Bueno, Luciana
IRON AVAILABILITY IN AN ENTERAL FEEDING FORMULATION BY RESPONSE SURFACE METHODOLOGY FOR MIXTURES
Nutrición Hospitalaria, vol. 28, núm. 1, enero-febrero, 2013, pp. 112-118
Grupo Aula Médica
Madrid, España

Available in: http://www.redalyc.org/articulo.oa?id=309226055015
Iron availability in an enteral feeding formulation by response surface methodology for mixtures

Luciana Bueno

College of Pharmaceutics of the University of Sao Paulo, to the Department of Foods and Experimental Nutrition, University of Sao Paulo, Sao Paulo, SP, Brazil

Abstract

Background: The nutritional therapy with enteral diets has been getting specialized and those formulations to substitute the traditional diet for those patients who need to be fed by probe. This work’s aim was to study the effect of the components of enteral diet formulation: fiber, calcium and medium-chain triglycerides, seeking optimize a formulation for the best dialysability of iron by Response Surface Methodology (RSM).

Methods: The ingredients used for the formulations of the diet were chosen according to the ones commercialized in the modules of a standard enteral diet, with which it was made an experimental diet and the applicability of the experimental limits.

Results: The found results in the model have shown that it depends on the proportion of the nutrients that were manipulated in the experimental design. When the level curve was obtained for the iron dialysable, it could be verified that the binary interaction fiber-calcium was the one that presented more synergism for the appraised formulation. Before the analyzed facts, the best formulation of enteral diet optimized for the dialysability of the iron was the proportion of 60% of fiber and 40% of calcium, showing to be the best formulation of the enteral diet for the availability of the iron.

DOI:10.3305/nh.2013.28.1.5968

Key words: Iron. Availability of minerals. Enteral nutrition.

Introduction

Enteral formulations are complex systems because they are having all the nutrients in food constituents and where the minerals tend to suffer processes of interactions that would lead to changes in the absorption of nutrients, interfering with the nutritional quality of enteral feeding.

Nutritional therapy has the function of providing the best nutritional formulation aimed at individualization of the patient undergoing the nutritional intake of enteral feeding, in order to assist in the metabolic functions of individuals. Interactions of nutrients in a formulation can having negative effect the improvement of quality and efficiency of its use in clinical practice and another hand may be directed to treat diseases because it allows the supply of nutrients and an action most effective of a nutrient present in the formulation.

Resumen

Objetivos: La terapia nutricional con nutrición enteral se ha especializado en los últimos años y estas formulaciones pueden sustituir a la dieta tradicional para aquellos pacientes que necesitan de infusión de alimentación. El objetivo fue estudiar el efecto de los componentes de la formulación de nutrición enterales: fibra, calcio y triglicéridos de cadena media para optimizar una formulación para el hierro dialisable.

Métodos: La herramienta utilizada fue el análisis de múltiples variables, utilizando modelos de superficie de respuesta para las mezclas. Los ingredientes usados en las formulaciones de la dieta se presentan en el diseño experimental elegido de acuerdo con los módulos que se venden en dieta enteral estándar.

Resultados: Los resultados mostraron la dependencia de la respuesta en la proporción de nutrientes que han sido manipulados en las mezclas preparadas en el diseño experimental. En el momento de obtener el contorno de hierro dialisable se puede ver que la interacción fibra-calcio era el más sinérgico presentado para la formulación evaluada. Teniendo en cuenta los hechos analizados la mejor formulación de nutrición enteral optimizada para el hierro dialisabilidad fue la proporción de 60% de fibra y 40% de calcio.

DOI:10.3305/nh.2013.28.1.5968

Minerals are essential nutrients for the accomplishment of more than a hundred enzymatic processes, besides they exercise functions in the macronutrients synthesis and in physiologic processes in the human organism\(^1\). The bioavailability of minerals is usually defined by the measure of the proportion of the total of the element contained in the food, meal or diet that it is used for the normal maintenance of the functions of the organism\(^2\)

The chemical structure of fibers contains fitates and oxalates, for instance, they act of forming interference for the readiness of iron in diets and foods. The calcium impedes the absorption of iron and magnesium in amounts still unknown, what would increase the possibility to harm the use minerals\(^3\).

Patients receiving enteral feeding are showing higher risk of developing iron deficiency anemia over time because the iron sources used are inorganic salts on most formulations and this nutrient to suffer interference from other nutrients present in the formulations and consequently a lower utilization of iron by body\(^4\).

Some authors studied several types of diets and foods with the purpose of measuring the availability of the iron in different concentrations and components, comparing the methods \textit{in vitro} and \textit{in vivo}, and showed a significant correlation for the iron, showing that the methods \textit{in vitro} they reproduce the conditions of the human digesting system and they are capable to predict the absorption mechanisms of nutritious\(^5\).

The aim of this work was to study the effect of medium-chain triglycerides (MCTs), of fiber and of calcium on the iron availability in an enteral feeding formulation by \textit{in vitro} method with response surface methodology for mixtures.

Material and methods

Material

The ingredients that composed the appraised formulations in the study were obtained according to the marketed modules; isolated soy protein, malt dextrin, canola, corn and MCTs oils, mixes of mineral and vitamin salts (table I). The mixes of mineral are to show in table II.

Experimental Design

The dependent variables in this study were MCTs (x1), Fiber (x2) and Calcium (x3). In the case of a powder formulation for enteral nutrition, the variables should satisfy the relation \(\sum x = 1.0 = 100\% \). Seven experimental diets were elaborated, to adapt the study to the mathematical model by Response Surface Methodology\(^6\) for mixture of three components. Different amounts of corn oil and of malt dextrin were used to maintain the energy total value of the experimental diets (1011.0 kcal / kg) and (232.4 g of powder for 767.6 g of water) the final dilution (table III).

<table>
<thead>
<tr>
<th>Components</th>
<th>100 (g)</th>
<th>1000 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Protein (g)</td>
<td>Soy Protein Isolate 13.34 31.00</td>
<td></td>
</tr>
<tr>
<td>Total Carbohydrates (g)</td>
<td>Malt dextrin 59.12 137.40</td>
<td></td>
</tr>
<tr>
<td>Fat (g)</td>
<td>Canola oil 7.74 18.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corn oil 5.38 12.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCT 1.93 4.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soy Lecithin 1.30 3.00</td>
<td></td>
</tr>
<tr>
<td>Minerals (g)</td>
<td>Salt Mixture 2.15 5.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcium Carbonate 0.43 1.00</td>
<td></td>
</tr>
<tr>
<td>Vitamins (g)</td>
<td>Vitamin Mixture 4.30 10.00</td>
<td></td>
</tr>
<tr>
<td>Fiber (g)</td>
<td>Partially hydrolysed guar gum 4.30 10.00</td>
<td></td>
</tr>
<tr>
<td>Water (g)</td>
<td>767.60</td>
<td></td>
</tr>
<tr>
<td>Total (g)</td>
<td>100.00 1000.00</td>
<td></td>
</tr>
</tbody>
</table>

1.000 mL of feeding diet as 232.4 g power

Analytical Procedures

The analytical procedures were accomplished according to the norms proposed by AOAC\(^7\) with samples in duplicate, using casein AIN-93G\(^8\) as a secondary references standard.

Determination of iron in samples

For the determination of the concentrations of iron contents in experimental design was used the method of Spectrometric of Atomic Absorption (EAA). The enteral diets were digested with nitric acid (HNO3) and hydrogen peroxide (H2O2) in 5:1 ratio at 100 °C in block digester (Pyrotec\(^*)\) and diluted with 50 mL deionized water.

The readings of the samples and of the curves patterns were accomplished in Polarized Zeeman AAS Hitachi Z-5000. The readings of samples and standard solutions curves were performed in Polarized Zeeman AAS Hitachi Z-5000 by flame and oxidant Air/ Acetylene under the following conditions: hollow-cathode lamp, a wavelength of 248.3 nm and 0.2 nm slit for iron with Ferric Chloride Titrisol Merck-9972 and in concentrations on 0.1, 0.2, 0.3, 0.5, 1.0, 3.0 e 5.0 µgFe/mL.
Determination of iron by in vitro methods (% FeD)

The method of Miller et al7, modified by Luten et al8, have been used for the determination of the availability of iron availability and involving the simulation of the gastrointestinal digestion, followed by determination of mineral soluble and consists of two basic steps simulating digestion: gastric and duodenal.

The enteral feeding was submitted to the digestion with pepsin, after acidification of the middle with 6 N HCl until reaching pH 2, following by digestion with pancreatin/bile, after the alkalization of the middle to pH 7 with NaHCO\textsubscript{3} contained in dialysis tubes.

By the end the segments of dialysis tubes were washed with deionized water and the contents placed in 25 mL the final volume with deionized water, conditioned in a freezer until the time of reading.

Table II
Composition of salt mixture

<table>
<thead>
<tr>
<th>Salt</th>
<th>Value in 100 g of salt mixture</th>
<th>Element</th>
<th>Quantity of the element in 10 g of salt mixture</th>
<th>Quantity of the element in 1 L of dilut diet1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeSO\textsubscript{4}.7H\textsubscript{2}O</td>
<td>1.00 g</td>
<td>Iron</td>
<td>200.00 mg</td>
<td>10.00 mg</td>
</tr>
<tr>
<td>MgCO\textsubscript{3}</td>
<td>8.00 g</td>
<td>Magnesium</td>
<td>2.29 g</td>
<td>115.00 mg</td>
</tr>
<tr>
<td>KH\textsubscript{2}PO\textsubscript{4}</td>
<td>48.00 g</td>
<td>Phosphorus</td>
<td>11.13 g</td>
<td>557.00 mg</td>
</tr>
<tr>
<td>Potassium</td>
<td></td>
<td></td>
<td>14.04 g</td>
<td>702.00 mg</td>
</tr>
<tr>
<td>ZnSO\textsubscript{4}.7H\textsubscript{2}O</td>
<td>0.316 g</td>
<td>Zinc</td>
<td>72.00 mg</td>
<td>3.60 mg</td>
</tr>
<tr>
<td>KIO\textsubscript{3}</td>
<td>0.024 g</td>
<td>Iodine</td>
<td>14.40 mg</td>
<td>0.72 mg</td>
</tr>
<tr>
<td>MnSO\textsubscript{4}.H\textsubscript{2}O</td>
<td>0.054 g</td>
<td>Manganese</td>
<td>17.64 mg</td>
<td>0.88 mg</td>
</tr>
<tr>
<td>CuSO\textsubscript{4}.5H\textsubscript{2}O</td>
<td>0.046 g</td>
<td>Copper</td>
<td>11.88 mg</td>
<td>0.59 mg</td>
</tr>
<tr>
<td>NaCl</td>
<td>24.00 g</td>
<td>Sodium</td>
<td>9.22 g</td>
<td>461.00 mg</td>
</tr>
<tr>
<td>Malt dextrin</td>
<td>18.56 g</td>
<td>Chlorine</td>
<td>14.24 g</td>
<td>712.00 mg</td>
</tr>
<tr>
<td>Total 100.00 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Dilution: 5 g of salt mixture in 1L of diet

Table III
Formulations on diets utilized in the experimental design

<table>
<thead>
<tr>
<th>Ingredients (g)</th>
<th>Diet 1</th>
<th>Diet 2</th>
<th>Diet 3</th>
<th>Diet 4</th>
<th>Diet 5</th>
<th>Diet 6</th>
<th>Diet 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soy Protein Isolate</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
</tr>
<tr>
<td>Malt dextrin</td>
<td>148.4</td>
<td>131.4</td>
<td>131.4</td>
<td>139.9</td>
<td>131.4</td>
<td>139.9</td>
<td>137.0</td>
</tr>
<tr>
<td>Corn oil</td>
<td>–</td>
<td>17.0</td>
<td>17.0</td>
<td>98.5</td>
<td>17.0</td>
<td>8.5</td>
<td>11.3</td>
</tr>
<tr>
<td>Canola oil</td>
<td>18.0</td>
<td>18.0</td>
<td>18.0</td>
<td>18.0</td>
<td>18.0</td>
<td>18.0</td>
<td>18.0</td>
</tr>
<tr>
<td>MCT</td>
<td>17.0</td>
<td>–</td>
<td>–</td>
<td>8.5</td>
<td>–</td>
<td>8.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Soy Lecithin</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Fiver</td>
<td>–</td>
<td>17.0</td>
<td>–</td>
<td>8.5</td>
<td>–</td>
<td>8.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Salt mixture</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Calcium carbonate1</td>
<td>–</td>
<td>–</td>
<td>17.0</td>
<td>–</td>
<td>8.5</td>
<td>8.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Vitamin mixture</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Water</td>
<td>767.6</td>
<td>767.6</td>
<td>767.6</td>
<td>767.6</td>
<td>767.6</td>
<td>767.6</td>
<td>767.6</td>
</tr>
<tr>
<td>Total (g)</td>
<td>1000.0</td>
<td>1000.0</td>
<td>1000.0</td>
<td>1000.0</td>
<td>1000.0</td>
<td>1000.0</td>
<td>1000.0</td>
</tr>
</tbody>
</table>

1Mix of calcium carbonate contents 15.0 g of malt dextrin and 2.0 g of calcium carbonate.

Response Surface Methodology for Mixtures

A polynomial equation describes the simplest model (linear) to three components of the mixture of interest to determine the availability of iron dialysable can be represented as: \(y_i = \beta_0 + \beta_1 + \beta_2 + \beta_3 + \varepsilon \) where \(y_i \) is the value of interest, \(\beta \)'s are the model coefficients to be estimated by the method of least squares, \(x \) represents the dependent variables coded and is the random error15,16.

Multiplying the identity \(\beta_0 (x_1 + x_2 + x_3) \) and isolating the variables for to have the called canonical Sheffé polynomial equation or polynomial \([q, m]\) where \(q \) is equal to the number of components and \(m \) the degree of equation15,16. In the linearity case \([3, 1]\) to have \(y_i = b^* \)

\[x_1 + b^* x_2 + b^* x_3 \] where \(b^* = b_0 + b \) like:
\[y = b^*_1 x_1 + b^*_2 x_2 + b^*_3 x_3 \text{, onde } b^*_i = b_0 + b_i \text{ (lineal model)} \]

\[y = b^*_1 x_1 + b^*_2 x_2 + b^*_3 x_3 + b^*_{12} x_1 x_2 + b^*_{13} x_1 x_3 + b^*_{23} x_2 x_3, \text{ onde } b^*_i = b_0 + b_i + b_{ii} \text{ (quadratic model)} \]

\[y = b^*_1 x_1 + b^*_2 x_2 + b^*_3 x_3 + b^*_{12} x_1 x_2 + b^*_{13} x_1 x_3 + b^*_{23} x_2 x_3 + b^*_{123} x_1 x_2 x_3 \text{ (cubic special model)} \]

Therefore, to estimate the value of the coefficients \(b^*_i \) are required at least three experimental trials. As the difference in terms of the delineation between the quadratic model and the special cubic model is only an experimental trial, for this study was used an experimental planning simplex-centroid design with seven experimental trials.

For the optimization of the enteral feeding formulation the corresponding by physiological explanations and aiming to maximize the iron was important. The optimization of the response is within the range of acceptability [0, 1] and the responses to be maximized are the minimum and maximum values of the quantities of nutrients that were used in the experiment.

Statistical Analysis

Being treated of a powdered formulation for enteral feeding, the variables should obey the relationship \(\sum x_i = 1.0 = 100\% \) and variables selected in this study were medium-chain triglycerides \((x_1) \), Fiber \((x_2) \) and Calcium \((x_3) \). The estimated value of coefficients of all regressions was obtained by the least squares method. Analysis of variance and analysis of regression have been used to evaluate the quality of the adjustment of the mathematical model and the test Chi-square was applied corrected by the experimental proportion for validation. The optimization was done by the technique proposed by Derringer and Suich. This is based on the definition of a desirability function restricted on the interval [0,1], for which it was adopted as lower limits, secondary and higher values of 0, 0.5 and 1.0, respectively. The data were analysed by the program Statistica 6.0 considered significant differences \(p < 0.05 \).

Results

All of the regression models (lineal, quadratic and cubic special) for the values of iron availability were shown highly significant \((p < 0.05) \). Therefore, for all models reject the null hypothesis \((H_0 = \beta_1 = \beta_2 = \beta_3) \), demonstrating the dependence of responses in the proportion of nutrients in the mixture studied in this experimental design. The adequacy was verified of empirical models for iron and the values was calculated by F greater than the tabulated F \((F_{4,16} = 3.01 \text{ for iron}) \) and no evidence of lack of fit was observed \((F_{2,14} = 3.74 \text{ for iron}) \) to the 95 % of significance level.

The availability of iron obtained by the conditions established in the experimental design are represented in table IV and table V and the variation showed have been obtained by the limiting factors variance analysis for each one of the mathematics models. It was observed the values of the F and the level of statistical p and the determination coefficient R by ANOVAs coefficients is to verify the adaptation of the models to the appraised answers for each one of the two minerals. The obtained values for the estimate of the response \(\hat{y} = \% \text{ iron availability} \) were used for the obtaining of a quadratic model adjusted by the experimental data to predict the answer with the three nutrients studied in the experimental design. Equation (1) shown of the coefficients of the quadratic regression model adjusted by the experimental data for the iron and their respective standard mistakes, dear for the experimental data.

\[\hat{y} = 5.58 x_1 + 4.50 x_2 + 1.30 x_3 + 5.32 x_1 x_3 + 15.42 x_2 x_3 \text{ Eq (1)} \]

Figure 1 shown the outline curves obtained for the response \(\hat{y} = \% \text{ iron availability} \) for the three variables \((x_1, x_2, x_3) \), in which it is observed that the largest values \(\hat{y} (x) \) they are associated to the interaction fiber and calcium. The formulation according to the ratio defined by the optimization process for iron, and is reproduced in the laboratory determined the percentage of iron dialysability in the same conditions which have been prepared initially. It can be concluded that the results were validated.

Figure 2 shows the maximization of the proposed formulation to optimize the overall model in the search
response to the dialysability iron according to the results obtained in the quadratic (iron) adjusted by the experimental data.

Table VI shows the values of MCTs, and calcium dietary fiber versus experimental diet that has been optimized for the results obtained by the applicability of the experiment, the best formulation was found to predict the dialysability maximizing the mineral.

Discussion

In vitro methods are relatively simple, rapid and inexpensive and can simulating the digestion gastric and duodenal, followed by dialysis. The proportion of the element diffused through the semi permeable membrane during the process, is the dialysability element after an equilibration period, being used as an
iron availability the most pronounced effect was the
binary interaction between fiber and calcium. Fibers
are highly fermentable, acting through the action of
bacteria in the colon to show a binding capacity of
minerals, mainly calcium. Because that, soluble fiber
have been recommended for enteral feeding. It was
explicable for the ability of the translocation local
calcium absorptive small intestine into the caecum and
colon, where they are degraded to increase the produc-
tion of short chain fatty acids because they act on the
table Flora in human21. Spacen et al22. showed that patients
with paralytic ileus showed a lower incidence of
diarrhea and less impairment of
observed in liver transplant patients from abdominal
surgery and postoperative ileum, due to an improve-
ment in the clinical patient.

By studying the interactions of Fe++, Ca++ and Fe+++ in
the formulation of enteral nutrition by in vitro methods
in different concentrations of soluble fiber, insoluble
fiber and different pHs, simulating physiological
different conditions, observed that high amounts of
fiber and physical-chemical unsuitable can lead to poor
availability of iron24. Gupta et al26, to assess the
bioavailability of calcium and iron in leafy vegetables,
by in vitro dialysis concluded that the components
present in the chemical structure such as food fibers,
oxalate, phytic acid and tannins are the primary inter-
fering bioavailability of iron.

Oliveira and Osório27 stressed that the consumption
of cow’s milk in infancy may increase the incidence of
iron deficiency anemia in children, because the food
has low bioavailability and density for iron. Perales et
al28, to assess the effect of the bioavailability of iron,
calcium and zinc in samples of cows’ milk fortified
with calcium or not by the in vitro methods of
dialysability and in vitro cell culture by Caco 2 showed
that the matrix itself tends to reduce the bioavailability
of calcium found in the non-fortified milk, which can
be explained by the interaction of calcium with milk
components, especially with milk protein and forma-
tion of insoluble compounds that tend to impair the use
of the mineral.

The authors concluded that the interaction between
minerals and milk to show disadvantage that food is
used in programs to combat nutritional deficiencies of
minerals.

The interaction binary MCT - calcium went other
important factor to the availability of the iron. Interac-
tion between nutrients are affecting the bioavailability
of foods can be caused by different chemistry condi-
tions and molecular structure like as fats, because the
polar and nonpolar covalent ligation and metal condi-
tions. Those mechanisms have been described for
several authors and related the interference in vitro and
in vivo23,25,26. Like this, foods or diets contain that
composed of fewer complexes (as MCTs) structures;
can tie the calcium, in presence of great quantities
of the mineral and with that to please the availability of
the iron in an enteral feeding formulation.

Rodrigues et al25. they showed that the fat present in
the milk, characterized in natural sources of those
stencil, it is constituted of reasonable quantities of
cholesterol and saturated fat. Toba et al27, compared the
effects of the components of the milk in the bioavail-
ability of calcium, growth in mice, they concluded that
the mineral presented interactions with the components
of the milk due to formation of insoluble compounds
tending to reduce the availability of the mineral,
showing the own interference of the chemical structure
of the milk in the absorption of the calcium.

Yang et al28. in a meta-analysis that evaluated the use
of fiber in enteral formulas has been shown to reduce
hospital stay in patients with liver transplantation and
abdominal surgery. For cases of diarrhea and infection,
which was used in the fiber in the diet a control was
observed in liver transplant patients from abdominal
surgery and postoperative ileum, due to an improve-
ment in the clinical patient.

The chemical form of the fiber contained in food or
diet, especially in the presence of oxalates and phytate
prevented the absorption of iron, zinc, copper and
calcium23,24. Minerals bioavailability was measured on
the habitual consumption of foods such as wheat, rice,
corn and soy of the Chinese population and showed
that the amounts of phytate and fiber in these foods
enabled the formation of insoluble compounds that
decreased the iron bioavailability. The authors stressed

| Table VI
<p>| Enteral Feeding: Experimental diet and optimized diet for percentage of the iron dialysability |</p>
<table>
<thead>
<tr>
<th>Components</th>
<th>Experimental Diet</th>
<th>Optimized Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein (g)</td>
<td>31.0</td>
<td>31.0</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
<td>138.0</td>
<td>136.4</td>
</tr>
<tr>
<td>Fiber (g)</td>
<td>10.0</td>
<td>10.2</td>
</tr>
<tr>
<td>Corn oil (g)</td>
<td>12.5</td>
<td>17.0</td>
</tr>
<tr>
<td>Canola oil (g)</td>
<td>18.0</td>
<td>18.0</td>
</tr>
<tr>
<td>MCT (g)</td>
<td>4.5</td>
<td>-</td>
</tr>
<tr>
<td>Soy lecithin (g)</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>400.0</td>
<td>320.0</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Zinc (mg)</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Magnesium (mg)</td>
<td>115.3</td>
<td>115.3</td>
</tr>
<tr>
<td>Vitamin C (mg)</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Total (g)</td>
<td>1000.0</td>
<td>1000.0</td>
</tr>
</tbody>
</table>

Iron bioavailability in obese subjectes

the importance of studies of interactions between nutrients and process optimization to minimize these effects especially in populations with particular dietary habits.

In cereals, fortified or not, the interaction of iron absorption was reduced in the presence of fibers and other types of foods such as coffee and milk, probability of presence that caffeine and calcium.

Yoon et al., discussed the possibility of fiber acting on the human gastrointestinal tract by causing changes in the utilization of nutrients and showed that greater amounts of fiber (> 20 g/day) can affect the bioavailability of minerals. The supplements studied here contained 25 g fiber that may have represented a factor capable of reducing iron absorption.

The use of experimental design based on Response Surface Methodology for Mixtures was comprehensive and can to find of the best possible formulation, showing that the results obtained are in agreement with the literature. For the iron dialyzability in the formulation of enteral nutrients showed a more pronounced synergism was fiber and calcium, showing the importance of an evaluation of both nutrients when it is intended to make the best use of iron in a formulation. For the optimization of the diet, the maximum response with nutrients studied was estimated in proportions of 60.00% fiber and 40.00% calcium.

References