

Anais da Academia Brasileira de Ciências

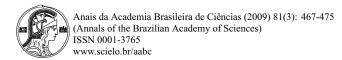
ISSN: 0001-3765 aabc@abc.org.br Academia Brasileira de Ciências Brasil

SMAILI, SORAYA; HIRATA, HANAKO; URESHINO, RODRIGO; MONTEFORTE, PRISCILA T.;
MORALES, ANA P.; MULER, MARI L.; TERASHIMA, JULIANA; OSEKI, KAREN; ROSENSTOCK,
TATIANA R.; LOPES, GUIOMAR S.; BINCOLETTO, CLAUDIA
Calcium and cell death signaling in neurodegeneration and aging
Anais da Academia Brasileira de Ciências, vol. 81, núm. 3, septiembre, 2009, pp. 467-475
Academia Brasileira de Ciências
Rio de Janeiro, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=32713479011

Complete issue

More information about this article


Journal's homepage in redalyc.org

Scientific Information System

Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative

Calcium and cell death signaling in neurodegeneration and aging

SORAYA SMAILI, HANAKO HIRATA, RODRIGO URESHINO, PRISCILA T. MONTEFORTE, ANA P. MORALES, MARI L. MULER, JULIANA TERASHIMA, KAREN OSEKI, TATIANA R. ROSENSTOCK, GUIOMAR S. LOPES and CLAUDIA BINCOLETTO

Departamento de Farmacologia, Universidade Federal de São Paulo, Escola Paulista de Medicina Rua Três de Maio, 100, 04044-020 São Paulo, SP, Brasil

Manuscript received on July 21, 2008; accepted for publication on February 16, 2009; presented by LUIZ R. TRAVASSOS

ABSTRACT

Transient increase in cytosolic (Ca_c^{2+}) and mitochondrial Ca^{2+} (Ca_m^{2+}) are essential elements in the control of ma physiological processes. However, sustained increases in Ca_c^{2+} and Ca_m^{2+} may contribute to oxidative stress and content. Several events are related to the increase in Ca_m^{2+} , including regulation and activation of a number of Ca^{2+} dependent enzymes, such as phospholipases, proteases and nucleases. Mitochondria and endoplasmic reticulum (Explay pivotal roles in the maintenance of intracellular Ca^{2+} homeostasis and regulation of cell death. Several lines evidence have shown that, in the presence of some apoptotic stimuli, the activation of mitochondrial processes may lead to the release of cytochrome c followed by the activation of caspases, nuclear fragmentation and apoptotic content. The aim of this review was to show how changes in calcium signaling can be related to the apoptotic cell dear induction. Calcium homeostasis was also shown to be an important mechanism involved in neurodegenerative a aging processes.

Key words: calcium, apoptosis, Bax, mitochondria, endoplasmic reticulum, neurodegeneration and aging.

CELL DEATH MECHANISMS

Cell death is one of the primordial events in cellular life and there are several mechanisms through which cells achieve death. Both necrotic and apoptotic cell death are characterized by biochemical and morphological differences. Necrosis is usually involved in some death stimuli related to pathologies and accidental events which are not well regulated. There are certain features that characterize the two types of cell death, one of them related to the ATP levels. When the levels of ATP are low, cells undergo necrosis instead of apoptosis. Frequently, several features related to necrosis and apoptosis may occur simultaneously in the presence of cell death stimuli. This was described as necrapoptosis which may occur espe-

cially when cells begin apoptotic and derive to r cell death (Lemasters et al. 2002).

Apoptosis is one type of Programmed Cell (PCD) which regulates physiological processes in in cell maintenance, development, tumor regulates hormone-induced atrophy, and cell-mediated implementation as ischemia-reperfusion damage, infarction rodegenerative diseases, viral or chemical toxicity can be triggered by activation of either certain deceptors on the plasma membrane or by cellular Among some of the elements of the apoptotic of there are the activation of specific cysteine processes); mitochondrial release of death factor as cytochrome c and SmacDiablo and finally the

468

SORAYA SMAILI et al.

There are several ways to trigger apoptosis with distinct and highly complex pathways. The extrinsic pathway is triggered by the binding of death molecules to their receptors, while the intrinsic pathway is activated by various cellular insults and involves the Bcl-2 family of proteins (Youle and Strasser 2008). It has been shown that, in response to a wide variety of agents and conditions, Ca²⁺ signaling could also lead to apoptosis (Rong and Distelhorst 2008). Figure 1 shows the extrinsic and intrinsic signaling pathways that lead to apoptosis in mammalian cells (Orrenius et al. 2003).

PROTEINS OF THE BCL-2 FAMILY AND APOPTOSIS

Apoptosis is a natural cell elimination process involved in a great number of physiological and pathological events. This process can be regulated by members of the Bcl-2 family. Bax, a pro-apoptotic member of this family, accelerates cell death, while the pro-survival member, Bcl-x_L can antagonize the pro-apoptotic function of Bax and promote cell survival. Members of the Bcl-2 family form a group of proteins that play important roles in the regulation of cell death under both physiological and pathological conditions. Proteins of this family promote either cell survival, such as Bcl-2 and Bcl-xL, or cell death, such as Bax and Bid (Smaili et al. 2000, Krajewski et al. 1994). In living cells, Bax and Bid are predominantly soluble proteins (Hsu et al. 1997). Bcl-2 is associated with membranes of the organelles, including endoplasmic reticulum (ER), mitochondria, and nuclei (Krajewski et al. 1994). Bcl-x_L exists in both soluble and membrane-bound forms (Hsu et al. 1997). During apoptosis, Bcl-2 remains bound to the membranes, but the cytosolic form of Bax, Bid and Bcl-x_L were found redistributed from the cytosol into membranes, especially mitochondrial (Hsu et al. 1997, Li et al. 1998). The mechanisms leading to Bax and Bcl-xL redistribution are still not known and Bid is believed to be post-translationally cleaved by caspase-8 leading to Bax transactivation, which is the activation followed by translocation of the protein (Li et al. 1998).

cell death in response to various apoptosis stimuli (Yang and Korsmeyer 1996). Physiologically, Bax plays an important role in neuronal development and spermatogenesis. Under pathological conditions such as cerebral and cardiac ischemia, upregulation of Bax has been detected in the afflicted area of the tissues, leading to the participation of this protein in neuronal and cardiomyocytic cell death (Krajewski et al. 1999). In certain cases of human colorectal cancer, mutations were found in the gene encoding Bax, suggesting that inactivation of Bax promotes tumorigenesis by enabling the tumor cells to be less susceptible to cell death (LeBlanc et al. 2002).

Bax, like other members of the Bcl-2 family, shares a common feature of having three conserved regions named BH (Bcl-2 homology) domains 1-3 (Zha et al. 1996). Several lines of evidence show that these domains can be important for the regulatory functions of these Bcl-2 family proteins. In addition, Bax and other Bcl-2 family members also possess a hydrophobic segment at their carboxyl terminal ends, which might be required for anchoring the protein to the organelles, such as ER and mitochondria (Zha et al. 1996). In healthy cells, Bax is predominantly a soluble monomeric protein (Hsu et al. 1997) despite the C-terminal hydrophobic segment, which is sequestered inside a hydrophobic cleft (Suzuki et al. 2000). Upon induction of apoptosis by a variety of agents, a significant fraction of Bax may translocate from the cytosol to the membrane fractions, in particular, the mitochondrial (Hsu et al. 1997, Smaili et al. 2001a). This translocation process appears to involve a conformational change in Bax leading to the exposure of its C-terminal hydrophobic domain (Nechushtan et al. 1999). The insertion of Bax into mitochondria causes the release of cytochrome c and loss of mitochondrial membrane potential $(\Delta \Psi_m)$ (Goldstein et al. 2000). Cytochrome c activates caspase-3 leading to the proteolysis of the cell, while the loss of $\Delta\Psi_m$ corresponds to a decrease in cellular energy production. The proapoptotic activity of Bax, however, can be counteracted by co-expression with pro-survival factors Bcl-2 and Bcl-xL, which can block Bax translocation to mitochondria during anontosis (Smaili et al. 2008)

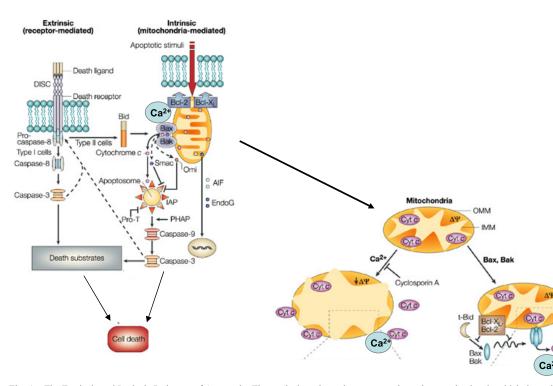


Fig. 1 – The Extrinsic and Intrinsic Pathways of Apoptosis. The extrinsic pathway is a receptor-dependent mechanism in which the activate death receptors leads to the formation of death-inducible signaling complex (DISC), activation of caspases 8 followed by a cascade of that will execute cell death. When caspase-8 is activated it may lead to Bid (a BH3 only pro-apoptotic protein) and intrinsic pathway activa intrinsic pathway is activated by the presence of apoptotic stimuli which may cause Bax translocation to mitochondria. Once in the mitoc Bax, together with other pro-apoptotic proteins, activates mechanisms that evoke the release of cytochrome c and other pro-apoptotic factor lead to caspase-9, caspase-3 and other caspases activation that will execute cell death (Adapted from Orrenius et al. 2003 Nat Rev Mol 4: 552-565). Besides the release of the pro-apoptotic factors, Bax promotes Ca_m²⁺ mobilization as well (Carvalho et al. 2004).

sidered: a) Bax could oligomerize and form pores which permeabilize the mitochondrial membranes (Antonsson et al. 2000, Kroemer et al. 2007); b) Bax could interact with components of the PTP, such as the ANT (Marzo et al. 1998); c) Bax could interact with other proteins that promote fission or inhibit fusion and form temporary channels (Youle and Strasser 2008). In all cases, the result is the release of cytochrome c and in certain circumstances this can also lead to the release of calcium to cytosol as observed in our previous results (Carvalho et al. 2004). However, the exact mechanism is still a matter of intense debate (Kroemer et al. 2007). X-ray crystallographic and solution NMR analyses of the re-

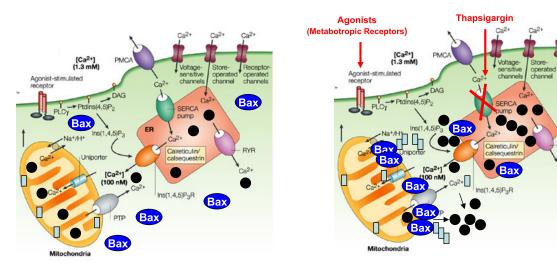
into lipid bilayers, suggesting that Bax may for channels or pores (Schlesinger et al. 1997, Kor et al. 2000). Another mechanism proposed is to the direct or indirect interaction of Bax with onents of the permeability transistion pore (PTP), ANT or VDAC channels, which could contribute opening or closure of this megachannel (Kroeme 2007). In addition, others have shown that Belily proteins may modulate, together with other paths fission and fusion processes, yielding the for of transient channels throughout cytochrome commeleased. After the release, cytochrome committed the complex of the complex of

470

SORAYA SMAILI et al.

BAX AND MODULATION OF Ca²⁺ SIGNALING

Recently, it has been shown that Bcl-2 proteins may regulate and be regulated by the Ca_C²⁺ levels, which influence cell death signaling (Scorrano et al. 2003, Carvalho et al. 2004). Translocation of Bax to mitochondria is associated with a release of cytochrome c from the mitochondrial intermembrane space (IMS) and a loss of the mitochondrial membrane potential $(\Delta \Psi_m)$ (Smaili et al. 2001a). It is well known that mitochondria are important Ca²⁺ stores and they are in close relation and communication with ER (Rizzuto and Pozzan 2006). The uptake and release of Ca²⁺ from these organelles modulate intracellular Ca²⁺ signaling (Smaili and Russell 1999, Smaili et al. 2001b). In addition, Ca²⁺ taken up by mitochondria contributes to the activation of mitochondrial Ca²⁺ dehydrogenases and ATP production (Robb-Gaspers et al. 1998). Interestingly, Bax and other pro-apoptotic members of the Bcl-2 family were shown to modulate the ER and mitochondrial Ca²⁺ stores (Nutt et al. 2001, Pan et al. 2001). When at the ER level, Bax may deplete Ca²⁺ from this store and activate caspase-12 (Zong et al. 2003) and, when ER Ca²⁺ stores are depleted, there is a reduction in Bax-induced apoptotic cell death (Scorrano et al. 2003). Since the relation between Ca²⁺ homeostasis, oxidative stress and apoptotic cell death is not clear, we have studied in our laboratory the role of Ca²⁺ and its mobilization from intracellular compartments, in the presence of apoptotic inducers, linking it to the modulation by proteins of the Bcl-2 family, such as Bax.


We have first shown that, in Cos-7 cells transfected and overexpressing GFP-Bax, this protein is visualized soluble in the cytosol and, upon apoptotic stimuli such as staurosporine, it translocates to membranes. We have observed that when associated to mitochondria Bax induces a loss of $\Delta\Psi_m$ (Smaili et al. 2001a). In cells co-expressing Bax and Bcl- x_L , staurosporine was not able to induce neither $\Delta\Psi_m$ loss nor Bax translocation (Smaili et al. 2008). In other cell systems, such as rat astrocytes in primary culture, recombinant protein Bax (rBax), instead of Bax overexpression, also induced a loss of $\Delta\Psi_m$ in a concentration dependent manner (Carvalho et al. 2004). This effect was shown to be

The loss of $\Delta\Psi$ was associated with a permeabilization of mitochondrial membranes, which contributed to the release of Ca_m²⁺ (68% of the maximum Ca²⁺ content of the cell)

In recent studies, we have shown that the pro-apoptotic protein Bax may also modulate Ca²⁺ homeostasis in rat cortical astrocytes (A.P. Morales et al., unpublished data). In the absence of apoptosis induction, Bax overexpression promoted an increase in mitochondrial and ER Ca²⁺ loads, showing a possible role for Bax apart from its pro-apoptotic action. On the other hand, we observed that drugs which promote Ca_c²⁺ increase could differentially induce Bax translocation to mitochondria. The kinetics of Ca_c²⁺ increase appeared to be dependent on the source of Ca²⁺ pools, originated from extracellular or intracellular compartments. Actually, we showed that release of ER Ca²⁺ store evoked by different stimuli could selectively induce Bax translocation. This was corroborated by microinjection of IP₃ which promoted Bax transactivation, supporting the role of ER-Ca²⁺ in regulating Bax and cell death activation (A.P. Morales et al., unpublished data). These findings indicate that the function of Bax and apoptosis is closely tied not only to cell death induction but also to Ca²⁺ homeostasis. It is interesting to note that when we have evaluated the effect of Bcl-x_L on Bax-induced alterations in mitochondrial respiration and Ca²⁺ release, we found that Bcl-x_L is able to antagonize Bax-induced decrease in mitochondrial respiration and the release of $Ca_{\rm m}^{2+}$ (Teles et al. 2008a). This regulation of Ca^{2+} by Bcl-x_L may represent that the modulation of Ca²⁺ homeostasis also contributes to a mechanism by which this protein promotes cell survival. In Figure 2 we show a schematic representation of Ca²⁺ signaling and the regulation by Bax.

Another interesting relation between Bax and Ca^{2+} stores is that, in cells microinjected with rBax, a Ca_c^{2+} wave was observed and this wave was propagated from one cell to another. It is possible that the wave propagation via cell-junctions may lead to the transmission of cell death signals between cells. Our results showed that Bax induces mitochondrial alterations that affect Ca^{2+} homeostasis and signaling. These

cytochrome c

Fig. $2 - Ca^{2+}$ homeostasis and regulation of Bax. In resting condition Ca^{2+} concentration is 1.3 mM and 100 nM at the extracel intracellular spaces, respectively. When metabotropic receptors are stimulated Ca_c^{2+} is increased by the release of Ca^{2+} from intracellul such as ER and mitochondria. Transient increase in Ca_c^{2+} stimulates Ca^{2+} uptake by mitochondria found in close proximity to ER. It conditions, mammalian cells express low level of Bax which is soluble in the cytosol. Under stress, cells overexpress pro-apoptotic prot as Bax which may translocate from cytosol to the mitochondrial membranes. At the mitochondrial level, Bax may oligomerize and for interact with the PTP components or interact with other proteins for fission. The results are the release of cytochrome c and calcium to Stimuli that mobilize Ca^{2+} from intracellular stores (e.g. metabotropic receptor agonists or thapsigargin) may also induce Bax transland increase Bax toxicity. Once in the mitochondria, Bax leads to the permeabilization of mitochondrial membranes leading to the recytochrome c and other factors such as AIF, smacDIABLO which activate pro-caspases and down caspases that execute cell death. also release Ca_m^{2+} which may amplify cell death signals and accelerate apoptosis (Adapted from Orrenius et al. 2003 Nat Rev Mol Ce 552–565).

CALCIUM SIGNALING AND NEURODEGENERATION

It is well known that, during Ca_c^{2+} overload, mitochondria and ER may take up Ca^{2+} , which causes Ca_m^{2+} accumulation, change in the mitochondrial pH, increase of the reactive oxygen species (ROS) production, decrease or complete loss of $\Delta\Psi_m$ and opening of the PTP. Several reports showed that inhibitors of the electron transport chain, such as Malonate, 1-methyl-phenylpyridinium (MPP+) and 3-nitropropionic acid (3NP), induce cell injuries and neuronal degeneration *in vitro* and *in vivo* (Brouillet et al. 1993, Smith and Bennett 1997). The treatment with 3NP, an irreversible inhibitor of the mitochondrial complex II succinate dehydrogenase, may cause neuronal death, leading to anatomic and neuronal death, leading to anatomic and neuronal

The HD is a hereditary autosomal dominal rodegenerative disorder caused by an expansion of repeats in chromosome 4 (Gusella et al. 1983). its development, patients with HD present motor toms, psychic disorders and cognitive deficits. many neurodegenerative processes, is associated changes in Ca²⁺ homeostasis and ROS production cause mitochondria are important for Ca²⁺ hore is and signaling, and are also involved in apoptor death, there is a special interest in understanding lation of Ca²⁺ and cell death signaling with the degenerative processes.

In our studies we have also investigated of mechanisms related to mitochondrial dysfunction duced by 3NP. In addition, we have looked to

472

SORAYA SMAILI et al.

apoptosis and its relation with the levels of bcl-2 and bax, genes that encode the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax, respectively. We showed that 3NP is able to release Ca_m²⁺ in mice astrocytes and, in the presence of PTP inhibitors and antioxidants, this effect was inhibited. Thus, inhibition of the complex II by 3NP is associated with Ca_m²⁺ release, increase in ROS production and PTP opening. The 3NP also induced apoptosis in these cells (Rosenstock et al. 2004). In transgenic mice for HD we have observed that there is a sustained and significant increase in Ca_c²⁺ after a stimulation of brain slices with glutamate (Smaili et al. 2008), which might be related to the increased levels of Ca²⁺ in intracellular stores and with the inability of mitochondria to uptake high levels of the ion present in the cytosol. We have also investigated the participation of gene expression of bax and bcl-2 in tissues from R6/1 transgenic (TGN) mice with different ages (3, 6 and 9 months). The mRNAs expression were investigated and related to apoptotic cells measured by TUNEL. Results showed a significantly progressive (from 6 to 9-monthold) increase in bax mRNA levels in the cortex of TGN when compared to control mice. There was a decrease in the bcl-2/bax ratio which was associated with the increase in the number of apoptotic nuclei. It is possible that the elevation of bax is related to cellular changes that contribute to neurodegeneration and support the idea that, in different cell models, the alterations in Ca_c²⁺ handling and the levels of the Ca²⁺ stores may modulate important steps of the cell death signaling which can contribute to cellular degeneration and to apoptotic cell death induction (Teles et al. 2008b).

CALCIUM STORES, CELL DEATH AND AGING

Aging is a multi-faceted process associated with several functional and structural deficits, and the brain is one of the most affected systems by chronic and degenerative diseases. Among them, Alzheimer's and Parkinson's diseases are the most prevalent in the world and cause the most severely impairments of actions. Therefore, it is necessary to investigate the age-related risk factors and the possible mechanisms involved in brain damage and the future perspectives for protection and

vious work, we have shown that, in different tissues from senescent rats, there is an increase in Ca²⁺ content in the intracellular stores, such as the ER and mitochondria (Lopes et al. 2004, 2006). These data can be corroborated by a decrease in Ca²⁺ buffering capacity, as well as an increase in apoptotic cell death in different smooth muscle tissues (Lopes et al. 2006, 2007). Recently, we have investigated the alterations in Ca²⁺ signaling and the possible involvement with mitochondrial dysfunction and activation of pro-apoptotic factors. We studied some phenomena concerning the triad Ca²⁺-mitochondria-ROS (Toescu and Verkhratsky 2007) and apoptosis in striatum of aged rats. Our results showed that glutamate evoked a Ca2+ rise which was greater in slices from aged animals. The evaluation of the intracellular Ca²⁺ contents of the ER and mitochondria were increased in this group. Additionally, there was a reduction in the $\Delta \Psi m$, an increase in basal ROS levels and an inhibition of the complex I, which could be associated with an increased vulnerability (R.P. Ureshino et al., unpublished data). As investigated for HD neurodegenerative process, we have also analyzed the elements of apoptotic pathway such as Bax and Bcl-2 gene and protein expression. The results showed an increase in bax transcript and a decrease in Bcl-2 protein which might be associated with the increase in apoptosis observed in senescent rats. Altogether, these results show that in aging, as well as in neurodegeneration, there are alterations in Ca²⁺ handling that may affect the bioenergetic and mitochondrial functions and may contribute to apoptotic induction and cell death process (R.P. Ureshino et al., unpublished data).

FUTURE PERSPECTIVES

In the past recent years, several lines of evidence have shown that calcium signaling is involved in apoptotic cell death caused by certain stimuli. It is also clear that members of the Bcl-2 family of proteins may regulate or be regulated by the levels of calcium at the intracellular stores. Thus, the communication between the two main organelles that accumulate calcium, ER and mitochondria, may determine and modulate the apoptotic pathways as well. However, several aspects of this re-

anti- and pro-apoptotic proteins are altered and these proteins modulate and are modulated by calcium signals, it will be necessary to further elucidate the exact roles of Bcl-2 family and calcium homeostasis in cell death.

ACKNOWLEDGMENTS

This project was supported by grants from Fundação do Amparo à Pesquisa do Estado de São Paulo (FAPESP), by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação Aperfeiçoamento de Pessoal do Ensino Superior (CAPES) fellowships.

RESUMO

Aumentos transientes no cálcio citosólico (Ca_c²⁺) e mitocondrial (Ca_m²⁺) são elementos essenciais no controle de muitos processos fisiológicos. No entanto, aumentos sustentados do Ca_c²⁺ e do Ca_m²⁺ podem contribuir para o estresse oxidativo e a morte celular. Muitos eventos estão relacionados ao aumento no Cac²⁺, incluindo a regulação e ativação de várias enzimas dependentes de Ca2+ como as fosfolipases, proteases e nucleases. A mitocôndria e o retículo endoplasmático têm um papel central na manutenção da homeostase intracellular de Ca_c²⁺ e na regulação da morte celular. Várias evidências mostraram que, na presença de certos estímulos apoptóticos, a ativação dos processos mitocondriais pode promover a liberação de citocromo c, seguida da ativação de caspases, fragmentação nuclear e morte celular por apoptose. O objetivo desta revisão é mostrar como aumentos na sinalização de Ca²⁺ podem estar relacionados aos eventos de indução da morte celular apoptótica. Além disso, evidenciar como a homeostase de Ca²⁺ pode ser importante e está envolvida nos mecanismos presentes nos processos de neurodegeneração e envelhecimento.

Palavras-chave: cálcio, apoptose, Bax, mitocôndrias, retículo endoplasmático, neurodegeneração e envelhecimento.

REFERENCES

Antonsson B, Montessuit S, Lauper S, Eskes R and Martinou JC. 2000. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345: 271–278.

- sion produced by the mitochondrial toxin 3-r pionic acid. J Neurochem 13: 4181–4192.
- BROUILLET E, JENKINS BG, HYMAN BT, FERRAL KOWALL NW, SRIVASTAVA R, ROY DS, ROS AND BEAL MF. 1993. Agedependent vulnerabili striatum to the mitochondrial toxin 3-nitropropio J Neurochem 60: 356–359.
- BROUILLET E, HANTRAYE P, FERRANTE RJ, DO LEROY-WILLIG A, KOWALL NW AND BEAL M Chronic mitochondrial energy impairment productive striatal degeneration and abnormal choreiforments in primates. Proc Natl Acad Sci USA 92 7109.
- CARVALHO ACP, SHARPE J, ROSENSTOCK RR, TE YOULE RJ AND SMAILI SS. 2004. Bax affects lular Ca²⁺ stores and induces Ca²⁺ wave prop Cell Death Diff 11: 1265–1276.
- GOLDSTEIN JC, WATERHOUSE NJ, JUIN P, EVAN GREEN DR. 2000. The coordinate release of cytoc during apoptosis is rapid, complete and kinetic variant. Nat Cell Biol 2: 156–162.
- GREEN DR AND REED JC. 1998. Mitochondria antosis. Science 281: 1309–1311.
- GUSELLA JF ET AL. 1983. A polymorphic DNA genetically linked to Huntington's disease. Natu 234–238
- HSU Y-T, WOLTER K AND YOULE RJ. 1997. Cymembrane redistribution of Bax and Bcl-X(L) apoptosis. Proc Natl Acad Sci USA 94: 3668–72
- KORSMEYER SJ, WEI MC, SAITO M, WEILER S, AND SCHELESINGER PH. 2000. Pro-apoptotic activates BID, which oligomerizes BAK or Ba pores that result in the release of cytochrome Death Diff 7: 1166–1173.
- Krajewski S, Krajewski M, Shabaik A, Miy. Wang HG and Reed JC. 1994. Immunohistoc determination of *in vivo* distribution of Bax, a d inhibitor of Bcl-2. Am J Pathol 145: 1326–1336.
- KRAJEWSKI S ET AL. 1999. Release of caspase-9 fro chondria during neuronal apoptosis and cerebral is Proc Natl Acad Sci USA 96: 5752–5757.
- KROEMER K, GALLUZZI L AND BRENNER C. 200 tochondrial Membrane Permeabilization in Cell Physical Pays 87: 00, 162

- tance to death receptor-induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8: 274–281.
- LEMASTERS JJ, QIAN T, HE L, KIM JS, ELMORE SP, CASCIO WE AND BRENNER DA. 2002. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis and autophagy. Antioxid Redox Signal 4: 769–781.
- LI H, ZHU H, XU CJ AND YUAN J. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501.
- LOPES GS, MORA OA, CERRI P, FARIA FP, JURKIEWICZ NH, JURKIEWICZ A AND SMAILI SS. 2004. Mitochondrial alterations and apoptosis in smooth muscle from age rats. Biochim Biophys Acta 1658: 187–194.
- LOPES GS, FERREIRA AT, OSHIRO ME, VLADIMIROVA I, JURKIEWICZ NH, JURKIEWICZ A AND SMAILI SS. 2006. Aging-related changes of intracellular Ca²⁺ stores and contractile response of intestinal smooth muscle. Exp Gerontol 41: 55–62.
- LOPES GS, SMAILI SS, NETO AC, VLADIMIROVA I, JURKIEWICZ A AND JURKIEWICZ NH. 2007. Aging-induced decrease of cholinergic response and calcium sensitivity on rat jejunum contractions. J Gerontol A Biol Sci Med Sci 62: 264–270.
- MARZO I ET AL. 1998. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027–2031.
- MUCHMORE SW ET AL. 1996. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335–341.
- NECHUSHTAN A, SMITH CL, HSU YT AND YOULE RJ. 1999. Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J 18: 2330–2341.
- NUTT LK, PATAER A, PAHLER J, FANG B, ROTH J, MC-CONKEY DJ AND SWISHER SG. 2001. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca²⁺ stores. J Biol Chem 277: 20301–20308.
- OLTVAI ZN, MILLIMAN CL AND KORSMEYER SJ. 1993. Bcl-2 heterodimerizes *in vivo* with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619

- PAN Z, BHAT MB, NIEMINEN AL AND MA J. 2001. Synergistic movements of Ca²⁺ and Bax in cells undergoing apoptosis. J Biol Chem 276: 32257–32263.
- RIZZUTO R AND POZZAN T. 2006. Microdomains of intracellular Ca²⁺: molecular determinants and functional consequences. Physiol Rev 86: 369–408.
- ROBB-GASPERS LD, BURNETT P, RUTTER GA, DENTON RA, RIZZUTO R AND THOMAS AP. 1998. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 17: 4987–5000.
- RONG Y AND DISTELHORST CW. 2008. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70: 73–91.
- ROSENSTOCK TR, CARVALHO ACP, JURKIEWICZ A, FRUSSA-FILHO R AND SMAILI SS. 2004. Mitochondrial calcium, oxidative stress and apoptosis in a neuro-degenerative disease model induced by 3-nitropropionic acid. J Neurochem 88: 1220–1228.
- SCHLESINGER PH, GROSS A, YIN XM, YAMAMOTO K, SAITO M, WAKSMAN G AND KORSMEYER SJ. 1997. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci USA 94: 11357–113562.
- SCORRANO L, OAKES SA, OPFERMAN JT, CHENG EH, SORCINELLI MD, POZZAN T AND KORSMEYER SJ. 2003. BAX and BAK regulation of endoplasmic reticulum Ca²⁺: a control point for apoptosis. Science 300: 135–139.
- SMAILI SS AND RUSSELL JT. 1999. Permeability transition pore regulates both mitochondrial membrane potential and agonist-evoked Ca²⁺ signals in oligodendrocytes progenitors. Cell Calcium 26: 121–130.
- SMAILI SS, YT, YOULE RJ AND RUSSELL JT. 2000. Mitochondria in Ca²⁺ Signaling and Apoptosis. J Bioenerg Biomembr 32: 35–46.
- SMAILI SS, HSU YT, SANDER K, RUSSELL JT AND YOULE RJ. 2001a. Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential. Cell Death Differ 8: 909–920.
- SMAILI SS, STELATTO KA, BURNET P, THOMAS AP AND GASPERS LD. 2001b. Cyclosporin A inhibits inositol 1,4,5-trisphosphate-dependent Ca²⁺ signals by enhancing Ca²⁺ uptake into the endoplasmic reticulum and mitochondria. J Biol Chem 276: 23329–23340.

- SMITH TS AND BENNETT JP JR. 1997. Mitochondrial toxins in neurodegenerative diseases: *In vivo* brain hydroxyl radical production during systemic MPTP treatment or following microdialysis infusion of methylpyridinium or azide ions. Brain Res 765: 183–186.
- SUZUKI M, YOULE RJ AND TJANDRA N. 2000. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103: 645–654.
- TELES AV, URESHINO RP, DORTA DJ, LOPES GS, HSU YT AND SMAILI SS. 2008a. Bcl-x(L) inhibits Bax-induced alterations in mitochondrial respiration and calcium release. Neurosci Lett 442: 96–99.
- TELES AV, ROSENSTOCK TR, OKUNO CS, LOPES GS, BERTONCINI CR AND SMAILI SS. 2008b. Increase in bax expression and apoptosis are associated in Huntington's disease progression. Neurosci Lett 438: 59–63.
- TOESCU EC AND VERKHRATSKY A. 2007. Role of calcium in normal aging and neurodegeneration. Aging Cell 6: 267–273.

- YANG E AND KORSMEYER SJ. 1996. Molecular ap a discourse on the Bcl-2 family and cell death. B 386–401.
- YOULE RJ AND STRASSER A. 2008. The BCL-2 family: opposing activities that mediate cell dea Rev Mol Cell Biol 9: 47–59.
- ZHA H, KISK HA, YAFFE MP, MAHAJAN N, HER AND REED JC. 1996. Structure-function composite proapoptotic protein Bax in yeast and mancells. Mol Cell Biol 16: 6494–6508.
- ZONG WX, LI C, HATZIVASSILIOU G, LINDSTEN QC, YUAN J AND THOMPSON CB. 2003. I Bak can localize to the endoplasmic reticulum to apoptosis. J Cell Biol 162: 59–69.
- ZOU H, HENZEL WJ, LIU X, LUTSCHG A AND W 1997. Apaf-1, a human protein homologous to C. CED-4, participates in cytochrome c-dependent ac of caspase-3. Cell 90: 405–413.