

Sociedade & Natureza

ISSN: 0103-1570 ritacmsou@ig.ufu.br

Universidade Federal de Uberlândia Brasil

Carvajal, Andrés Felipe; Pabón, José Daniel
TRANSFORMACIÓN DE LA SUPERFICIE TERRESTRE POR LA ACTIVIDAD HUMANA
Y SU RELACIÓN CON EL CAMBIO CLIMÁTICO

Sociedade & Natureza, vol. 28, núm. 2, mayo-agosto, 2016, pp. 185-198
Universidade Federal de Uberlândia
Uberlândia, Brasil

Disponible en: http://www.redalyc.org/articulo.oa?id=321348348002

Número completo

Más información del artículo

Página de la revista en redalyc.org

relalyc.org

Sistema de Información Científica

Red de Revistas Científicas de América Latina, el Caribe, España y Portugal

Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

TRANSFORMACIÓN DE LA SUPERFICIE TERRESTRE POR LA ACTIVIDAD HUMANA Y SU RELACIÓN CON EL CAMBIO CLIMÁTICO

Land surface transformation due to human activitie and its relation to climate change

Andrés Felipe Carvajal Universidad Nacional de Colombia, Bogotá, Colombia afcarvajalv@unal.edu.co

José Daniel Pabón Universidad Nacional de Colombia, Bogotá, Colombia jdpabonc@unal.edu.co

Artigo recebido em 22/09/2014 e aceito para publicação em 14/06/2016

RESUMEN:

Las transformaciones de las coberturas de la superficie terrestre se incluyen dentro de los procesos de cambio global, porque tienen la capacidad de afectar el funcionamiento del planeta. Diversas investigaciones se han enfocado en la evaluación de la cobertura y el uso de la superficie, por ser un factor que lleva implícita la señal de algunas de las actividades que desarrolla la sociedad humana; y porque a partir de su correlación con variables climáticas podría dar evidencias de las alteraciones que la acción de la antroposfera ha generado sobre el clima en diferentes escalas. Este documento hace una descripción de los conceptos de cobertura y uso de la superficie, analiza su relación con algunas variables climáticas y, presenta una revisión de los métodos más utilizados para evaluar los impactos del cambio en la cobertura y el uso sobre el clima; destacando tres enfoques principales que se diferencian entre sí por utilizar datos provenientes de estaciones climatológicas, productos de sensores remotos o modelos climáticos.

Palabras-clave: Cambio en la cobertura y el uso de la superficie terrestre, Estaciones climatológicas, Sensores remotos, Modelos climáticos, Islas de calor.

ABSTRACT:

Land cover transformations are considered global change processes, because they have the ability to affect the functioning of the planet. Many research studies have focused on the evaluation of land cover and land use, because they are factors having the footprint of some human society activities, and because its correlation with climatic variables could evidence the alterations that the action of the anthroposphere has generated on climate at different scales. This paper describes the concepts of land cover and land use, analyzes their relationship with climatic variables and presents a review of the methods used to assess the impacts of land cover and land use change on climate, highlighting three main approaches that differ from each other due to the use of data from climatological stations, remote sensing products or climate models. **Keywords**: Land cover and land use change, Remote sensing, Climatological stations, Climate models, Heat islands.

DOI: http://dx.doi.org/10.1590/1982-451320160201

INTRODUCCIÓN

La superficie terrestre ha sido modificada constantemente por las diferentes actividades desarrolladas por el ser humano, lo que le ha significado una serie de cambios en su forma y en los componentes que la estructuran, que a su vez han alterado diversos procesos naturales en los que las características de la superficie desempeñan un papel fundamental.

Las causas del cambio en el uso y la cobertura pueden ser directas o indirectas, lo que se relaciona con la escala en la que se toman algunas decisiones de orden económico, político, social y cultural, que inciden sobre el tipo de actividades a desarrollar sobre la superficie terrestre.

La importancia del medio biofísico de dicha superficie se encuentra en que es un elemento esencial del sistema planetario, en la medida en que funciona como fuente y sumidero en los ciclos de materia y energía (Weng, 2001). Por eso, las transformaciones de las coberturas terrestres (por actividades como la deforestación, la urbanización y las prácticas agrícolas, principalmente) se incluyen dentro de los procesos de cambio global, porque tienen la capacidad de afectar el funcionamiento del planeta al alterar sistemas como el climático en diferentes escalas.

En consecuencia, ha surgido la preocupación por el estudio de la relación entre el uso y la cobertura de la superficie terrestre y el clima, por medio de la utilización de diferentes metodologías para describir, analizar y simular esta interacción. Desde el punto de vista teórico, se encontró que ya se han establecido algunas de las alteraciones en el clima local y regional que puede generar la heterogeneidad de la superficie terrestre, lo que posteriormente incide sobre la problemática del cambio climático global. Asimismo, se pudo documentar que la preocupación por el estudio del cambio climático relacionado con los cambios en el uso y la cobertura de la superficie terrestre, surge desde el siglo XIX, pero se comienza a hacer más notoria desde mediados del siglo XX, con el desarrollo de trabajos que se enfocaron principalmente en las islas de calor urbanas. Se destacaron como principales tendencias metodológicas para el abordaje de este tipo de estudios: la utilización de datos medidos en campo con la ayuda de estaciones climatológicas o sensores móviles, el uso de productos de sensores remotos y la predicción del clima a través de modelos de simulación.

Por último, se concluyó que aún hace falta avanzar en la generación de un enfoque que integre estos métodos mencionados anteriormente, para que se pueda contar con información de alta resolución espacial y temporal que ayude a mantener un sincronismo entre los datos de coberturas terrestres y las variables climáticas, que finalmente permitan simular escenarios de cambio climático basados en la dinámica del uso y la cobertura. Asimismo, se plantea que la inclusión de factores de decisión que inciden sobre el uso de las coberturas (políticos, económicos, culturales y sociales), en la simulación de escenarios de cambio climático, es una opción para el desarrollo de nuevas investigaciones, principalmente en el territorio colombiano donde el estudio de los cambios en el clima local y regional causados por la transformación de las coberturas terrestres aún es incipiente.

CAMBIOS EN LA COBERTURA Y EL USO DE LA SUPERFICIE TERRESTRE

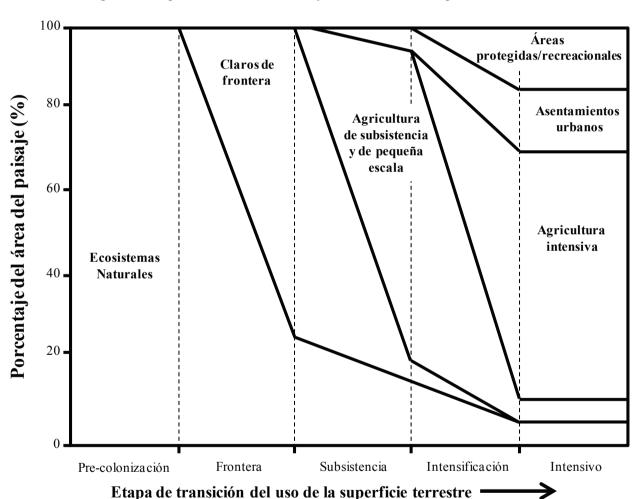
Los conceptos de "cobertura" y "uso" de la superficie terrestre, han sido comúnmente confundidos y en algunos casos ha creado dificultades para la integración de información (Comber, 2008). La cobertura ha sido definida por Di Gregorio y Jansen (2000) como aquella cobertura (bio)física observada sobre la superficie de la tierra. Sin embargo, Lambin et al. (2006) también han incluido en la definición a la sub-superficie inmediata, por lo que finalmente la cobertura estaría conformada por biota, suelo, topografía, agua superficial y subterránea y estructuras construidas por el ser humano.

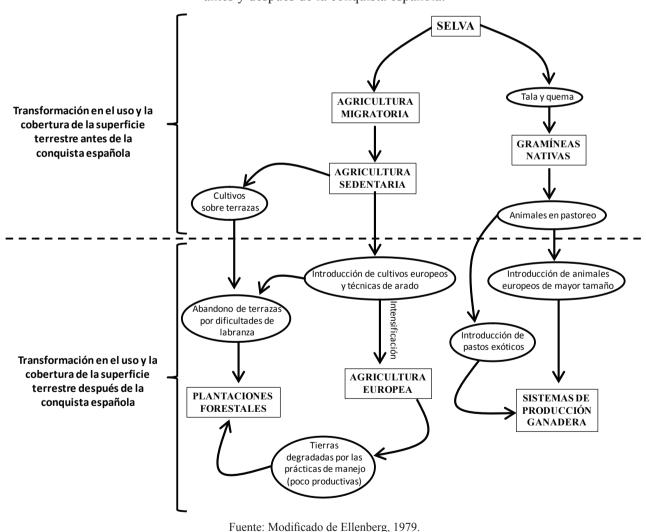
La cobertura ha estado sujeta a cambios que regularmente se han asociado con el uso asignado por el ser humano (Bradley y Mustard, 2005). En este orden de ideas, el uso de la superficie terrestre se reconoce como aquellos propósitos por los cuales los humanos explotan la cobertura; lo que implica la manera como los atributos biofísicos de la tierra son manipulados y la intención que subyace a dicha manipulación (Lambin et al., 2006). Por lo tanto, cuando se habla del uso de la superficie, se hace referencia a

aspectos sociales, culturales, económicos y políticos, que inciden sobre las decisiones que toma la sociedad en relación con el manejo y la utilidad que le da a ciertos tipos de cobertura.

Al igual que las transiciones demográficas y económicas, las sociedades parecen seguir también una secuencia en diferentes regímenes de uso de la superficie terrestre: desde la transformación inicial de la vegetación natural, pasando por la expansión de las fronteras y la agricultura de subsistencia, hasta llegar

a la agricultura intensiva, el crecimiento de las áreas urbanas y la aparición de áreas protegidas que a su vez pueden prestar servicios recreacionales (Figura 1). Diferentes partes del mundo se encuentran en distintos estados de transición y no todos los lugares se desplazan linealmente a través de estas transiciones, algunos se mantienen en un estado durante un periodo prolongado, mientras otros se mueven rápidamente entre ellos (Foley et al., 2005).




Figura 1 - Etapas de transición del uso y la cobertura de la superficie terrestre.

Fuente: Adaptado de Defries et al., 2004 y Foley et al., 2005.

En relación con las transiciones en el uso y la cobertura de la superficie terrestre, Ellenberg (1979) coloca como ejemplo las transformaciones realizadas en los ecosistemas naturales del altiplano peruano y boliviano, donde antes de la conquista española ya se presentaban actividades agrícolas migratorias y posteriormente sedentarias, estas últimas caracterizadas por desarrollarse en zonas de ladera con terrazas construidas para evitar procesos erosivos. Con la llegada de los españoles se promovió una agricultura europea que se enfocaba en la intensificación, por lo que las terrazas fueron abandonadas debido a que eran demasiado angostas para labrarlas; quedando

abandonadas algunas zonas de ladera que junto con tierras ya deterioradas y poco productivas debido a la intensificación, dejaron de ser cultivadas y con el tiempo fueron utilizadas para el establecimiento de plantaciones forestales. En cuanto al pastoreo, antes de la conquista se realizaba tala y quema que permitía el crecimiento de arvenses para el sostenimiento de llamas y alpacas, pero con la llegada de los españoles se introdujeron especies exóticas de pastos y animales de gran tamaño, con los que se establecieron los sistemas productivos ganaderos que perduran hasta la actualidad (Figura 2).

Figura 2 - Cambios en el uso y la cobertura de la superficie terrestre en los altiplanos peruano y boliviano, antes y después de la conquista española.

Las coberturas pueden estar sometidas a dos tipos de procesos que las alteran: la conversión y la modificación. Según Ramankutty et al. (2006), la conversión corresponde al reemplazo total de un tipo de cobertura por otro, mientras que las modificaciones son cambios más sutiles que afectan su carácter pero mantienen su clasificación general.

Las causas del cambio en el uso y la cobertura de la superficie terrestre pueden ser directas o indirectas. Las directas son las acciones inmediatas sobre las coberturas que actúan a escala local y se relacionan por lo general con la expansión agrícola, la extracción de madera y la construcción de infraestructura; mientras las indirectas están formadas por un conjunto de variables sociales, políticas, económicas, demográficas, tecnológicas, culturales y biofísicas, que se pueden originar en las escalas regional y global (GEIST et al., 2006).

En relación con lo anterior, es de resaltar que las políticas tienen una incidencia fundamental en los cambios en el uso y la cobertura. Algunas inciden directamente, como las que crean áreas protegidas; y otras afectan de manera indirecta como los precios de los productos agrícolas, la inversión pública en infraestructura, y aspectos macroeconómicos como la tasa de cambio y la política monetaria, que influyen sobre las tasas de interés y la disponibilidad de créditos (REID et al., 2006). Todo esto hace que el acceso a la tierra y las decisiones relacionadas con el tipo de actividades productivas a desarrollar, dependa en parte de agentes externos, lo que repercute sobre la utilización de la superficie en todas las escalas y por ende tiene un impacto en diferentes sistemas del planeta Tierra, entre los que se encuentra el sistema climático, en el que uno de los componentes principales es la superficie terrestre.

RELACIÓN ENTRE LA COBERTURA Y USO DE LA SUPERFICIE Y EL CLIMA

La heterogeneidad de la superficie terrestre inducida naturalmente o por la acción del ser humano, se representa en forma de parches, cuyas propiedades radiativas y térmicas difieren de las de sus alrededores, lo que puede producir gradientes horizontales de temperatura y presión lo suficientemente fuertes para generar y sostener circulaciones organizadas de mesoescala (BAIDYA-ROY; AVISSAR, 2002). Esto

se debe a que las transformaciones en la cobertura terrestre afectan el clima porque aspectos relacionados con la vegetación, como el albedo, el área de las hojas y la cobertura fraccional generan alteraciones en temperatura, humedad, velocidad del viento y precipitación (STOHLGREN et al., 1998).

Por lo tanto, actividades como deforestación, urbanización y agricultura afectan la dinámica y termodinámica de la atmósfera, alterando el ciclo hidrológico y el balance de energía, lo que probablemente genera repercusiones sobre el tiempo y el clima a escala local, regional y global (CUI et al., 2006). Esto indica que, la vegetación ejerce controles que operan en todas las escalas, a través de flujos de masa (vapor de agua, partículas, gases traza, núcleos de condensación y núcleos de hielo) y energía (calor sensible, calor latente, intercambio radiativo, momentum de disipación) entre la biosfera y la atmósfera (HAYDEN, 1998).

Además, la transformación de la vegetación altera otras propiedades físicas de la superficie, entre las que se encuentran la rugosidad, el índice de área foliar, la profundidad de raíces y la disponibilidad de humedad del suelo (Foley et al., 2000). Este es el caso de la sustitución de selvas por pastizales, que reduce la evapotranspiración e incrementa el flujo de calor sensible y consecuentemente la temperatura superficial (SAMPAIO et al., 2007). Por esta razón, para Malhi et al. (2008) la deforestación se traduce en disminución de la nubosidad, incremento de la insolación y la reflectancia de la superficie y, cambios en la carga de aerosoles en la atmósfera, la velocidad de los vientos y la convergencia a gran escala de la humedad atmosférica que genera precipitación.

El papel determinante de la cobertura vegetal en los flujos de energía y en el ciclo hidrológico, se puede observar en la forma como las plantas absorben, reflejan o transmiten la radiación solar, y en la capacidad de interceptar y transpirar el agua obtenida a través de la precipitación (BONAN et al., 2004) (Figura 3). Por eso, es que las plantas cumplen un papel fundamental dentro de un ecosistema, porque conectan la atmósfera con el suelo y se encargan de distribuir el calor y el agua, generando unas condiciones micro y mesoclimáticas que dependen en gran medida del tipo de vegetación y del tamaño del área cubierta por la misma.

Evaporación Radiación de onda larga solar difusa Radiación tadiación de onda larga solar reflejada Radiación Escurrimiento solar absorbida Evaporación Infiltración Escorrentía superficial Flujo de calor Agua almacenac en el suelo Transferencia de calor Redistribución Drenaje

Figura 3 - Funciones de la vegetación en los flujos de energía (izquierda) y en el balance hídrico (derecha).

Fuente: Adaptado de Bonan et al., 2004

Contrario al papel de regulación que desempeñan las plantas, se encuentra el efecto de calentamiento que generan las zonas urbanizadas, debido a que materiales como el asfalto, el concreto y el metal, tienden a almacenar calor durante periodos prolongados de tiempo, lo que propicia lo que se conoce comúnmente como la isla de calor urbana.

En la relación entre el clima y el uso y la cobertura de la superficie, intervienen procesos que actúan en diferentes escalas (Figura 4). Aspectos como la densidad poblacional del planeta y las políticas globales generan tendencias de uso de las coberturas, las cuales inciden sobre los factores de decisión que promueven los cambios a menor escala. También es importante resaltar, que la forma heterogénea de la superficie del planeta es el resultado de la sumatoria de pequeñas transformaciones que alteran propiedades de la superficie como rugosidad, reflectancia y albedo; lo que genera impactos sobre el ciclo hidrológico y el balance de energía. Dichos impactos provocan un cambio climático a escala local y regional, que finalmente va a tener algún grado de contribución con el cambio climático global.

El calentamiento producido por el aumento en las concentraciones de gases de efecto invernadero en la atmósfera, es otra de las causas del cambio climático global, y también está relacionado con un crecimiento poblacional que se ha vuelto acelerado y desproporcionado, y que ha llevado a la sociedad a ejercer presiones fuertes sobre los recursos naturales con el fin de suplir sus necesidades de alimentación, transporte, vivienda y demás que le generan cierto tipo de bienestar. Además, ha estado acompañado de políticas de orden mundial que obedecen a intereses económicos y de poder que generan impactos negativos sobre el ambiente, y que contribuyen con el agudizamiento de la problemática relacionada con el cambio climático.

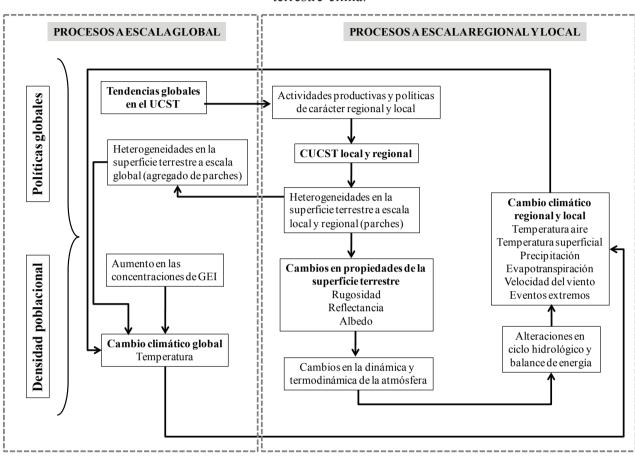


Figura 4 - Procesos en diferentes escalas que intervienen en la relación cobertura y uso de la superficie terrestre-clima.

UCST: uso y cobertura de la superficie terrestre. CUCST: cambio en el uso y la cobertura de la superficie terrestre. GEI: gases de efecto invernadero.

EL ESTUDIO DEL CAMBIO CLIMÁTICO ASOCIADO CON CAMBIOS EN LA COBERTURA Y EL USO DE LA SUPERFICIE

Los componentes del sistema climático son: océano, atmósfera, biosfera, litosfera y antroposfera (PABÓN, 2011); pero desde hace varias décadas ha surgido la preocupación por el estudio detallado de la relación antroposfera-biosfera y sus implicaciones en la problemática del cambio climático. De ahí que, las investigaciones se hayan enfocado en la evaluación de la cobertura y el uso de la superficie terrestre, por ser un factor que lleva implícita la señal de las diferentes actividades que desarrolla la sociedad, el cual, a partir de su correlación con variables climáticas podría evidenciar la huella de la acción de la antroposfera sobre la biosfera y los posibles impactos sobre el clima en diferentes escalas.

Al respecto, se ha encontrado que las tendencias generales en los métodos para abordar el estudio de las relaciones mencionadas anteriormente son:

- Datos medidos en campo con la ayuda de estaciones climatológicas o sensores móviles, para identificar los cambios en variables climáticas al interior de las ciudades, o para el análisis comparativo de datos provenientes de estaciones localizadas en zonas con coberturas naturales y aquellos de zonas con niveles altos de perturbación antropogénica,
- El uso de productos de sensores remotos correlacionados con datos climatológicos, con el fin de identificar cambios en las coberturas de la superficie terrestre y su incidencia sobre el clima,
- La utilización de modelos climáticos que incorporan información de las coberturas terrestres para predecir cambios en el clima.

Estas diferencias en el abordaje del estudio del cambio climático asociado con las transformaciones en el uso y la cobertura, están relacionadas con los avances en las tecnologías de la información geográfica y en el desarrollo de modelos climáticos regionales. Lo que a la vez, también ha permitido pasar de la realización de trabajos localizados a estudios de carácter regional e incluso global.

Desde el siglo XIX ya existía cierta preocupación por el acelerado crecimiento de las ciudades, lo que despertó el interés de los investigadores por analizar las variables climáticas dentro de las zonas urbanas para compararlas con las de las zonas rurales aledañas. Sin embargo, después de la mitad del siglo XX es que se comienza a hacerse más notoria la aparición de este tipo de trabajos, principalmente en Norte América, donde por lo general se trataba de analizar la incidencia de la zona urbana sobre el clima local, haciendo énfasis en la evaluación de las islas de calor urbanas

De esta manera, se ha comprobado que las ciudades tienen una incidencia representativa sobre la temperatura del aire, lo que depende en gran parte de las densidades de la edificación y la población. También ha sido posible evidenciar variaciones de temperatura hasta de 5 °C entre las zonas céntricas de las ciudades y su periferia; y diferencias de temperaturas máximas hasta de 6.9 °C entre las áreas construidas y áreas protegidas (con cobertura vegetal densa) inmersas dentro de las zonas urbanas, lo que se conoce como el fenómeno de enfriamiento, que demuestra la capacidad de la vegetación para regular el clima (Tablas 1 y 2).

Un aspecto importante identificado en los trabajos realizados con datos de estaciones climatológicas, es que los cambios observados en las variables climáticas pueden ser atribuidos a los usos y coberturas predominantes en la zona donde dichas estaciones se encuentran instaladas. Sin embargo, este tipo de estudios se han caracterizado por la realización de análisis bastante localizados, porque generalmente permiten hacer inferencias sobre las zonas inmediatas a las estaciones, ya que la distribución espacial irregular de las mismas, en muchos casos no permite interpolar los datos de manera confiable para abarcar porciones más amplias del territorio. Esto fue creando la necesidad de utilizar métodos que facilitaran el desarrollo de estudios de carácter regional e incluso global, principalmente

asociados con las tecnologías de la información geográfica y el uso de modelos climáticos.

En épocas más recientes, el uso de la teledetección ha contribuido con la obtención de información del estado de las coberturas vegetales, para posteriormente correlacionarlas con variables climáticas. Imágenes Landsat, Spot, Ikonos, Quickbird, Aster y demás, han permitido monitorear los cambios en las coberturas de la tierra; al igual que los datos de índices de vegetación producidos por el grupo de Estudios en Inventario Global, Monitoreo y Modelado (GIMMS por su sigla en inglés) a partir de imágenes capturadas por el satélite NOAA/AVHRR. Igualmente, bases de datos con series de índices de área foliar como CYCLOPES, ECOCLI-MAP, GLOBCARBON y MODIS, han facilitado el desarrollo de este tipo de investigaciones y han demostrado la importancia de la teledetección para el estudio de la relación cobertura de la superficie terrestre-clima. Estos parámetros de la superficie terrestre obtenidos por medio de satélites han aumentado las posibilidades de incluir características detalladas de la vegetación dentro de los trabajos de predicción del clima.

La aparición de satélites meteorológicos como METEOSAT, GOES, MTSAT, FENGYUN, GOMS Y KALPANA, también han facilitado el estudio de aspectos como la nubosidad y la temperatura de la superficie terrestre, que son de gran importancia para analizarlos conjuntamente con las bases de datos relacionadas con el estado de las coberturas, y analizar de manera multitemporal la relación entra el uso y la cobertura de la superficie terrestre y el clima.

El conocimiento de la temperatura superficial en escalas espaciales y temporales más amplias, es una necesidad para diversas aplicaciones, entre las que se encuentran los estudios climáticos y ambientales. Una manera interesante para evaluar este parámetro a gran escala, es el uso de la observación desde el espacio por medio de satélites y sus respectivas bandas termales infrarrojas (SOBRINO et al., 1994). Además, la temperatura superficial se convierte en un factor importante en los estudios de cambio global, específicamente en lo que respecta al balance de calor y el monitoreo del cambio climático (SRIVASTAVA et al., 2009).

Son diversos los trabajos que se han desarrollado al respecto, y han tratado de aprovechar la información obtenida a partir de la observación con satélites para estudiar la temperatura de la superficie terrestre en relación con las diferentes coberturas. Otros han intentado identificar la correlación existente entre la temperatura de la superficie y la del aire, con el fin de resaltar la importancia de los datos satelitales para la estimación de una variable como la temperatura del aire que es medida de manera local por estaciones climatológicas, que generalmente están dispersas y no permiten cubrir porciones más amplias del territorio, con resoluciones espaciales con buen nivel de detalle y con una frecuencia de días que se convierte en una excelente manera de monitorear los cambios sobre la superficie terrestre y sus posibles implicaciones sobre el clima.

Por otra parte, se encuentran los modelos climáticos, que se basan en principios físicos bien establecidos y tienen la capacidad de reproducir las características observadas en los cambios del clima presente y pasado (Randall et al., 2007). En especial

los modelos climáticos regionales, que según Seiler (2009) permiten reducir estadística y dinámicamente la escala de los modelos de circulación global, los cuales son representaciones matemáticas del sistema climático del planeta a escalas muy gruesas cercanas a los 250 x 250 km.

Diversos modelos utilizados dejan ver los cambios que se pueden ocasionar sobre el clima debido a la conversión y modificación de las coberturas terrestres. Sin embargo, aún es necesario incluir ciertos factores de decisión de orden local y global que inciden sobre la utilización de la superficie terrestre, los cuales permitirían simular escenarios de cambio climático no solo apoyados en aspectos biofísicos, sino también en factores de carácter político, económico, social y cultural que finalmente son los que condicionan el uso que se le da a las coberturas terrestres.

Tabla 1. Algunos estudios que demuestran alteraciones en variables climáticas por cambios en el uso y la cobertura de la superficie terrestre a nivel mundial.

Localización	Cambios en variables climáticas	Referencia		
Mediciones				
Estados Unidos de América	Diferencia máxima de temperatura de 1.6°C entre áreas urbanas y rurales	Bornstein, 1968.		
Estados Unidos de América y Canadá	Calentamiento urbano promedio de 0.12 °C/década.	kukla et al.,1986.		
Estados Unidos de América	Ciudades presentaron 0.1 °C por encima de la temperatura promedio anual de centros poblados de zonas rurales.	Karl et al., 1988.		
China	Incremento promedio de la temperatura de 0.3°C en la zona urbana durante los 30 años en los que se realizó el estudio.	Wang et al., 1990.		
Estados Unidos de América	Rangos de temperatura mayores en zonas y centros poblados con menos de 10.000 habitantes, que los de pequeñas y grandes ciudades.	Gallo et al., 1996.		
Israel	Variaciones en la temperatura del aire de 3 a 5°C entre el centro de la ciudad y la zona rural periférica.	Saaroni et al., 2000.		
Korea	Incremento de la temperatura urbana de 0.56 °C en 24 años.	Kim y Baik, 2002.		
Portugal	Identificación del efecto de enfriamiento producido por la vegetación densa, consistente en una diferencia máxima de temperatura de 6.9 °C entre un área protegida y la periferia construida.	Oliveira et al., 2011.		
Simulaciones				
Tailandia	El efecto de la deforestación podría disminuir la precipitación en el área deforestada alrededor de 26 mm/mes.	Kanae et al., 2001.		
Meseta Tibetana	En un escenario sin intervención, la región sería 0.17°C menos caliente y 9 mm/año más lluviosa que en la actualidad.	Cui et al., 2006.		

Tabla 2. Algunos estudios que demuestran alteraciones en variables climáticas por cambios en el uso y la cobertura de la superficie terrestre en América del Sur.

Localización	Cambios en variables climáticas	Referencia
Mediciones		
Brasil	Diferencias de 15 a 20°C entre la temperatura del suelo con cobertura y el suelo descubierto	Borrozzino et al., 2013
Brasil	Con el uso de imágenes satelitales fue posible identificar la isla de calor generada por el proceso de urbanización de la isla de Maranhão, que redujo en un 25% aproximadamente la cobertura vegetal entre los años 1992 y 2010.	Gonzaga y Salgado, 2012
Colombia	Identificación de una isla de calor que supera en cerca de 3°C a la temperatura media de la periferia.	Ángel et al., 2010.
Colombia	Los procesos de trasformación del uso y la cobertura provocan una dinámica del clima local más heterogénea, comparada con la variabilidad climática natural.	Rodríguez- -Eraso et al., 2010
Simulaciones		
Amazonia	En un escenario de conversión de la selva tropical por pastizales, podría incrementarse la temperatura entre 1 y 3 °C, y disminuir la evapotranspiración entre un 20 y 40% y la precipitación entre 20 y 30%.	Shukla et al.,1990.
Amazonia Sur y África ecuatorial occidental	En un escenario de deforestación, se observó que las temperaturas diarias máximas tenderían a incrementar notablemente y que la intensidad de los eventos convectivos se reduciría.	Voldoire y Roger, 2004
Amazonia Oriental	En un escenario de conversión de la selva tropical a pastizales y cultivos de soya, se incrementaría la temperatura superficial y disminuiría la precipitación.	Sampaio et al., 2007.
Amazonia (Brasil)	Los cambios en las coberturas y el incremento en las concentraciones de gases de efecto invernadero, generaron en las simulaciones anomalías de temperatura más intensas (entre 5°C y 7°C) en la temporada de lluvias.	Rocha et al., 2012
América del Sur (entre las latitudes 10° N y 40° S)	Se actualizaron las coberturas de la superficie y los parámetros físicos de la vegetación en el modelo RegCM4, y se identificaron principalmente aumentos en la evapotranspiración en la región Nordeste de Brasil y reducciones en los valores de dicha variable en el Estado de Mato Grosso.	Pereira et al., 2012
Brasil (Región semi- árida)	Identificación de alteraciones en el balance de energía (principalmente aumento en el albedo) y en el balance hídrico (principalmente reducción en la evapotranspiración), debido a los cambios en las coberturas de la superficie terrestre	Cunha et al., 2013
Colombia	Al modificar las coberturas de la superficie en el modelo climático regional PRECIS, se identificó que en las zonas en las que persistieron las coberturas naturales, los cambios en la precipitación y la temperatura fueron mínimos, contrario a las zonas transformadas.	Pabón et al., 2013

CONSIDERACIONES FINALES

La transformación de las coberturas es el resultado de las decisiones que la sociedad toma en relación con el uso de la superficie terrestre, lo que puede tener una incidencia desde la escala global hasta la local. Por ésta razón, puede ser considerado como un proceso de cambio global que no solo implica características biofísicas de la superficie, porque trae inmerso todos los aspectos políticos, económicos, sociales y culturales que de manera indirecta influyen sobre la configuración espacial heterogénea de la superficie del planeta Tierra. Por eso, Rindfuss et al. (2004) afirman que es necesario entender las dinámicas humanas y del ambiente que dan lugar a esos cambios en el uso y la cobertura, no solo en términos de su tipo y magnitud, sino también en su localización; lo que implica la integración de ciencias sociales, naturales y geográficas.

A lo largo del documento ha sido posible aclarar que el uso y la cobertura de la superficie terrestre tienen una incidencia sobre el clima en diferentes escalas. Desde lo teórico, se ha identificado que diversos autores han argumentado la importancia de la vegetación como un ente que conecta la atmósfera y el suelo, cuya función se basa en la distribución de calor y agua entre estos dos componentes del sistema tierra. También se ha hecho referencia a diferentes investigaciones prácticas en las que se ha concluido que la conversión de las coberturas incide sobre aspectos como la temperatura superficial. Incluso, algunas de ellas han llegado hasta la predicción de cambios en la temperatura del aire y la precipitación por medio de la utilización de modelos de simulación.

Todo esto ratifica la importancia de seguir trabajando sobre la relación uso y cobertura-clima, porque no solo el aumento en las concentraciones de gases de efecto invernadero en la atmósfera contribuye con la problemática del cambio climático, también influye el manejo que se le da a la superficie, debido a la alteración de algunas de sus características que intervienen en los flujos de energía y en el ciclo hidrológico.

Son diversas las formas en que se ha abordado el estudio del cambio climático relacionado con los usos y las coberturas terrestres. Sin embargo, se ha podido observar que aún es necesario avanzar en la integración de los datos provenientes de estaciones climatológicas,

los productos de sensores remotos y la predicción del clima. Desde este punto de vista, se hace necesario un enfoque que integre información de alta resolución espacial y temporal que ayude a mantener un sincronismo entre los datos de coberturas terrestres y variables climáticas, apoyándose siempre en la validación de los datos tomados en campo por medio de las estaciones meteorológicas, con el fin de generar escenarios de cambio climático basados en la dinámica del uso y la cobertura terrestre. Esto con el fin de evitar la predicción climática, basada simplemente en aspectos atmosféricos que no incluyen el factor de la transformación de la superficie terrestre y los impactos que esto conlleva sobre los balances hídrico y de radiación.

Otro aspecto importante relacionado con los estudios sobre la relación cobertura y uso-clima, es que todavía son pocos los esfuerzos que se han desarrollado para involucrar los factores de decisión como un elemento clave en el momento de simular escenarios de cambio climático, lo que se convierte en un tema importante para el desarrollo de nuevas investigaciones, principalmente en el territorio colombiano, donde los cambios en el clima local y regional causados por la transformación de la cobertura vegetal han sido prácticamente inexplorados (RODRÍGUEZ-ERASO et al., 2010). Algunos trabajos se han enfocado en las islas de calor urbanas (PABÓN et al., 1998; BUILES; POVE-DA, 2010; ÁNGEL et al., 2010), otros se han centrado en el balance de radiación de manera localizada (Jaramillo, 1980; ESCOBAR; JARAMILLO, 1983; JA-RAMILLO, 2005; RAMÍREZ; JARAMILLO, 2009), y algunos como el Rodríguez-Eraso et al. (2010) han intentado realizar un abordaje regional. Sin embargo, aún es necesario enfatizar en estas investigaciones de carácter regional, que tengan en cuenta la heterogeneidad de gran parte de los paisajes del país y los impactos que esto podría generar sobre la regulación del clima.

AGRADECIMIENTOS

Facultad de Ciencias Humanas, Universidad Nacional de Colombia sede Bogotá (Proyecto código QUIPU: 201010018247) - Departamento Administrativo de Ciencia, Tecnología e innovación – COLCIENCIAS (Beca Francisco José de Caldas año 2009).

REFERENCIAS

ÁNGEL, L.; RAMÍREZ, A.; DOMÍNGUEZ, E. Isla de calor y cambios espacio-temporales de la temperatura en la ciudad de Bogotá. *Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales,* v. 34, n. 131, pp. 173-183, 2010.

BAIDYA-ROY, S.; AVISSAR, R. Impact of land use/land cover change on regional hydrometeorology in Amazonia. *Journal of Geophysical Research*, v. 107, pp. 1-12, 2002. DOI: 10.1029/2000JD000266

BONAN, G. B.; et al. Land use and climate. In: GUTMAN, G.; et al. (Org.). Land change science: observing, monitoring and understanding trajectories of change on the Earth's surface. Dordrecht: Kluwer academic publishers, 2004. pp. 301-314.

BORNSTEIN, R. D. Observations of the urban heat island effect in New York City. *Journal of Applied Meteorology*, v. 7, pp. 575-582, 1968. DOI: http://dx.doi.org/10.1175/1520-0450(1968)007<0575:OO TUHI>2.0.CO;2

BORROZZINO, E. et al. Mudanças no uso do solo e impactos sobre a temperatura do ar e do solo no estado do Paraná, Brasil. *Enciclopédia Biosfera* v. 9, n. 16, pp. 1544-1553, 2013.

BRADLEY, B. A.; MUSTARD, J. F. Identifying land cover variability distinct from land cover change: Cheatgrass in the Great Basin. *Remote Sensing of Environment*, v. 94, pp. 204-213, 2005. DOI:10.1016/j. rse.2004.08.016

BUILES, L. A.; POVEDA, G. Relación directa entre el aumento de las temperaturas medias anuales con el crecimiento de la población y el producto interno bruto (PIB) en el Valle de Aburrá, Colombia. *Revista Institucional Universidad Tecnológica del Chocó: Investigación, Biodiversidad y Desarrollo*, v. 27, n. 2, pp. 212-221, 2010.

COMBER, A. J. The separation of land cover from land use using data primitives. *Journal of Land Use Science*, v. 3, n. 4, pp. 215-229, 2008. DOI: 10.1080/17474230802465173

CUI, X.; et al. Climate impacts of anthropogenic land use changes on the Tibetan Plateau. *Global and Planetary Change*, v. 54, pp. 33-56, 2006. DOI: 10.1016/j. gloplacha.2005.07.006

CUNHA, A. P. M. A.; ALVALÁ, R. C. S.; SAMPAIO, G. Impactos das mudanças de cobertura vegetal nos processos de superfície na região semiárida do Brasil. *Revista Brasileira de Meteorologia*, v. 28, pp. 139-152, 2013. DOI: http://dx.doi.org/10.1590/S0102-77862013000200003

DEFRIES, R. S.; FOLEY, J. A.; ASNER, G. P. Landuse choices: balancing human needs and ecosystem function. *Frontiers in Ecology and the Environment*, v. 2, n. 5, pp. 249-257, 2004.

DI GREGORIO, A.; JANSEN, L. J. M. Land Cover Classification System (LCCS): Classification Concepts and User Manual. FAO, 2000. Disponible en: http://www.fao.org/docrep/003/x0596e/X0596e01e. httm#P213 18188>. Acceso en: 20 feb. 2013.

ELLENBERG, H. Man's influence on tropical mountain ecosystems in South America: the second tansley lecture. *Journal of Ecology, v.* 67, n. 2, pp. 401-416, 1979.

ESCOBAR, B.; JARAMILLO, A. Balance de radiación solar en Coffea arabica L. *Cenicafé*, v. 34, n. 3, pp. 98-106, 1983.

FOLEY, J. A.; et al. Incorporating dynamic vegetation cover within global climate models. *Ecological Applications*, v. 10, pp. 1620-1632, 2000. DOI: 10.1890/1051-0761(2000)010[1620:IDVCWG]2.0.CO;2

FOLEY, J. A.; et al. Global consequences of land use. *Science*, v. 309, pp. 570-574, 2005. DOI: 10.1126/science.1111772

GALLO, K. P.; EASTERLINGY, D. R.; PETERSON, T. C. The influence of land use/land cover on climatological values of the diurnal temperature range. *Journal of Climate*, v. 9, pp. 2941-2944, 1996.

- GEIST, H.; et al. Causes and trajectories of land-use/cover change. In: LAMBIN, E. F.; GEIST, H. J. (Org.). *Land-use and land-cover change: local processes with global impacts.* Berlin: Springer, 2006. pp. 41-70.
- GONZAGA, Y. A.; SALGADO, M. E. Uso e ocupação do solo e alterações climáticas na ilha do Maranhão. *Revista Geonorte*, Edição Especial 2, v.2, n.5, pp. 663-674, 2012.
- HAYDEN, B. P. Ecosystem Feedbacks on Climate at the Landscape Scale. *Philosophical Transactions: Biological Sciences*, v. 353, pp. 5-18, 1998. DOI: 10.1098/rstb.1998.0186
- JARAMILLO, A. Balance de radiación solar en /Coffea arabica/ L. variedades Catuaí y Borbón Amarillo. *Cenicafé*, v. 31, n. 3, pp. 86-104, 1980.
- JARAMILLO, A. La redistribución de la radiación solar y la lluvia dentro de plantaciones de café (*Coffea arabica L.*). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, v. 29, pp. 371-382, 2005.
- KANAE, S.; OKI, T.; MUSIAKE, K. Impact of Deforestation on Regional Precipitation over the Indochina Peninsula. *Journal of Hydrometerorology*, v. 2, pp. 51-70, 2001.
- KARL, T. R.; DIAZ, H. F.; KUKLA, G. Urbanization: Its detection and effect in the United States climate record. *Journal of climate*, v. 1, pp. 1099-1123, 1988. DOI: http://dx.doi.org/10.1175/1520-0442(1988)001 <1099:UIDAEI>2.0.CO;2
- KIM, Y. H.; BAIK, J. J. Maximum Urban Heat Island Intensity in Seoul. *Journal of Applied Meteorology*, v. 41, pp. 651-659, 2002. DOI: http://dx.doi.org/10.1 175/1520-0450(2002)041<0651:MUHIII>2.0.CO;2
- KUKLA, G.; GAVIN, J.; KARL, T. R. Urban Warming. *Journal of climate and applied meteorology*, v. 25, pp. 1265-1270, 1986. DOI: http://dx.doi.org/10.1175/1520-0450(1986)025<1265:UW>2.0. CO;2

- LAMBIN, E. F.; GEIST, H.; RINDFUSS, R. R. Introduction: local processes with global impacts. In: LAMBIN, E. F.; GEIST, H. J. (Org.). *Land-use and land-cover change: local processes with global impacts*. Berlin: Springer, 2006. pp. 2-8.
- MALHI, Y.; et al. Climate change, deforestation, and the fate of the Amazon. *Science*, v. 319, pp. 169-172, 2008. DOI: 10.1126/science.1146961
- OLIVEIRA, S.; ANDRADE, H.; VAZ, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. *Building and Environment*, v. 46, pp. 2186-2194, 2011. DOI: 10.1016/j.buildenv.2011.04.034
- PABÓN, J. D. *El cambio climático en la región de la Corporación Autónoma Regional de Cundinamarca*. Bogotá D.C: Universidad Nacional de Colombia-Corporación Autónoma Regional de Cundinamarca, 2011.
- PABÓN, J. D.; et al. Análisis preliminar de la isla de calor en la sabana de Bogotá. *Cuadernos de Geografia*, v. 7, pp. 87-93, 1998.
- PABÓN, J. D.; et al. Modelamiento del efecto del cambio en el uso del suelo en el clima local-regional sobre los Andes colombianos. *Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales,* v.37, n. 144, pp. 379-391, 2013.
- PEREIRA, G.; SIQUEIRA, M. E.; MORAES, E. C. Análise da variabilidade trimestral e decadal ocasionadas pela alteração dos parâmetros físicos da superficie. *Revista Formação Online*, v. 2, n. 19, pp. 51-79, 2012.
- RAMANKUTTY N.; et al. Global land-cover change: recent progress, remaining challenges. In: Lambin, E. F.; Geist, H. J. (Org.). *Land-use and land-cover change: local processes with global impacts*. Berlin: Springer, 2006. pp. 9-39.
- RAMÍREZ, V. H.; JARAMILLO, A. Balances de energía asociados a los cambios de cobertura en la zona andina colombiana. *Cenicafé*, v. 60, pp. 199-209, 2009.

RANDALL, D. A.; et al. Cilmate Models and Their Evaluation. In: SOLOMON, S.; et al. (Org.). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 2007. pp. 589-662.

REID, R. S.; et al. Linking land-change science and policy: current lessons and future integration. In: LAMBIN, E. F.; GEIST, H. J. (Org.). *Land-use and land-cover change: local processes with global impacts.* Berlin: Springer, 2006. pp. 157-171.

RINDFUSS, R. R.; et al. Developing a science of land change: challenges and methodological issues. *Proceedings of the National Academy of Sciences*, v. 101, n. 39, pp. 13976-13981, 2004. DOI: 10.1073/pnas.0401545101

ROCHA V. M.; CORREIA F. W. S.; FIALHO E. S. A Amazônia frente às mudanças no uso da terra e do clima global e a importância das áreas protegidas na mitigação dos impactos: um estudo de modelagem numérica da atmosfera. *Acta Geográfica*, Ed. Esp. Climatologia Geográfica, pp. 31-48, 2012. DOI: 10.5654/actageo2012.0002.0002

RODRÍGUEZ-ERASO, N. L.; et al. *Cambio climático y su relación con el uso del suelo en los Andes colombianos*. Bogotá D.C: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt-Universidad Nacional de Colombia-Departamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias), 2010.

SAARONI, H.; et al. Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. *Landscape and Urban Planning*, v. 48, pp. 1-18, 2000.

SAMPAIO, G.; et al. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. *Geophysical Research Letters*, v. 34, pp. 1-7, 2007. DOI: 10.1029/2007GL030612

SEILER, C. *Implementation and validation of a Regional Climate Model for Bolivia*. Met Office, 2009. Disponible en: http://www.metoffice.gov.uk/media/pdf/0/l/Seiler_Bolivia.pdf>. Acceso en: 10 dic. 2012. SHUKLA, J.; NOBRE, C.; SELLERS, P. Amazon Deforestation and Climate Change. *Science*, v. 247, pp. 1322-1325, 1990.

SOBRINO, J. A.; et al. Improvements in the split-window technique for land surface temperature determination. *IEEE Transactions on Geoscience and Remote Sensing*, v. 32, n. 2, pp. 243-253, 1994.

SRIVASTAVA, P. K.; MAJUMDAR, T. J.; BHATTACHARYA, A. K. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. *Advances in Space Research*, v. 43, pp. 1563-1574, 2009. DOI: 10.1016/j. asr.2009.01.023

STOHLGREN, T.J.; et al. Evidence that local land use practices influence regional climate, vegetation and stream flow patterns in adjacent natural areas. *Global Change Biology*, v. 4, pp. 495-504, 1998. DOI: 10.1046/j.1365-2486.1998.t01-1-00182.x

VOLDOIRE, A.; ROYER, J. F. Tropical deforestation and climate variability. *Climate Dynamics*, v. 22, n. 8, pp. 857-874, 2004. DOI: 10.1007/s00382-004-0423-z

WANG, W. C.; ZENG, Z.; KARL, T. R. Urban heat islands in China. *Geophysical Research Letters*, v. 17, n. 12, pp. 2377-2380, 1990.

WENG, Q. A remote sensing—GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. *International Journal of Remote Sensing*, v. 22, n. 10, pp. 1999-2014, 2001. DOI: http://dx.doi.org/10.1080/713860788