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ABSTRACT. Accuracy of genomic prediction was compared using three parametric and semi parametric methods,
including BayesA, Bayesian LASSO and Reproducing kernel Hilbert spaces regression under various levels of
heritability (0.15, 0.3 and 0.45), different number of markers (500, 750 and 1000) and generation intervals of
validating set. A historical population of 1000 individuals with equal sex ratio was simulated for 100 generations at
constant size. It followed by 100 extra generations of gradually reducing size down to 500 individuals in generation
200. Individuals of generation 200 were mated randomly for 10 more generations applying litter size of 5 to expand
the historical generation. Finally, 50 males and 500 females chosen from generation 210 were randomly mated to
generate 10 more generations of recent population. Individuals born in generation 211 considered as the training set
while the validation set was composed of individuals either from generations 213, 215 or 217. The genome
comprised one chromosome of 100 ¢M length carrying 50 QTLs. There was no significant difference between
accuracy of investigated methods (p > 0.05) but among three methods, the highest mean accuracy (0.659) was
observed for BayesA. By increasing the heritability, the average genomic accuracy increased from 0.53 to 0.75 (p <
0.05). The number of SNPs affected the accuracy and accuracies increased as number of SNPs increased; therefore,
the highest accuracy was for the case number of SNPs=1000. With getting away from validating set, the accuracies
decreased and the most severe decay observed in the case of low heritability. Decreasing the accuracy across
generations affected by marker density but was independent from investigated methods.

Keywords: accuracy, genomic, semi parametric methods, genetic architecture.

Comparagao da acuracia de predi¢oes genomicas através de geragoes usando métodos
paramétricos e semi paramétricos

RESUMO. A acuricia da predigio gendmica foi comparada através de trés métodos paramétricos ¢ semi-
paramétricos, que incluiram BayesA, LASSO Bayesiano e regressio RKHS (Reproducing Kernel Hilbert Spaces)
sob virios niveis de hereditariedade (0,15; 0,3 e 0,45), ntimeros diferentes de marcadores (500, 750 ¢ 1000) e
intervalos de geragio de conjuntos de validagio. Uma populagio histérica de 1000 individuos com igual proporg¢io
sexual foi simulada por 1000 geragdes, em tamanho constante. Ela foi seguida por 100 geragdes adicionais com
reducio gradual de tamanho para 500 individuos na 200* geracio. Individuos da geracio 200 foram cruzados
aleatoriamente por mais 10 geracdes aplicando-se tamanho de ninhada de 5, para expansio da geragio histérica. Por
fim, uma selegio de 50 machos e 500 fémeas da geracio 210 foram cruzados aleatoriamente, resultando em mais 10
geracbes de populagio recente. Individuos nascidos na geragio 211 foram considerados como o conjunto de
treinamento, enquanto o conjunto de validagio foi composto por individuos da geragio 213, 215 ou 217. O genoma
foi composto por um cromossomo de 100cM de comprimento portando 50 QTLs. Nio houve diferenga
significativa entre a acuricia dos métodos investigados (p > 0,05); porém, dentre os trés métodos, a maior média de
acurdcia (0,659) foi observada em BayesA. Com o aumento da hereditariedade, a média da acuricia de selegio
gendmica aumentou de 0,53 para 0,75 (p < 0,0 5). O nimero de SNPs afetou a acuricia, visto que seu valor
aumentou com o aumento de SNPs; assim, a maior acurécia foi verificada para ntimero de casos de SNPs=1000.
Com o afastamento do conjunto de valida¢io, a acuricia diminuiu e a redugio mais pronunciada foi observada para o
caso de baixa hereditariedade. A reducio da acuricia através de geragdes foi afetada pela densidade do marcador, mas
foi independente dos métodos investigados.

Palavras-chave: acuricia, gendmica, métodos semi paramétricos, arquitetura genética.

Introduction

Animal breeding aims to improve economic
efficiency of livestock species through selection
under a changing cost and income scenario. Most of
the economic important traits in livestock have a

polygenic and quantitative expression, i.e.,
controlled by a large number of genes and affected
by environmental factors. Statistical analysis of
phenotypes and pedigree information allows
prediction of the breeding values of the selection
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candidates based on Fisher’s infinitesimal model
(Fisher, 1919). The best linear unbiased prediction
(BLUP) (Henderson, 1974) has been extensively
used for estimating the breeding values in animal
and plant breeding programs and it leads to great
progress in economic important traits.

Advances in the molecular genetics technologies
have greatly increased the information available on
individual genes for quantitative traits. Molecular
techniques have enabled researchers to identify
genetic markers that can be used to precise selection
of candidates and thus increase efficiency of
breeding programs. Genomic selection is a new tool
for selection of based on marker
information in addition to traditional information
(Meuwissen, Hayes, & Goddard, 2001). The
implementation of genomic selection takes place in
two steps. Firstly, the effects of genetic markers,
typically single nucleotide polymorphism (SNP), are
estimated in a reference population (animals with
both marker and phenotypic information). Secondly,
the estimated effects of the genetic markers are used
to predict genomic breeding values for individuals of
validating  population (animals with  marker
information and without phenotypic information).
Meuwissen et al. (2001) suggested using genetic
marker information statistical model of

animals

in a
prediction of animal breeding values. They used
three statistical models: a model assigning random
effects to all available genetic markers (“genomic
BLUP”), assuming that all markers effects are drawn
from the same normal distribution, and two
Bayesian models, where all (“BayesA”) or a subset
(“BayesB”) of the random marker effects are drawn
from distributions with different variances. Various
types of these methods and additional methods have
been subsequently suggested (Gianola, Campos,
Hill, Manfredi, & Fernando, 2009). Gianola,
Fernando, and Stella (2006) and Gianola and van
Kaam (2008) have suggested a non-parametric
treatment of genomic information by using
Reproducing Kernel Hilbert Spaces (RKHS)
regression, that subsequently have demonstrated
with real data (Gonzilez-Recio et al., 2008;
Gonzilez-Recio, Gianola, Rosa, Weigel, & Kranis,
2009).

Genomic selection provides a greater genetic
progress in comparison with the traditional methods
by increasing the accuracy of estimated breeding
values and reducing generation intervals. The
accuracy of genomic evaluation depends, among
other factors, on the linkage disequilibrium (LD)
between SNPs (Calus, De Roos, & Veerkamp, 2008).

Atefi et al.

LD is defined as the non-random association
between the alleles at two different loci. LD can be
caused by some factors including migration,
mutation, selection or genetic drift in small
populations, or any other event that may aftect the
genetic structure of the population. Population
structure affects significantly the accuracy of
genomic predictions when the selection candidates
are closely related to the reference population
(Habier, Fernando, & Dekkers, 2007; Habier,
Tetens, Seefried, Lichtner, & Thaller, 2010) so that
closer relatedness between subgroups (i.e., more
recent divergence) increases LD between subgroups
that leads to accurate genomic predictions
(Daetwyler, Kemper, Van der Werf, & Hayes, 2012).

However, LD is decreasing due to
recombination events in the meiosis before the
development of the gametes of each new generation
(Habier, Fernando, & Dekkers, 2009). To have
sufficient reliability of genomic predictions, new
genotyped and phenotyped individuals should be
contributed in the reference population. Because of
recombination events and decreasing the relatedness
between subgroups, estimation of the marker effects
should be re-evaluated at least every three
generations (Hayes, 2007).

In this study, we investigated effect of marker
density, trait heritability and decreasing the
relatedness  between training and validating
population on prediction accuracy.

Material and methods

Simulation

The populations were simulated using the
QMSim software (Sargolzaei & Schenkel, 2009)
based on forward-in-time process. To achieve a
mutation-drift equilibrium, a historical population
consisted of 1000 unrelated animals (500 males and
500 females) were simulated 100 generation and
then in order to create the linkage disequilibrium
(LD), its size was gradually decreased from 1000 to
500 individuals in generation 200.

In the next step, individual of last historical
generation (considered as founders) were mated
randomly for 10 more generations, assuming five
offsprings per dam and an exponential growth of the
number of dams.

Finally, 50 males and 500 females from the last
generation of the expanded population were
randomly mated to generate another 10 generations.
Individuals of generation 211 were considered as the
training set and the individuals born at either
generations of 213, 215 or 217 were regarded as
validation sets.
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The simulated genome consisted of one
chromosome of 100 c¢M length. Aiming to
investigate the effect of SNP density on prediction
accuracy, 500, 750 or 1000 bi-allelic markers equally
spaced across the genome were considered. Additive
genetic effects were determined by 50 quantitative
trait loci (QTL) randomly distributed through the
genome. QTL effects were generated based on a
normal distribution. The mutation rate of the
markers and QTLs was assumed 2.5 X 107 per locus
per generation (Solberg, Sonesson, & Woolliams,
2008).

A trait with heritability of 0.15, 0.30 and 0.45 was
simulated. The true breeding value (TBV) of each
individual was the sum of the QTL allele
substitution effects and polygenic effects, assuming
only additive effects. Phenotypes were generated by
adding residuals, randomly drawn from a normal
distribution with mean equal to zero, to the TBVs.
The correlation between the true BV and the
genomic predicted BV (rrgy,gesy) Was used as a
measure of the accuracy of GEBV prediction.

Linkage disequilibrium calculation

The extent of LD in the training populations was
measured by r*:

2 D?
r =
freq(A1)*freq(A2)*freq(B1)*freq(B2)

where freq (Al) is the frequency of the Al allele in
the population, and likewise for the other alleles in
the population and D is another statistic of linkage
disequilibrium that calculated as:

D = freq (A1_B1) * freq(A2_B2) —freq (A1_B2) * freq
(A2_B1).

PLINK software (Purcell et al., 2007) was used to
calculate the LD.

Statistical analysis

The general structure for the models in linear
form is:

P
y:u+ZX,-gj+e

j=1

where y is the vector of phenotypic records, W is
the overall mean, g is the coefficient of marker j
denoting the allele substitution eftect, X; is a design
matrix of genotype codes for the respective marker,
and e is a vector of residuals. The data were analyzed
using three different approaches: two Bayesian
methods (BayesA and Bayesian LASSO) and one
kernel based semi parametric method (RKHS),

449

which was introduced by Gianola et al. (2006) for
genomic  evaluation. The BGLR (Bayesian
Generalized linear regression) package of R software
(Pérez & Campos, 2014) was used to genomic
evaluations.

BayesA

Meuwissen et al. (2001) proposed two
hierarchical Bayesian models for GS denoted by
BayesA and BayesB. In both methods data and
variances of the marker positions need to be
modeled. Inferences about model parameters are
based on the posterior distribution. The BayesA
approach applies the same prior distribution for all
variances of the marker positions.

Bayesian LASSO

Park and Casella (2008) introduced the Bayesian
LASSO (BL) method for estimating the regression
coefficients. The Bayesian LASSO is also used in GS
(Campos, Gianola, Rosa, Weigel, & Crossa, 2010;
Campos et al., 2009; Long, Gianola, Rosa, & Weigel,
2011) using the hierarchical model with a likelihood
function.

Reproducing kernel Hilbert spaces regression

Gianola et al. (2006) proposed a semi parametric
method in the genomic evaluations as an alternative
to SNPs regressions. The hope was that these
methods are capable for capturing complex
interaction patterns that may be difficult to account
for in a linear model framework.

In this study, each scenario repeated 10 times
and estimation of marker effects was performed
using the R package, BGLR (Pérez & Campos,
2014). In order to investigate effects of heritability,
marker effect estimation method, number of
markers and the interval between training and
validating sets and their interactions on genomic
prediction accuracy, the PROC GLM of SAS
software was used (SAS, 2004).

Results and discussion

Linkage disequilibrium

The r*values for different marker densities were
presented in Table 1. As expected the r* value
increased with increment of SNP density and
highest value (0.13) was for SNP=1000.

In genome-wide association studies (GWAS) and
genomic prediction studies; a minimum value of LD
is needed to obtain accurate results. For instance, an
average 1* of 0.2 between markers and QTL is
essential to detect QTL of moderate effect. The
extent of genome-wide LD is largely determined by
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marker density and the past eftective population size.
The marker-QTL LD phase breaks over generations
due to recombination in the meiosis process in each
generation. Therefore, the markers effect must
reestimate at least every three generations (Hayes,
2007).

Table 1. The r?values for different marker numbers.

SNP number 500 750 1000
r’ value 0.08 0.11 0.13

Prediction accuracy

The results of analysis of variance of accuracy
were presented in Table 2. Main factors including
heritability, number of markers, generation of
validating set, and also interaction of h*X Number
of markers, h®X generation of validating set and
Number of markersX generation of validating set,
affected the accuracy significantly (p < 0.05).

Table 2. Output of Analysis of variance for accuracy.

Source of variation” DF SS MS Fvalue PR>F
Method 2 0.00044816 0.00022408  9.17  0.0022
H2 2 0.64965327 0.32482664 132989 <.0001
N_marker 2 0.19771151 0.09885576 4047.3 <.0001
Interval 2 0.03076771 0.01538385 629.84 <.0001
Method*h2 4 0.00033287 0.00008322  3.41 0.0338
Method*n_marker 4 0.00023608 0.00005902 242  0.0915
Method*interval 4 0.0001345 0.00003362  1.38  0.2861
H2*n_marker 4 0.06258846 0.01564712 640.62  <.0001
H2*interval 4 0.00391493 0.00097873  40.07  <.0001
N_marker*interval 4 0.00212542 0.00053135 21.75  <.0001
Method*h2*n marker | 8 0.00029984 0.00003748  1.53 0.2215
Method*h2*interval 8 0.00025359 0.0000317 13 0.3118
Method*n_marker* 8 0.00011898 0.00001487  0.61 0.7579
interval

H2*n_marker*interval 8 0.00628114 0.00078514 32.14  <.0001

H2=heritability, N_marker= number of marker, Interval= the interval between
training and validating sets.

Among investigated main factors, heritability and
number of markers had the highest effect on
accuracy. However, marker density is a factor easily
controlled by researcher but heritability is a factor
relating to trait structure and could not easily
controlled by researcher.

Table 3 shows the accuracy of all investigated
using three methods. Among three
investigated methods, there were no difterences in
terms of accuracy but the highest mean accuracy
I'rpysgeey =0.659 was obtained in BayesA method
(Figure 1a), while the computational demands of
two other methods were higher. In RKHS method,

scenarios

Atefi et al.

choosing the reproducing kernel and bandwidth
value affected the results. In this study, the Gaussian
reproducing kernel with the Euclidean distance
between each pair of input vectors was chosen and
the model using arbitrarily chosen bandwidth value
was fitted. Gianola et al. (2006) reported that in
comparison with RKHS and multiple linear
regression (MLR) mixed model, when gene action
was additive, these two methods had the same
accuracy but when gene action was non additive
(additive by additive interaction), the parametric
MLR was clearly outperformed by RKHS. In a
simulation study, the accuracies of BayesA and BL
were the same and higher than RKHS (Howard,
Carriquiry, & Beavis, 2014).

Table 3 and Figure 1 (a-d). Accuracy of different investigated
scenarios (For all cases Standard Error < 0.04).

066

Generation Method’ o. a
w0t Me: 0) 0658
M Validation 3 7
set BA BL RKHS ;osss
3 049 049 00 | O O%F Ness
015 500 Sho 043 043 042 | oesa
7 041 039 040
0.65
3th 063 063 063 BA BL RKHS
METHOD
015 750 st 061 061 061
0.8
7060 060 06l )
3th 076 076 076 | %06
3 0.
015 1000 sho 072 072 072 | ¥os
o om om0 | S
o2
3h 056 056 055
03 500 S 054 053 051 0
0.15 03 0.45
7 051 051 048 HERITABILITY
3th 072 071 071 08
71 €
03 750 Sh 073 074 073 ”/o@/"—m
5, 06 0.
T 068 068 067 | 2
=
s o7 077 o1 | 3%
9]
03 1000 St 073 073 074 | T,
7075 075 074
o
3h 066 065 065 00 50 1000
045 500 Sh 062 063 062 NUMBER OF SNP
07
7th 064 063 062 d
5, 068 0.68
s 077 077 076 | §
5 0.66
045 750 sho 075 074 074 | S 0565
t 0.64
7073 073 072 | 3 063
0.62
3 080 080 080 06
& & 3th Sth 7th
045 1000 S 076075076 GENERATION OF VALIDATING
7ih 073 073 073 SET

"Heritability, Number of SNP, *BayesA, Bayesian LASSO and Reproducing kernel
Hilbert spaces regression.

With increasing the heritability, the correlation
between TBV and GEBV was increased and the
amount of excess was higher when departure was
from 0.15 to 0.30 rather from 0.3 to .45 (Table 3 and
Figure 1b). The high heritability equals with high
contribution of gene effects in phenotypic variation
and therefore the high accuracy. Many researchers
have confirmed the high accuracy achieved for high
heritabilities (Daetwyler, Villanueva, & Woolliams,
2008; Goddard, 2009; Howard et al., 2014). For high
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heritability traits (such as carcass characteristics in
meat animals), the gene effects have great
contribution in phenotypic variation and therefore
provide more accurate evaluations. Therefore,
performing selection would easily lead to progress in
this kind of traits.

The marker density is the most easily
controllable factor by the researcher. The higher
accuracy of genomic breeding values was associated
to more dense markers (Figure 1c). Doubling the
marker density, the accuracy increased from 0.59 to
0.71. The more marker density was led to more
coverage of the genome and high LD which in turn
resulted to better estimation of QTL effects. In a
simulation study, doubling the number of SNP was
led to increase the accuracy from 0.63 to 0.73
(Piyasatian & Dekkers, 2013) which is in agreement
with our results. Increasing the accuracy of GEBV
due to increment of marker study was reported in
many studies (Combs & Bernardo, 2013; Piyasatian
& Dekkers, 2013; Solberg et al., 2008)

Highest accuracy was observed when the interval
between training and validating sets was as short as
two generations (generation of validating set=3").
As time interval between training and validating sets
prolonged, the accuracy of GEBV decreased. In a
simulation study, accuracies were compared in the
cases that validating set belonged to 1" and 7"
generations and the accuracies were 0.73 and 0.60,
respectively  (Piyasatian &  Dekkers, 2013).
Accuracies decreased across generations because of
the decay of genetic relationships that can captured
by markers and changing of LD phase. In some
researches, decreasing of genomic prediction
accuracies over time due to breakdown of LD phase
was reported (De Roos, Hayes, Spelman, &
Goddard, 2008; Meuwissen et al., 2001). The
recombination events break the LD phase during
provision of gametes in each generation (Habier et
al.,, 2009). In order to perform accurate genomic
evaluations, marker effects should be re-evaluated at
least every three generations (Hayes, 2007).

As mentioned above, the genomic accuracy
increased along with increase in marker density, but
the increment was different among three levels of
heritability. At the low heritability (0.15), as the
number of SNPs were doubled the accuracy
increased 19 unites but at the high heritability (0.45),
the excess only was 3 unites (Table 4). This
suggested that dense SNP panels are more efficient
in terms of accuracy, for traits with lower heritability.

The accuracy of genomic prediction decayed due
to recombination effect across generations that
change the LD phase between QTLs and markers.

451

The greater decline of accuracy was observed when
the marker density was 500 and the decay of
accuracy was decreased when the denser marker
panels were used (Table 6). These results showed
that using dense marker panels, the estimated
marker effects of validating set could apply for
longer time and it decreased the costs of re-
estimating of marker effects. Habier et al. (2007)
reported that accuracy of genomic prediction
decreased across generations but opposite to our
results the amount of decay depended on marker
estimation method; therefore, the lowest and
highest declines were for TP-BLUP and Bayes-B2,
respectively.

Table 4. The estimated genomic accuracy for three marker
density and three levels of heritability.

Heritability Number of SNP

500 750 1000
0.15 0.44 0.53 0.63
0.30 0.61 0.71 0.74
0.45 0.73 0.75 0.76

As Table 5 shows, when heritability was 0.15, the
accuracy of genomic evaluation for generation 7 of
training set was 11 percent lower than the value for
generation 3. The corresponding reductions for
moderate and high heritabilities were 6 and 5
percent, respectively. As getting
validating set, the accuracies decreased rapidly for
low heritability case, suggesting that re-evaluating of
marker effects is more imperative in the low
heritability traits.

away from

Table 5. The estimated genomic accuracy for three validating
sets and three levels of heritability.

Heritability Generation of training set

3['] Swh 7wh
0.15 0.57 0.52 0.51
0.30 0.70 0.69 0.66
0.45 0.77 0.74 0.73

Table 6. The genomic accuracy for three validating sets and three
levels of marker density.

Number of markers Generation of training set

3(\1 5(\1 7(\1
500 0.63 0.58 0.56
750 0.68 0.66 0.64
1000 0.74 0.71 0.70

Conclusion

The results of this study showed that for models
with additive gene action RKHS method did not
perform better than parametric methods such as
BayesA and BL, although the RKHS is more
complicated and time consuming. Comparison of
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these methods for non-additive models should be
performed under different simulation and real data.
Marker density is one of the most important factor
that affect the genomic prediction accuracy and
fortunately by new progresses in genotyping
technologies, the high density SNP panels with low
cost is available and could employ easily for getting
accurate genomic prediction. Preventing decay of
accuracy due to recombination across time was one
of most important benefits of dense marker panels
so when the highest number of markers (1000) were
used, the lowest accuracy decay was happened. In
this study, the decreasing trend of accuracy across
generations was not affected by marker effect
estimation methods. In high heritability traits,
increasing the number of markers had slight effect
on accuracy but for low heritability trait, increasing
number of markers increased accuracy severely;
therefore, using the dense marker panels is
imperative for low heritability traits. There was the
same association between heritability and the
interval between validating and testing sets, so that
getting away from validating sets decreased the
accuracy of high heritability trait slightly but the
decline was severe for low heritability trait.
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