Arizona): AURP, s.f.- [consultado Febrero 3, 2012]. Disponible en internet: http://www.aurp.net/index.php?option=com_content&view=article&id=120.
- BELLINI, Nicola; TERÄS, Jukka y YLINENPÄÄ, Håkan. Science and Technology Parks in the Age of Open Innovation. The Finnish Case. <u>En:</u> SYMPHONYA Emerging Issues in Management. Enero-Junio, 2012, vol. 1, p. 25-44.
- BENKO, Georges. Technopoles, high-tech industries and regional development: A critical review. <u>En:</u> GeoJournal. Enero, 2000. vol. 51, no. 3, p. 157-167.

- BRASIL. Estratégia Nacional de Ciência, Tecnologia e Inovação 2012 2015, Brasilia: Ministério da Ciência, Tecnologia e Inovação, 2012. 220 p.
- CARAYANNIS, Elías y CAMPBELL, David. Mode 3 Knowledge Production in Quadruple Helix Innovation Systems: 21st-Century Democracy, Innovation, and Entrepreneurship for Development [online]. Illustrated ed. [Germany]: Springer Science & Business Media, 2011. [consultado 31 Agosto, 2015]. Disponible en internet: http://www.springer.com/us/book/9781461420613. ISBN 978-1-4614-2062-0.
- 13. CEIM. CONFEDERACIÓN EMPRESARIAL DE MADRID-CEOE. La innovación: Un factor clave para la competitividad de las empresas. Colección dirigida por Alfonso González Hermoso de Mendoza. Madrid-España: Dirección General de Investigación. Consejería de Educación de la Comunidad de Madrid, 2001. 170 p. ISBN 84-451-1992-3.
- Centros de investigación de excelencia. [online]. Bogotá: Colombia Aprende, La red del conocimiento, s.f- [consultado Julio 19, 2012]. Disponible en internet: http://www.colombiaaprende.edu.co/html/investigadores/1609/article-114986.html.
- CHANG CASTILLO, Helene. El modelo de la triple hélice como un medio para la vinculación entre la universidad y empresa. <u>En</u>; Revista Nacional de administración. Enero-Junio, 2010, vol. 1, no. 1, p. 85-94.
- COLOMBIA. CONGRESO DE LA REPÚBLICA. Ley 1450. (16, Junio, 2011). Por la cual se expide el Plan Nacional de Desarrollo, 2010-2014. Diario oficial. Bogotá, D.C., 2011. no. 48102. 84 p.
- COLOMBIA. CONGRESO DE LA REPÚBLICA. Ley 590. (12, Julio, 2000). Por la cual se dictan disposiciones para promover el desarrollo de las micro, pequeñas y medianas empresa. Diario oficial. Bogotá, D.C., 2000. no. 44078. 16 p.
- COLOMBIA. CONGRESO DE LA REPÚBLICA. Ley 905. (2, Agosto, 2004). Por medio de la cual se modifica la Ley 590 de 2000 sobre promoción del desarrollo de la micro, pequeña y mediana empresa colombiana y se dictan otras disposiciones. Diario oficial. Bogotá, D.C., 2004. no. 45628. 14 p.
- COLOMBIA. CONSEJO NACIONAL DE POLÍTICA ECONÓMI-CA Y SOCIAL DEPARTAMENTO NACIONAL DE PLANEACIÓN. Conpes 3582 (27, Abril, 2009). Política de Ciencia, Tecnología e Innovación. Bogotá, D.C.: El Consejo, 2009. 69 p.
- COLOMBIA. CONSEJO NACIONAL DE POLÍTICA ECONÓMI-CA Y SOCIAL DEPARTAMENTO NACIONAL DE PLANEACIÓN. Conpes 3834 (2, Julio, 2015). Política de Ciencia, Tecnología e Innovación. Bogotá, D.C.: El Consejo, 2015. 54 p.
- COLOMBIA. DEPARTAMENTO NACIONAL DE PLANEACIÓN. Bases del Plan Nacional de Desarrollo 2014-2018. Bogotá, D.C., 2015. 781p.
- COLOMBIA. MINISTERIO DE DESARROLLO ECONÓMICO. Política de Parques Tecnológicos (12 de Septiembre de 2003). Bogotá: El Ministerio, 2003. 36 p.
- COMISIONES OBRERAS DE CASTILLA Y LEÓN. Estudio sobre el empleo y análisis de perfiles competenciales en los parques tecnológicos y científicos de Castilla y León. 3 ed. León: Unión sindical de comisiones obreras de Castilla y León, 2007. 2087 p.
- COOKE, Philip. From Technopoles to Regional Innovation Systems:
 The Evolution of Localised Technology Development Policy. Canadian
 Journal of Regional Science/Revue canadienne des sciences regionals
 [online]. 2001, XXIV:1. [consultado Febrero 3, 2015], pp. 21-40. Disponible en internet: http://www.cjrs-rcsr.org/archives/24-1/COOKE.
 pdf. ISSN 0705-4580.
- CORTÉS, Liliana. La relación entre parques científicos tecnológicos y los polos científicos de cuba como un espacio significativo en la

- formación de capacidades científicas para el desarrollo de la I+D+I. Contribuciones a las ciencias sociales [online], Enero 2011. [consultado Agosto 27, 2014]. Disponible en internet: http://www.eumed.net/rev/cccss/11/lcs.htm.
- 26. DEPARTAMENTO ADMINISTRATIVO DE CIENCIA, TECNOLO-GÍA E INNOVACIÓN (COLCIENCIAS). Colciencias abre Convocatoria para el fortalecimiento de Centros de Investigación, Desarrollo Tecnológico y Parques de Ciencia y Tecnología [online]. Bogotá: Colciencias, Julio 2011- [consultado Febrero 3, 2012]. Disponible en internet: http://www.colciencias.gov.co/noticias/colciencias-abre-convocatoria-para-el-fortalecimiento-de-centros-de-investigaci-n-desarroll.
- DEPARTAMENTO ADMINISTRATIVO DE CIENCIA, TECNOLO-GÍA E INNOVACIÓN (COLCIENCIAS). Convocatoria para proyectos de investigación en ciencias básicas: Colciencias, s.f.- [consultado Octubre 10, 2014b]. Disponible en internet: http://www.colciencias. gov.co/convocatoria/convocatoria-para-proyectos-de-investigaci-n-en-ciencias-b-sicas-.
- 28. DEPARTAMENTO ADMINISTRATIVO DE CIENCIA, TECNOLOGÍA E INNOVACIÓN (COLCIENCIAS). Sistema Nacional de Ciencia y Tecnología, Programa Nacional en Ciencias Básicas [online]. Bogotá, D.C.: Colciencias, s.f.- [consultado Octubre 10, 2014a]. Disponible en internet: http://www.colciencias.gov.co/programa_estrategia/ciencias-b-sicas.
- DÍEZ, Isabel, FERNÁNDEZ-OLMOS, Marta. Knowledge spillovers in science and technology parks: how can firms benefit most?. En: Journal of Technology Transfer. Febrero, 2015, vol. 40, p. 70-84.
- DU PREEZ, Niek y LOUW, Louis. A framework for managing the innovation process. En: Management of Engineering & Technology. PIC-MET, Julio, 2008, Portland International Conference on, p. 546-558.
- EROSA, Victoria. Dealing with Cultural Issues in the Triple Helix Model Implementation: A Comparison Among Government, University and Business Culture. En: Procedia - Social and Behavioral Sciences. Agosto, 2012, vol. 52, p. 25-34.
- 32. ESPAÑA. Estrategia estatal de innovación, Madrid: Ministerio de ciencia e innovación, Secretaría general de innovación, 2010. 50 p.
- ETZKOWITZ, Henry. La triple hélice: universidad, industria y gobierno. Implicaciones para las políticas y la evaluación. Traducido por Carlos María Allende. Estocolmo: Asociación Nacional de Universidades e Instituciones de Educación Superior, (ANUIES), 2002. 17 p.
- ETZKOWITZ, Henry. The Triple Helix: University-Industry-Government Innovation in Action. Ed. Routledge. New York: Taylor & Francis, 2008. 176 p. ISBN: 978-0415964517.
- 35. FRANCIA. National Research and Innovation Strategy, Paris: Ministry For Higher Education and Research, 2009. 38 p.
- GOBERNACIÓN DEL ATLÁNTICO. Plan de Desarrollo Departamental 2008-2011. Por el Bien del Atlántico. Unidos, Todo se Puede Lograr. Equipo de trabajo Verano, Eduardo; Salas, Marcela; Lemus, Pedro; Varela, Walter; Ariza, Ernesto y Otros. Barranquilla (Atlántico), 2008.182 p.
- GOBERNACIÓN DEL ATLÁNTICO. Plan de Desarrollo Departamental 2012-2015. Atlántico más social. Compromiso Social Sobre lo Fundamental. Equipo de trabajo Segebre, José; Iglesias, Divas; Varela, Walter; Martínez, Vladimiro; Roca, Dennis y Otros. Barranquilla (Atlántico), 2013. 300 p.
- GONZÁLEZ, Teresa. El modelo Triple Hélice de relación Universidad, Industria y Gobierno: Un análisis crítico. <u>En</u>: Arbor. Julio-Agosto, 2009, vol. 185, no. 783, p. 739-755.

- HEIJS, Joost. Sistemas Nacionales y Regionales de Innovación y Política Tecnológica: Una aproximación teórica. Madrid-España: Instituto de análisis industrial y financiero, 2001. 40 p. (Documento de Trabajo no. 24).
- 40. HERRERA Jhon y SALAS Leidy. Caracterización de los servicios demandados de los Renglones Ciencias Biomédicas y Biofarmacéuticas y Biomedicina Molecular del Clúster de Farmacia & Salud de un Parque de Ciencia y Tecnología en el Caribe Colombiano. Trabajo de grado Químico Farmacéutico. Barranquilla: Universidad Del Atlántico. Facultad de Química y Farmacia. Programa de Farmacia, 2013, 120 p.
- HSINCHU SCIENCE PARK. Hsinchu Science Park [online]. Hsinchu (Taiwan): Hsinchu Science Park, Ministry of Science and Technology, Diciembre 2014- [consultado Febrero 7, 2015]. Disponible en internet: http://www.sipa.gov.tw/english/home.jsp?serno=201003210015&mserno=201003210003&menudata=EnglishMenu&contlink=include/menu03.jsp&level2=Y.
- INSTITUT NATIONAL DE LA STATISTIQUE (Francia). Un plus fort recourse à l'innovation technologique en Franche-Comté. En: l'essentiel. Octubre, 2012, vol. 140, p. 1-8.
- 43. INSTITUTO COLOMBIANO PARA EL DESARROLLO DE LA CIENCIA Y LA TECNOLOGÍA "FRANCISCO JOSÉ DE CALDAS" (COLCIENCIAS). Las empresas de base tecnológica e innovadoras y su relación con los fondos de inversión de capital. Coordinación editorial Germán Bolívar Blanco. Bogotá: Fundación cultural javeriana de artes gráficas (JAVEGRAF), 2007. 43 p. ISBN 978-958-8290-16-4.
- 44. INTERNATIONAL ASSOCIATION OF SCIENCE PARK AND AREAS OF INNOVATION (IASP). Location of Science and Technology Parks university [online]. Campanillas (Málaga): IASP, Enero 2015—[consultado Enero 14, 2015]. Disponible en internet: http://www.iasp.ws/statistics.
- 45. INTERNATIONAL ASSOCIATION OF SCIENCE PARK AND AREAS OF INNOVATION (IASP). Science park (IASP official definition) [online]. Campanillas (Málaga): IASP, s.f- [consultado Febrero 3, 2012]. Disponible en internet: http://www.iasp.ws/knowledge-bites.
- INTERNATIONAL ASSOCIATION OF SCIENCE PARK AND AREAS OF INNOVATION (IASP). The role of universities in science parks [online]. Campanillas (Málaga): IASP, Abril 2012- [consultado Junio 4, 2012]. Disponible en internet: http://www.iasp.ws/question-of-the-month.
- KANSAI SCIENCE CITY. What's Keihanna? [online]. Kyoto (Kyoto): Kansai Science City, s.f- [consultado Enero 22, 2015]. Disponible en internet: http://www.kri-p.jp/english/whats_keihanna/.
- LÓPEZ, Cristina. Un nuevo equipamiento territorial: los Parques Científicos y Tecnológicos. Análisis de la experiencia española. Tesis Doctoral. Madrid: Universidad Politécnica de Madrid. Escuela E.T.S.I. Caminos, Canales y Puertos (UPM). Departamento Ingeniería Civil: Ordenación del Territorio, Urbanismo y Medio Ambiente, 2004. 264 p.
- LÓPEZ, María; MEJÍA, Juan y SCHMAL, Rodolfo. Un Acercamiento al Concepto de transferencia de tecnología en las universidades y sus diferentes manifestaciones. <u>En</u>: Panorama socioeconómico. Enero-Junio, 2006, no. 32, p. 70-81.
- LUENGO, María y OBESO, María. El efecto de la Triple Hélice en los resultados de la innovación. En: Revista de administración de empresas. Julio-Agosto, 2013, vol. 53, p. 388-399.
- 51. MELO, Rita. Territorio e Innovación en la construcción de los Parques Tecnológicos en el estado de São Paulo. En: Questiones urbano regionales. Febrero, 2013, vol. 1, no. 2, p. 31–43.
- 52. MILLIER, Lauren; DICKINSON, Brock y BLAIS, Paul. Case study: tech-

- nology parks and incubation in economic development. The case of Drayton Valley, Canada. Canada: FCM International, 2013. 6 p.
- MORALES, María; PLATA Paola y CASALLAS Claudia. Los parques tecnológicos en Colombia como mecanismo de vinculación universidad-entorno. En: Libre empresa. Enero-Junio, 2011, vol. 8, no. 1, p. 11-29
- 54. MORALES, María; SANABRIA, Pedro y CABALLERO, Daniel. Características de la vinculación universidad-entorno en la Universidad Nacional de Colombia. En; Revista Facultad de Ciencias Económicas: Investigación y Reflexión. Junio, 2015. vol. XXIII, no. 1, p. 189-208.
- NATIONAL RESEARCH COUNCIL (Estados Unidos) Committee on Competing in the 21st Century: Best Practice in State and Regional Innovation Initiatives. Editado por Charles W Wessner. Washington: National Academies Press, 2013. 240 p.
- NATIONAL RESEARCH COUNCIL (Estados Unidos). Understanding research, science and technology parks: global best practices, report of a symposium. Editado por Charles W. Wessner. Whashington: National Academies Press, 2009. 214 p. ISBN 978-0-309-13789-8.
- ONDATEGUI, Julio C. Parques científicos y tecnológicos los nuevos espacios productivos del futuro. <u>En</u>: Investigaciones Geográficas. Enero-Junio, 2001, vol. 25, p. 95–118.
- 58. ORGANIZACIÓN PARA LA COOPERACIÓN Y EL DESARRO-LLO ECONÓMICOS (OCDE). National Intellectual Property Systems, Innovation and Economic Development with Perspectives on Colombia and Indonesia (Sistemas nacionales de propiedad intelectual, innovación y desarrollo económico con perspectivas en Colombia e Indonesia). Colombia: OECD Publishing, 2014. 196 p. ISBN: 9789264204485.
- Overview of Tsukuba City [online]. Tsukuba (Ibaraki): City of Tsukuba, s.f- [consultado Enero 22, 2015]. Disponible en internet: http:// www.tsukubainfo.jp/tsukuba/tsukuba.html.
- 60. PARQUE TECNOLÓGICO DE ANTIOQUIA. Ciencia, Tecnología y Humanismo, breve historia [online]. Medellín (Antioquia), s.f- [consultado Junio 4, 2012]. Disponible en internet: http://www.parquepta.org/corporativo/historia.
- Parque Tecnológico de la Umbría [online]. Cali (Valle del Cauca), s.f- [consultado Febrero 22, 2015]. Disponible en internet: http:// www.usbcali.edu.co/index.php?option=com_content&task=view&id=525&tremid=30.
- 62. PEÑA, Jesús; BRAVO, Saulo; ÁLVAREZ, Felix; PINEDA, Duvan. Análisis de las Características de las Incubadoras de Empresas en Colombia: Un Estudio de Casos. En: Journal of Economics, Finance & Administrative Science. Mayo, 2011, vol. 16, no. 30, p. 14-29.
- PINEDA MÁRQUEZ, Katherine; MORALES RUBIANO, María Eugenia y ORTIZ RIAGA, María Carolina. Modelos y mecanismos de interacción Universidad-empresa-Estado: retos para las universidades colombianas. En: Equidad & Desarrollo. Agosto, 2011, no. 15, p. 41-67.
- Plataforma ScienTI Colombia [online]. Bogotá D.C.: Colcienias, Octubre, 2014 [consultado Marzo 7, 2015]. Disponible en internet: http://www.colciencias.gov.co/scienti.
- 65. Presentación del Parque Tecnológico de Guatiguará [online]. Bucaramanga (Santander): Universidad de Santander, s.f- [consultado Agosto 23, 2013]. Disponible en internet: http://www.uis.edu.co/webUIS/es/investigacionExtension/guatiguara/index.html.
- RAMÍREZ, María, GARCÍA, Manuel. La alianza Universidad-Empresa-Estado: Una estrategia para promover innovación. <u>En</u>: Revista EAN. Enero-Junio, 2010, vol. 68, p. 112-133.

- 67. RIVERA, Irma; OCAMPO, Juan y ARREDONDO, Linda. El modelo de la triple hélice y la gestión de la vinculación en la universidad autónoma de baja california, Instituto Politécnico Internacional [online]. [Baja california, México]: Instituto Politécnico Internacional, s.f- [consultado Febrero 23, 2015]. Disponible en internet en: http://www.repositoriodigital.ipn.mx/handle/123456789/3587.
- RODEIRO David, CALVO Nuria. El rol de los parques científicos-tecnológicos en el emprendimiento universitario. Propuesta de un catálogo de indicadores de evaluación. En: Globalización, Competitividad y Gobernabilidad (GCG). Mayo-Agosto, 2012. vol. 6, no. 2, p. 95-109.
- RODRÍGUEZ-POSE, Andrés, HARDY, Daniel. Technology and Industrial Parks in Emerging Countries Panacea or Pipedream?. Editado por Henk Folmer et al. London: Springer, 2014. 110 p. ISBN: 978331907991-2.
- ROURE, Joan; CONDOM, Pere; RUBIRARTA, Marius; VENDRELL, Montserrat. Benchmarking sobre parques Científicos. Madrid: Fundación Española para el Desarrollo de la Investigación en Genómica y Proteómica (Genoma España), 2005. 109 p. (Serie La biotecnología española: Impacto económico, evolución y perspectivas; no. 5). ISBN 84-609-6396-9.
- SERVICIO NACIONAL DE APRENDIZAJE (SENA). Red Tecnoparque Colombia, programa SENA [online]. Bogotá (Bogotá D.C): SENA, s.f- [consultado Febrero 23, 2015]. Disponible en internet: http://tecnoparque.sena.edu.co/quienes/quees/Paginas/default.aspx.
- THE UNITED KINGDOM SCIENCE PARK ASSOCIATION (UKS-PA). About UKSPA [online]. Little Chesterford (Saffron Walden): UKSPA, s.f- [consultado Febrero 3, 2012]. Disponible en internet: http://www.ukspa.org.uk/our-organisation/about-us.
- UNITED KINGDOM (UK). Innovation and Research Strategy for Growth, Londom: Secretary of State for Business, Innovation and Skills, 2011. 104 p. ISBN: 9780101823920.
- UNITED STATES OF AMERICA (USA). A strategy for american innovation, Washington: National Economic Council, Council of Economic Advisers and Office of Science and Technology Policy, 2011.
- UNIVERSIDAD MILITAR NUEVA GRANADA. Acuerdo 04 de 2013.
 Por el cual se modifica el Plan de Desarrollo Institucional de la Universidad Militar Nueva Granada. Bogotá, D.C.: Consejo Superior Universitario, 2013.
- UNIVERSIDAD NACIONAL DE COLOMBIA. Universidad-Empresa-Estado. Alianza para desarrollo y competitividad del país. En: Claves para el debate público. Abril, 2008, no. 12, p. 2-16.
- VÁSQUEZ-URRIAGO, Ángela, et al. The impact of science and technology parks on firms' product innovation: empirical evidence from Spain. En: Journal of Evolutionary Economics. Enero, 2014, vol. 24, no. 4, p. 835-873.
- 78. WANG, Jenn-hwan y LENG, Tse-Kang. High Tech Industrial Parks in Beijing and Shanghai: The Production of Space and Space of Production. Berkeley (California): Institute of East Asian Studies, 2011. 30 p. (Paper to be presented at the "Producing Space and Territory in Contemporary China" conference. Institute of East Asian Studies).
- WORLD ECONOMIC FORUM. The Global Competitiveness Report 2014–2015. Full Data Edition. Geneva: Professor Klaus Schwab, 2014. 565 p. (published by the world economic forum within the framework of The Global Competitiveness and Benchmarking Network). ISBN: 978-92-95044-98-2.
- ZHANG, Haiyang y SONOBE, Tetsushi. Development of Science and Technology Parks in China, 1988 – 2008. Economics [online]. 2011, vol. 5 [consultado Enero 22, 2015], pp. 1-25. Disponible en internet:

- http://dx.doi.org/10.5018/economics-ejournal.ja.2011-6. ISSN 1864-6042.
- ZOUAIN, Desiree y PLONSKI, Guilherme. Science and Technology Parks: laboratories of innovation for urban development an approach from Brazil. Triple Helix [online], Diciembre, 2015, vol. 2, no. 7, [consultado Enero 22, 2015], pp- 1-22. Disponible en internet: http://link.springer.com/article/10.1186/s40604-015-0018-1/fulltext. html.