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ABSTRACT. In this paper, we introduce the concept of o,~open sets as a generalization of y-open sets in a
topological space (X, t). Using this set, we introduce a, T, o,-T,, o, T}, a,T,, 0, Dy, a,D; and a,D, spaces
and study some of its properties. Finally we introduce o, yy.continuous mappings and give some properties

of such mappings.
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Uma classe de conjuntos a,-aberto em um espago topologico

RESUMO. Neste artigo, apresentamos o conceito de conjuntos a,-abertos como uma generalizagio de
conjuntos y-aberto em um espago topoldgico (X, ). Usando este conjunto, introduzimos espagos o, T, o~
T, oT, a,T, aD, a,D,e a,D, e estudamos algumas de suas propriedades. Finalmente introduzimos

mapeamentos contfnuos de o,y € damos algumas propriedades de tais mapeamentos.

Palavras-chave: y-conjunto aberto, a,-conjunto aberto, a,-g conjunto fechado.

Introduction

Njastad (1965) introduced a-open sets. Kasahara
(1979) defined the concept of an operation on
topological spaces and introduce the concept of o-
closed graphs of an operation. Ogata (1991) called the
operation o (respectively a-closed set) as y-operation
(respectively y-closed set) and introduced the notion
of 1, which is the collection of all y-open sets in a
topological space. Also he introduced the concept of
v-T; 1 = 0, Y2, 1, 2) and characterized y-T; using the
notion of y-closed and y-open sets. In this paper, we
introduce the concept of o,-open sets by using an
operation y on aOX, 1) and we introduce the
concept of o,~generalized closed sets and a,-T, spaces
and characterize 0,-T, spaces using the notion of a,-
closed or a,-open sets. Also, we show that some basic
properties of a, T}, a,D; for i = 0, 1, 2 spaces and we
introduce ayy,-continuous mappings and study some
of its properties. Let (X, T) be a topological space and
A be a subset of X. The closure of A and the interior
of A are denoted by Cl(A) and Int(A), respectively.
A subset A of a topological space (X, 1) is said to be o-
open (NJASTAD, 1965) if A € Int(Cl(Int(A))). The
complement of an a-open set is said to be a-closed.
The intersection of all a-closed sets containing A is
called the a-closure of A and is denoted by aCl(A).

The family of all a-open (resp. a-closed) sets in a
topological space (X, ) is denoted by aO(X, 1) (resp.
aC(X, 1)). An operation y on a topology T is a
mapping from 7 in to power set P(X) of X such that V
C y(V) for each V € 1, where y(V) denotes the value
of v at V. A subset A of X with an operation y on 1 is
called y-open if for each x € A, there exists an open
set U such that x € U and y(U) € A. Clearly 1, € 1.
Complements of y-open sets are called y-closed. The
y-closure of a subset A of X with an operation y on t
is denoted by t,-Cl(A) and is defined to be the
intersection of all y-closed sets containing A.
A topological X with an operation y on T is said to be
y-regular if for each x € X and for each open
neighborhood V of x, there
neighborhood U of x such that y(U) contained in V.
It is also to be noted that T = 7, if and only if X is a y-
regular space (OGATA, 1991).

exists an open

a,-open sets

Definition 2.1. Let v : aO(X, 1) — P(X) be a
mapping satisfying thefollowing property, V € (V)
for each V € aO(X, 1). We call the mapping y an
operation on aO(X, 1).

Definition 2.2. Let (X, 1) be a topological space
and v : aO(X, 1) — P(X) an operation on aO(X, 1).
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A nonempty set A of X is called an a,-open set of (X,
1) if for each point x € A, there exists an o-open set
A. The
complement of an a,-open set is called o,-closed in

U containing x such that y(U) <€

(X, 1). We suppose that the empty set is a,-open for
any operation 7 : aO(X, 1) — P(X). We denote the
set of all a,-open (resp. a,-closed) sets of (X, 1) by
aOX, 1)y (resp. aC(X, T),).

Remark 2.3. A subset A is an o-open set of (X,
1) if and only if A is a-open in (X, t). The operation
id : aOX, 1) = P (X) is defined by id(V) = V for
any set V € aO(X, 1), this operation is called the
identity operation on aO(X, 1). Therefore, we have
that 0O (X, 1),y = 0O, 7).

Remark 2.4. The concept of a,-open and open
are independent.

Example 2.5. Consider X = {a, b, ¢} with the
topology T = {o, {a}, {a, b}, X} and 0O, 1) = {0,
{a}, {a, b}, {a, ¢}, X}. Define an operation y on aO(X,
T) by y(A) = Aif A = {a,c} or A= ¢pand y(A) =X
otherwise. Then o,-open sets are @, {a, c} and X.

Remark 2.6. It is clear from the definition that
every a,-open subset of a space X is a-open, but the
converse need not be true in general as shown in the
following example.

Example 2.7. Consider X = {a, b, ¢} with the
topology T = {¢, {a}, X} and 0O, 1) = {9, {a},
{a, b}, {a, ¢}, X}. Define an operation y on aO(X, 1)
by y(A) = Aifb € A and y(A) = X if b € A. Then
aOX, 1), = {9, {a, b}, X} and {a} € O 1), but
{a} € 00X, 1),.

Theorem 2.8. If A is a y-open set in (X, 1), then
A is an a,-open set.

Proof. Follows from that every open set is a-open.

The converse of the above theorem need not be
true in general as it is shown below.

Example 2.9. Consider X = {a, b, ¢} with the
topology T = {¢, {a}, X}. Define an operation y on
aOX, 1) by y(A) = A. Then {a, b} is an a,-open set
but not a y-open set.

The proof of the following result is easy and
hence it is omitted.

Proposition 2.10. If (X, 1) is y-regular space, then
every open set is o,-open.

Theorem 2.11. Let {Ay}qe be a collection of a,-
open sets in a topological space (X, 1), then Uy A, is

,-open.

Ibrahim

Proof. Let x € U,g; Aq, then x € A, for some o €
J. Since A, is an o,-open set, implies that there exists
an a-open set U containing x such that y(U) € A, S
UefAu. Therefore UyeA, is an o,-open set of (X, 1).

If A and B are two a,-open sets in (X, 1), then the
following example shows that A N B need not be o,-
opern.

Example 2.12. Consider X = {a, b, ¢} with the
discrete topology on X. Define an operation y on
aOX, 1) by y(A) = {a, b} if A = {a} or {b} and
v(A) = A otherwise. Then A = {a, b} and B = {a,
c} are o,-open sets but A N B = {a} is not an o,-
open set.

From the above example we notice that the
family of all o,-open subsets of a space X is a
supratopology and need not be a topology in general.

Proposition 2.13. The set A is a,-open in the
space (X, 1) if and only if for each x € A, there exists
an a,-open set B such thatx € B € A

Proof. Suppose that A is a,-open set in the space
(X, 7). Then for each x € A, put B = A is an a,-open
set such thatx € B € A.

Conversely, suppose that for each x € A, there
exists an a,-open set B such that x € B € A, thus
A = UB, where B, € aOX, 1), for cach x
Therefore, A is an a,-open set.

Definition 2.14. An operation y on aO(X, 1) is
said to be a-regular if for every a-open sets U and V
of each x € X, there exists an a-open set W of x such
that y(W) € y(U) N y(V).

Definition 2.15. An operation y on aOX, 1) is
said to be a-open if for every a-open set U of each x
€ X, there exists an o,-open set V such that x € V
and V € y(U).

In the following two examples, we show that o-
regular operation is incomparable with the a-open
operation.

Example 2.16. Consider X = {a, b, ¢} with the
topology © = {0, {a}, {a, b}, {a, c}, X}. Define an
operation y on aO(X, 1) by y(A) = {a, b} if A = {a}
and y(A) = Xif A # {a}. Then vy is a-regular but not
a-open.

Example 2.17. Consider X = {a, b, ¢} with the
topology © = {¢, {a}, {a, b}, {a, ¢}, X}. Define an
operation y on aO(X, 1) by y(A) = Aif A = {a, b}
or {a, ¢} and y(A) = X otherwise. Then y is not o-
regular but y is a-open.
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In the following proposition the intersection of
two a,-open sets is also an o,-open set.

Proposition 2.18. Let y be an a-regular operation
on aO(X, 7). If A and B are a,-open sets in X, then
AN Bis also an o,-open set.

Proof. Let x € A N B, then x € A and x € B.
Since A and B are a,-open sets, there exist a-open
sets U and V such that x € U and y(U) S A,x €V
and y(V) € B. Since v is an a-regular operation, then
there exists an a-open set W of x such that y(W) €
y(U) Ny(V) € AN B. This implies that A N B is o~
open set.

Remark 2.19. By the above propositon, if y is an
a-regular operation on aO(X, 1). Then aO(X, 1),
form a topology on X.

Definition 2.20. A point x € X is in aCl,~closure
of aset A € X, if y(U) N A # ¢ for each a-open set
U containing x. The aCl,~closure of A is denoted by
aCl,(A).

Definition 2.21. Let A be a subset of (X, 1), and
v : 00X, 1) = P (X) be an operation on aO(X, 1).
Then the a,-closure of A is denoted by a,CI(A) and
defined as follows, a,CI(A) = N{F : F is o,~closed
and A € F}.

The proof of the following theorem is obvious
and hence omitted.

Theorem 2.22. Let (X, 1) be a topological space
and y be an operation on aO(X, t). For any subsets
A, B of X, we have the following properties:

(1) A € o,CI(A).

(2) a,CI(A) is a~closed set in X.

(3) Ais a,~closed set if and only if A = o, CI(A).

4) 0,Cl(e) = p and ¢,CI(X) = X.

(5) If A € B, then o, CI(A) € a,CI(B).

(6) 0,CI(A U B) 2 a,CI(A) U a,CI(B).

(7) ,CI(A N B) € a,CI(A) N o,CI(B).

Theorem 2.23. For a point x € X, x € 0,CI(A) if
and only if for every a,-open set V of X containing x
such that ANV # o.

Proof. Let x € a,CI(A) and suppose that VN A =
¢ for some a,-open set V which contains x. Then
X\V) is ay-closed and A € (X\V), thus a,CI(A) €

(X\V). But this implies that x € X\V), a
contradiction. Therefore VN A # ¢.

Conversely, Let A € X and x € X such that for
each a,-open set U which contains x, U N A # ¢. If
x & 0,CI(A), there is an o,~closed set F such that A €

541

F and x € F. Then (X\F) is an o,-open set with x €
(X\F), and thus (X\F) N A # ¢, which is a
contradiction.

The proof of the following theorems are obvious
and hence omitted.

Theorem 2.24. Let A be any subset of a
topological space (X, 1) and y be an operation on
aO(X, 1). Then the following relation holds.

A € aCl(A) € aCl,(A) € 0,CI(A) S 1,-CI(A).

Theorem 2.25. Let A be a subset of a topological
space (X, 1) and y be an operation on aOX, T).
Then, the following conditions are equivalent:

(1) Ais oy-open.

(2) aCLX\A) = X\A.

(3) 6, CIKA) = X\A.

(4) X\A is o-closed.

Theorem 2.26. Let y : aO(X, 1) —» P (X) be an
operation on 0O(X, 1) and A be a subset of X, then:

(1) A subset aCl,(A) is an a-closed set in (X, 7).

(2) If y is a-open, then aCl,(A) = o,CI(A), and
aCl,(aCl,(A)) = aCl,(A), and aCl,(A) is o,-closed.

Proof. To prove that aCl,(A) is o-closed. Let x €
aCl(aCl,(A)). Then U N aCl,(A) # ¢ for every a-
open set U of x. Lety € U N aClL,(A),y € Uandy €
aCl,(A). Since U is a-open set containing y, implies
y(U) N A # ¢. Therefore x € aCl,(A). Hence
aCl(aCl,(A)) € aCl,(A). This implies aCl,(A) is an
a-closed set.

(2) By Theorem 224, we have aCl,(A)
€ a,Cl(A). Now to prove that o,ClI(A) € aCl,(A).
Let x € aCl,(A), then there exists an a-open set U
such that y(U) N A = ¢. Since y is a-open, there
exists an o,-open set V such that x € V € y(U).
Therefore V.N A = ¢. This implies x & o,CI(A).
Hence a,CI(A) € oCL,(A). Therefore aCl,(A) =
a,Cl(A). Now, aCl,(aCl,(A)) = o,Cl(a,CI(A)) =
a,CI(A) = aCl,(A).

Definition 2.27. A subset A of the space (X, 1) is
said to be a,-generalized closed (Briefly. o,~g.closed)
if o,CI(A) € U whenever A € U and U is an o,-
open set in (X, 7). The complement of an a,-
g.closed set is called an a,-g.open set.

It is clear that every a,-closed subset of X is also
an a,-g.closed set. The following example shows
that an o,-g.closed set need not be a,-closed.

Example 2.28. Consider X = {a, b, ¢} with the
topology T = {0, {a}, {b}, {a, b}, {a, ¢}, X}. Define
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an operation y on aO(X, 1) by y(A) = A if A = {b}
or {a, c} or @ and y(A) =X otherwise. Now, if we let
A = {a}, since the only a,-open supersets of A are
{a, ¢} and X, then A is o,-g.closed. But it is casy to
see that A is not a,~closed.

Theorem 2.29. A subset A of (X, 1) is a,-g.closed
if and only if a,CI({x}) N A # ¢, holds for every x €
a,CI(A).

Proof. Let U be an o,-open set such that A € U
and let x € a,CI(A). By assumption, there exists a z
€ a,Cl({x}) and z € A € U. It follows from
Theorem 2.23, that U N {x} # ¢, hence x € U, this
implies 0,CI(A) € U. Therefore A is o,-g.closed.

Conversely, suppose that x € a,CI(A) such that
a,Cl({x}) N A = ¢. Since, a,Cl({x}) is a,-closed,
therefore X\a,,CI({x}) is an a,~open set in X. Since A
€ X\(0,Cl({x})) and A is a,-g.closed implies that
a,Cl(A) € X\o,Cl({x}) holds, and hence x €
a,CI(A). This is a Therefore
@, Cl{x}) NA # ¢.

Theorem 2.30. A set A of a space X is a,-g.closed

contradiction.

if and only if 0,CI(A)\A does not contain any non-
empty o,-closed set.

Proof. Necessity. Suppose that A is o,-g.closed
set in X. We prove the result by contradiction. Let F
be an a,-closed set such that F € a,CI(A)\A and F #
¢. Then F € X\A which implies A € X\F. Since A is
a,-g.closed and X\F is a,-open, therefore a,CI(A) S
X\F, that is F € X\o,CI(A). Hence F € 0,ClI(A) N
X\, Cl(A)) = ¢. This shows that, F = ¢ which is a
contradiction. Hence a,CI(A)\A does not contains
any non-empty o,-closed set in

Sufficiency. Let A € U, where U is a,-open in
X, 7). If 0, CI(A) is not contained in U, then o, CI(A)
N X\U # ¢. Now, since o,CI(A) N X\U &
a,CI(AMA and ao,CI(A) N X\U is a non-empty o,-
closed set, then we obtain a contradication and
therefore A is a,-g.closed.

Corollary 2.31. If a subset A of X is a,-g.closed
set in X, then a,CI(A)\A dose not contain any non-
empty y-closed set in X.

Proof. Proof follows from the Theorem 2.8.

The converse of the above corollary is not true in
general as it is shown in the following example.

Example 2.32. Consider X = {a, b, c} with the
topology © = {¢, {c}, X}. Define an operation y on
aOX, 1) by y(A) = A. If we let A = {a, c} then A is

Ibrahim

not o,-g.closed, since A € {a, ¢} € 0O(X, 1), and
Cl(A) = X & {a, ¢}, where o,CI(ANA = {b} dose
not contain any non-empty y-closed set in X.

Theorem 2.33. If A is an a,-g.closed set of a
space X, then the following are equivalent:

(1) Ais a,~closed.

(2) a,CI(A)\A is o,-closed.

Proof. (1) = (2). If A is an a,-g.closed set which
is also a,-closed, then by Theorem 2.30, o,CI(A)\A
= ¢ which is a,-closed.

(2) = (1). Let 0,CI(A)NA be a,-closed set and A
be o,-g.closed. Then by Theorem 2.30, a,CI(A)\A
does not contain any non-empty o,-closed subset.
Since o, CI(A)\A is a,-closed and a,CI(A)\A = o, this
shows that A is a,-closed.

Theorem 2.34. For a space (X, 1), the following
are equivalent:

(1) Every subset of X is a,~g.closed.

(2) 0 OX, 1)y = aC(X, 1)y

Proof. (1) = (2). Let U € aO(X, 1),. Then by
hypothesis, U is a,-g.closed which implies that
a,Cl(U) € U, so, a,CI(U) = U, therefore U €
aC(X, 1)y. Also let V € aC(X, 1),. Then X\V € aO(X,
T)y, hence by hypothesis X\V is a,-g.closed and then
X\WV € aC(X, 1)y, thus V € aO(X, 1), according above
we have aO(X, 1), = aC(X, 1),

(2) = (1). If A is a subset of a space X such that A
€ U where U € aO(X, 1), then U € aC(X, 1)y and
therefore a,CI(U) € U which shows that A is a,-
g.closed.

Proposition 2.35. If A is y-open and a,-g.closed
then A is a,~closed.

Proof. Suppose that A is y-open and o,-g.closed.
As every y-open is o,-open and A & A, we have
a,CI(A) € A, also A € a,CI(A), therefore a,CI(A) =
A. Thatis A is a,~closed.

Theorem 2.36. If a subset A of X is a,-g.closed
and A € B € ,CI(A), then B is an a,-g.closed set in
X

Proof. Let A be o,-g.closed set such that AS B &
a,CI(A). Let U be an o,-open set of X such that B €
U. Since A is a,-g.closed, we have a,CI(A) € U.
Now o,Cl(A) € a,CI(B) € 0,Cl[0,Cl(A)] = a,CI(A)
€ U. That is a,CI(B) € U, where U is o,-open.
Therefore B is an a,-g.closed set in X.

The converse of the above theorem need not be
true as seen from the following example.
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Example 2.37. Consider X = {a, b, ¢} with the
topology T = {¢, {a}, {c}, {a, ¢}, {b, ¢}, X}. Define
an operation y on aO(X, 1) by y(A) = A. Let A =
{b} and B = {b, c}. Then A and B are a,-g.closed
sets in (X, 7). But A € B ¢ a,CI(A).

Proposition 2.38. Let v be an operation on aO(X,
7). Then for each x € X, {x} is o,~closed or X\{x} is
a,-g.closed in (X, 7).

Proof. Suppose that {x} is not o,-closed, then
X\{x} is not a,~open. Let U be any a,-open set such
that X\{x} € U, implies U = X. Therefore
a,CIX\{x}) € U. Hence X\{x} is a,-g.closed.

o,-Separation axioms

Definition 3.1. A space (X, 1) is said to be a,-T),
if every a,-g.closed set is o,-closed.

Theorem 3.2. The following statements are
equivalent for a topological space (X, t) with an
operation y on 0O (X, 1):

1) (X, 1) is @,-T,..

(2) Each singleton {x} of X is either o,-closed or
0L,-Open.

Proof. (1) = (2). Suppose {x} is not o,-closed.
Then by Proposition 2.38, X\{x} is a,-g.closed.
Now since (X, 1) is o,-T,,, X\{x} is a,-closed, that is
{x} is a,-open.

(2) = (1). Let A be any a,-g.closed set in (X, 1)
and x € 0,CIl(A). By (2) we have {x} is a,-closed or
a,-open. If {x} is a,~closed then x A will imply x €
a,CI(A)\A, which is not possible by Theorem 2.30.
Hence x € A. Therefore, a,CI(A) = A, that is A is
a,~closed. So, (X, 1) is ay-T,,. On the other hand, if
{x} is o,-open then as x € a,CI(A), {x} N A # ¢.
Hence x € A. So A is a,~closed.

Definition 3.3. A subset A of a topological space
(X, 1) is called an a,Dset if there are two U, V €
aO(X, 1), such that U # X and A = U\V. It is true
that every a,-open set U different from X is an a,D-
set if A = U and V = ¢. So, we can observe the
following.

Remark 3.4. Every proper a,-open set is an o,D-
set.

Definition 3.5. A topological space (X, 1) with an
operation y on 0O (X, 1) is said to be

(1) o,Dy if for any pair of distinct points x and y
of X there exists an a,D-set of X containing x but
not y or an a,D-set of X containing y but not x.
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(2) a,D, if for any pair of distinct points x and y
of X there exists an o,D-set of X containing x but
noty and an a,D-set of X containing y but not x.

(3) a,D, if for any pair of distinct points x and y
of X there exist disjoint a,D-sets G and E of X
containing x and y, respectively.

Definition 3.6. A topological space (X, ) with an
operation y on aO(X, 7) is said to be:

(1) o, T, if for any pair of distinct points x and y
of X there exists an a,-open set U in X containing x
but not y or an a,-open set V in X containing y but
not x.

(2) a, T if for any pair of distinct points x and y
of X there exists an o,-~open set U in X containing x
but not y and an a,-open set V in X containing y but
not x.

(3) a, T, if for any pair of distinct points x and y
of X there exist disjoint o,~open sets U and V in X
containing x and y, respectively.

Remark 3.7. For a topological space (X, 1) with
an operation y on aO(X, 1), the following properties
hold:

(1) If X, 1) is o, T, then it is o, T;_y, fori = 1, 2.

(2) If X, 1) is o, T}, then it is o, D;, fori = 0, 1, 2.

3) If X, 1) is a,D;, then it is a,D;_y, fori =1, 2.

Theorem 3.8. A topological space (X, 1) is a,D; if
and only if it is o, D,.

Proof. Sufficiency. Follows from Remark 3.7.

Necessity. Let x, y € X, x # y. Then there exist
a,D-sets G, G, in X such thatx € G,y € Gjand y €
G, x € G,. Let G, = U)\U, and G, = U;\U,, where
U,, U,, U; and U, are a,-open sets in X. From x &
G,, it follows that either x € U, or x € U and x €
U,. We discuss the two cases separately.

(i) x € U,. By y € G, we have two subcases:

(a) y € U,. From x € U\U,, it follows that x €
U\ (U, U Uy), and by y € U\U, we have y €
U,\(U, U U,). Therefore (U\(U, U U,)) N (U,\(U,
LVU)) =9

(b) y € U, and y € U,. We have x € U\U,, and y
€ U,. Therefore (U\U,) N U, = ¢.

(i1) x € Ujand x € U,. We have y € U;\U, and x €
U,. Hence (U;\U,) N U, = . Therefore, X is a,D,.

Theorem 3.9. A topological space (X, 1) with an
operation y on aO(X, 1) is o, T, if and only if for
cach pair of distinct points x, y of X, a,Cl({x}) #
o, Cl({y}).
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Proof. Clear.

Theorem 3.10. A topological space (X, T) with an
operation y on aO(X, 1) is o, T; if and only if the
singletons are o,-closed sets.

Proof. Let (X, 1) be 0,T; and x any point of X.
Suppose y € X\{x}, then

x # y and so there exists an o,~open set U such
thaty € U but x € U. Consequently y € U € X\{x}
that is X\{x} = U{U : y € X\{x}} which is a,-open.

Conversely, suppose {p} is o,-closed for every
p €EX Letx, y € Xwith x # y. Now x # y implies y
€ X\{x}. Hence X\{x} is an a,-open set contains y
but not x. Similarly X\{y} is an o,-open set contains
x but not y. Accordingly X is an a, T, space.

Proposition 3.11. The following statements are
equivalent for a topological space (X, t) with an
operation y on aO(X, 1):

(1) Xis o, T.

(2) Let x € X. For cach y # x, there exists an a,-
open set U containing x such that y & o,CI(U).

(3) For each x € X, N{ a,CI(U) : U € aO(X, 1),
andx € U} = {x}.

Proof. (1) = (2). Since X is a,T,, there exist
disjoint a,-open sets U and V containing x and y
respectively. So, U € X\V. Therefore, o,Cl(U) S
X\W. Soy ¢ a,CI(U).

(2) = (3). If possible for some y # x, we have y €
a,CI(U) for every o,-open set U containing x, which
then contradicts (2).

(3) = (1). Let x, y € X and x # y. Then there
exists an o,-open set U containing x such that y &
a,CI(U). Let V = X\ 0,CI(U), then y € Vand x € U
andalsoU NV = o.

o,.,»-Continuous maps

Throughout this section, let (X, 1) and (Y, o) be
two topological spaces and let y : aO(X, 1) — P (X)
and y': aO(Y, 6) — P(Y) be the operations on aO(X,
1) and aO(Y, o), respectively.

Definition 4.1. A mapping f : (X, 1) — (Y, o) is
said to be 0 )-continuous if for each x of X and
each oy-open set V containing f(x), there exists an
a,-open set U such that x € U and f(U) € V.

Theorem 4.2. Let f: (X, 1) — (Y, o) be an a-
continuous mapping. Then:

(1) f(a,Cl(A)) € 0,CI(f(A)) holds for every
subset A of (X, 1).

Ibrahim

(2) For every a,-closed set B of (Y, o), f'(B) is
a,~closed in (X, 1).

Proof. (1) Let y € f(o,CI(A)) and V be the a,-
open set containing y, then there exists a point x € X
and an a,-open set U such that f(x) = y, x € U and
f(U) € V. Since x € a,CI(A), we have U N A # o,
and hence ¢ # f(U N A) € f(U) N f(A) € V N {(A).
This implies y € a,CI(f(A)).

(2) It is sufficient to prove that (1) implies (2).
Let B be the a,-closed set in (Y, ©). That is a,CI(B)
= B. By using (1) we have f(o,CI(f'(B))) S
o, CI(f(f'(B))) € a,CI(B) = B holds. Therefore
o Cl(f'(B)) & f'(B), and hence f'(B) =
o, CI(f'(B)). Hence f'(B) is a,~closed set in (X, 7).

Definition 4.3. A mapping f : (X, 1) — (Y, 0) is
said to be oy y-closed if for any a,-closed set A of
X, 1), f(A) is oy-closed (Y, o).

Definition 4.4. If f is oy yy-closed, then f(F) is
ay-closed for any a-closed set F of (X, 1).

Remark 4.5. If f is bijective mapping and ™": (Y, o)
— (X, 1) is 0,y ;9-continuous, then f'is o, y-closed.

Proof. Proof follows from the Definitions 4.3
and 4.4.

Theorem 4.6. Suppose f: (X, 1) — (Y, ©) is 0,y y)-
continuous and fis a,, ,,-closed, then

(1) For every a,-g.closed set A of (X, 1) the image
f(A) is a,-g.closed.

(2) For every oy-g.closed set B of (Y, o) the
inverse set f'(B) is a,-g.closed.

Proof. (1) Let V be any a,-open set in (Y, o) such
that f(A) €V, then by Therem 4.2 (2), f (V) is a,-
open. Since A is o,-g.closed and A € f'(V), we have
o,Cl(A) € f'(V), and hence (o, CI(A)) S V. By
assumption f(0,CI(A)) is an oy-closed set, therefore
o, CI(EA) € o, ClECIA)) = e lA) € V.
This implies f(A) is a,-g.closed.

(2) Let U be any a,-open set such that £ '(B) €
U. Let F = o,CI(f'(B)) N (X\U), then F is a,-
closed in (X, 7). This implies {(F) is o,-closed set in
(Y, o). Since f(F) = f(o,CI(f '(B)) N X)) S
a,CI(B) N fX\U) € a,CI(B) N (Y\B). This implies
f(F) = ¢ and hence F = ¢. Therefore a,CI(f '(B)) S
U. This implies £ '(B) is a,~g.closed.

Theorem 4.7. Suppose f: (X, 1) — (Y, ©) is 0y -
continuous and o,y -closed, then:

(1) It fis injective and (Y, o) is a,-T, then (X, 1)
is a,- T,
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(2) If t'is surjective and (X, 1) is o,-T),, then (Y,
c) is oy-T,.

Proof. (1) Let A be an a,-g.closed set of (X, 1).
Now to prove that A is a,~closed. By Theorem 4.6
(1), f(A) is a,-g.closed. Since (Y, o) is o,-T), this
implies that f(A) is oy-closed. Since f is oy y-
continuous, then by Theorem 4.2, we have A =
f'(f(A)) is o,~closed. Hence (X, 1) is a,-T\,.

(2) Let B be an ay-g.closed set in (Y, o). Then
f7'(B) is o,-closed, since (X, 1) is a,-T,, space. It
follows from the assumption that B is a,-closed.

Definition 4.8. A mapping f : (X, 1) — (Y, 0) is
said to be ay,)-homeomorphic, if f'is bijective, o,y y-
continuous and f'is ay,,-continuous.

Remark 4.9. If f: (X, ©) — (Y, o) is bijective and
£ (Y, 06) = (X, 1) is @y -continuous, then f is
Oy yy-closed.

Theorem 4.10. Let f : (X, 1) — (Y, o) be ayy)-
homeomorphic. The space (X, 1) is o,-T,if and only
if (Y, o) is a,- T,

Proof. Necessity. Let B be an oy-g.closed set of
(Y, 6). By Theorem 4.6, f'(B) is a,-g.closed and
hence a,-closed. Since f'is a,)-closed, we have B =
f(£7'(B)) is o-closed.

Sufficiency. Let A be an a,-g.closed set of (X, 7).
By Theorem 4.6, f(A) is a,-g.closed and hence a,-
closed. Since f'is @ ,)-continuous, then by Theorem
4.2, we have A = £ '(f(A)) is a,closed.

Theorem 4.11. If £ : (X, 1) — (Y, 0) is an oy)-
continuous surjective mapping and E is an oyD-set
in'Y, then the inverse image of E is an o,D-set in X.

Proof. Let E be an ayD-set in Y. Then there are
a,-open sets Uy and U, in Y such that E = U\U,
and U, # Y. By the a4,-continuous of f, f'(U,)
and f(U,) are a,-open in X. Since U; # Y and f is
surjective, we have f'(U;) # X. Hence, f'(E) =
£ (U (U,) is an a,D-set.

Theorem 4.12. It (Y, o) is oyD; and £ : X, 1) — (Y,
o) is 0,yyy-continuous bijective, then (X, 1) is a,D,.

Proof. Suppose that Y is an o,D; space. Let x and y
be any pair of distinct points in X. Since f is injective
and Y is oyD,, there exist oyD-sets G, and G, of Y
containing f(x) and f(y) respectively, such that f (x) &
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G, and f(y) € G,. By Theorem 4.11, {/(G,) and f'(G,)
are o,D-sets in X containing x and y, respectively, such
that x & f_1(GY) and y € £ (G,). This implies that X is
an a,D; space.

Theorem 4.13. A topological space (X, 1) is o,D;
if for each pair of distinct points x, y € X, there exists
an a,,)-continuous surjective mapping f: (X, 1) —
(Y, o), where Y is an a,D;space such that f(x) and
f(y) are distinct.

Proof. Let x and y be any pair of distinct points
in X. By hypothesis, there exists an o,y yy-continuous,
surjective mapping f of a space X onto an a,;D;space
Y such that f(x) # f(y). By Theorem 3.8, there exist
disjoint o,/D-sets G, and G, in Y such that f(x) € G,
and f(y) € G,. Since f'is a,,)-continuous and surjective,
by Theorem 4.11, f'(G,) and f™'(G,) are disjoint a,D-
sets in X containing x and vy, respectively. Hence by
Theorem 3.8, X is a,D; space.

Conclusion

In this paper, we introduce the concept of an
operation y on a family of a-open sets in a topological
space (X, 7). Using this operation y, we introduce the
concept of o,~open sets as a generalization of y-open
sets in a topological space (X, 1). Using this set, we
introduce a, Ty, o,-T,, o, T}, o, T, a,Dy, o,D; and o,D,
spaces and study some of their properties. Finally, we
introduce 0,,y.continuous mappings and give some
properties of such mappings.
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