

Anais da Academia Brasileira de Ciências

ISSN: 0001-3765 aabc@abc.org.br Academia Brasileira de Ciências Brasil

Bergue, Cristianini T.; Govindan, Abiraman
Eocene-Pliocene deep sea ostracodes from ODP site 744A, Southern Indian Ocean
Anais da Academia Brasileira de Ciências, vol. 82, núm. 3, septiembre, 2010, pp. 747-760
Academia Brasileira de Ciências
Rio de Janeiro, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=32717619021

Complete issue

More information about this article

Journal's homepage in redalyc.org

Eocene-Pliocene deep sea ostracodes from ODP site 744A, Southern Indian Ocean

CRISTIANINI T. BERGUE¹ and ABIRAMAN GOVINDAN²

¹Universidade do Vale do Rio dos Sinos, Laboratório de Micropaleontologia Av. Unisinos, 950, 93022-000 São Leopoldo, RS, Brasil
²Asian Biostratigraphic Service, H-53, Central Avenue, Korattur, Chennai, 600080, India

Manuscript received on June 10, 2008; accepted for publication on April 14, 2010

ABSTRACT

The Eocene-Pliocene deep sea ostracodes from the ODP site 744A (Kerguelen Plateau) are herein studied under to taxonomic and paleoecologic aspects. 28 species are identified, being the genera *Krithe, Cytherella* and *Dutoitella* to most diversified. A faunal threshold was recorded in the Early Oligocene, which is tentatively explained under to knowledge of the paleoceanographical studies carried out not only in the Kerguelen Plateau but also in adjacent are. The faunal turnover and variations in both richness and abundance possibly reflect the inception of psychrosphere at the influence of hydrological changes in the preservation of carapaces. Moreover, the influence of those changes carbonate preservation is discussed as the cause of faunal impoverishment in the upper portion of the core.

Key words: Cenozoic, ostracodes, paleoceanography, paleozoogeography.

INTRODUCTION

Deep sea ostracode research has developed significantly in the last few decades, with improved taxonomic, ecologic and zoogeographic information. Studies carried out from 1970 onwards (see Benson 1988 and Cronin et al. 2002 revisions) brought evidence that continental slopes and oceanic basins are inhabited by well-diversified and distinct faunas. The distribution, diversity and abundance of slope and abyssal plain assemblages are strongly influenced by the local hydrologic structure as well as climatic driven oceanographic events, even over short timescales (Ayress et al. 1997, Yasuhara et al. 2008).

The Cenozoic deep sea ostracodes have their origin from Late Cretaceous shallow water stocks (Benson 1975). According to this author, a worldwide faunal change at approximately 40 Ma established an oceanic

nas adaptated to an environment that was deep, c poor in carbonate. However, Majoran and Dingle suggested that this model does not hold for all debasins. In fact, ostracode research has lagged the paleoceanographic community's advances in standing deep-sea circulations, botton water tempand its relationship to Cenozoic climate evolution results in part from the limitations imposed by t logic characteristics of ostracodes and the research usually developed.

The Eocene-Oligocene Period experienced celerated global cooling that influenced ocean of tion, productivity and sedimentation of ocean sins (Zachos et al. 2001a, Pälike et al. 2006). Cevents in this interval record mainly the establi of oceanic gateways and the beginning of the Arcircumpolar Current (Diekmann et al. 2004).

CRISTIANINI T. BERGUE and ABIRAMAN GOVINDAN

Kerguelen Plateau, is uniquely positioned to record the climatic evolution of the Southern Ocean region and its hydrologic changes. Studies on the cored material of this site include Huber (1999) on planktonic foraminiferal biozonation, Schröder-Adams (1991) on benthic foraminifera, Caulet (1991) on radiolarian biostratigraphy, and Baldauf and Barron (1991) on diatom correlation. Details of the lithostratigraphy of this site are outlined in Barron et al. (1991). However, the Paleogene and Neogene ostracodes from this site have not been studied so far.

Recent ostracodes from the Southern Ocean have been fairly well documented since the pioneering study of Brady (1880) as reviewed by Ayress et al. (2004). Some studies on Paleogene and Neogene assemblages have also been published, such as Guernet (1985), Guernet and Galbrun (1992) and Steineck and Thomas (1996). The main objective of this article is to present a preliminary study on the ostracode fauna of Late Eocene to Pliocene from site 744A as a contribution to the knowledge of the fossil ostracodes of the Southern Ocean.

STUDY AREA

The Kerguelen Plateau is located in the Indian Ocean between 45°S and 64°S, north of the Antarctic Convergence. It lies in water depths between 1500 m and 2000 m, and about 2-3 km above the adjacent ocean basins Australian-Antarctica in the east, and African-Antarctic in the west (Fig. 1). Across the Kerguelen Plateau and along a latitudinal transect, six sites have been drilled at Ocean Drilling Program (ODP) Leg 199. Two of these (sites 738 and 744) were drilled in the southern part close to east Antarctica for documenting climatic changes imprinted in the sedimentary record.

MATERIALS AND METHODS

This study is based on the observation of 34 core samples of 10 cm³ taken from Paleogene and Neogene sections of site 744A. The samples were disaggregated with water and diluted 100 vol. H₂O₂ for a day, washed and wet sieved through a 63 µm screen and then dried

than five in some samples from Miocene and Pliocene section (Fig. 2).

The specimens figured in this article are housed at Museum of Paleontology of Universidade do Vale do Rio dos Sinos, under the curatorial numbers 7105 to 7135. In the taxonomy section, the following abbreviations are used: V (valve), LV (left valve), RV (right valve), h (height), l (length) and mbsf (meters bellow sea floor).

TAXONOMY

Order Platycopida Sars 1866
Superfamily Cytherelloidea Sars 1866
Family Cytherellidae Sars 1866
Genus *Cytherella* Jones 1849
Type species *Cytherina ovata* Roemer 1840 *Cytherella* sp. 1
Fig. 3.1

1985 *Cytherella* sp. Guernet, p. 287, pl. I, figs. 2,4. 1993 *Cytherella* cf. *serratula* Brady-Guernet, p. 349, pl. 1, fig. 4.

Figured specimen: U-7105, LV, l: 0.92 mm, h: 0.55 mm. Origin: 119-744A-19H-5W-5 (163.150 mbsf).

Age: Late Eocene. Material: three V.

Distribution: Eocene: ODP site 744A, DSDP site 214 and ODP site 762 (Indian Ocean).

Cytherella sp. 2 Fig. 3.2

1985 Cytherella sp. gr. ovata? – Guernet, p. 287, pl. I, fig. 1.

Figured specimen: U-7106, LV, 1: 0.82 mm, h: 0.53 mm. Origin: 119-744A-18H-3W-6 (150.660 mbsf).

Age: Late Eocene.

Material: one V.

Distribution: Eocene: ODP site 744A and DSDP site 214 (Indian Ocean).

Cytherella sp. 3 Fig. 3.3

Figured specimen: II-7107 RV 1: 1.08 mm, h: 0.74 mm

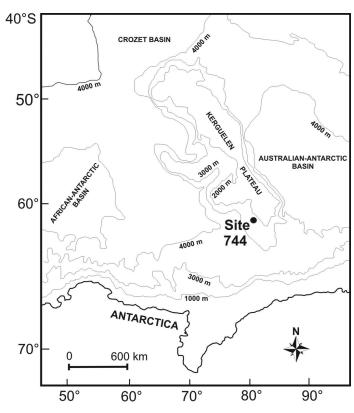


Fig. 1 – Map of the study area and the location of the ODP site 744A.

Genus Cytherelloidea Alexander 1929
Type species Cythere (Cytherella) williamsoniana
Jones 1849
Cytherelloidea sp.
Fig. 3.4

Figured specimen: U-7108, LV, 1: 0.95 mm, h: 0.55 mm. Origin: 119-744A-18H-3W-6 (150.660 mbsf).

Age: Late Eocene. Material: one V.

> Order Podocopida Sars 1866 Superfamily Cypridoidea Baird 1845 Family Pontocyprididae Müller 1894 Genus *Australoecia* McKenzie 1967 *Australoecia* sp.

Fig. 3.5

Figured engainment II 7100 IV 1: 0.59 mm h. 0.27 mm

Superfamily Bairdioidea Sars 1887
Family Bairdiidae Sars 1887
Genus *Bairdoppilata* Coryell,
Sample and Jennings 1935
Type species *Bairdoppilata martini* Coryel
Sample and Jennings 1935 *Bairdoppilata hirsuta* (Brady 1880)
Fig. 3.6

1880 Bairdia hirsuta Brady, p. 51, pl. 8, figs. 3a-1969 Bairdoppilata (Bairdoppilata?) hirsuta (B Maddocks, p. 81, fig. 43; pl. 2, figs. 1, 2. 1976 Bairdia hirsuta Brady-Puri and Hulings, pl. 4, 5. 1983 Bairdoppilata hirsuta (Brady) — Cronin,

pl. I, figs. A-C. 1996 *Bairdoppilata hirsuta* (Brady) – Whatley

n 71 nl 1 fig 4

CRISTIANINI T. BERGUE and ABIRAMAN GOVINDAN

SPECIES	AGE	LATE EOCENE					EARLY OLIGOCENE										L. OLIGOCENE	E MIOCENIE	E. MIOCENE	M MIOCENIE	M. MIOCENE		PLIO - HOL	
	SAMPLE	119-744A-20H-1W-6	119-744A-19H-5W-5	119-744A-19H-2W-5	119-744A-18H-3W-6	119-744A-18H-1W-4	119-744A-16H-5W-4	119-744A-16H-4W-5	119-744A-16H-2W-4	119-744A-16H-1W-4	119-744A-15H-1W-6	119-744A-15H-3W-6	119-744A-15H-2W-6	119-744A-15H-5W-6	119-744A-14H-3W-6	119-744A-14H-4W-6	119-744A-14H-5W-6	119-744A-13H-5W-6	119-744A-11H-1W-7	119-744A-9H-1W-6	119-744A-8H-3W-90	119-744A-8H-2W-90	119-744A-6H-2W-6	119-744A-2H-1W-90
Dutoitella suhmi		2	1	1																				
Cytherella sp. 1	1	1	1	1																				
Cytherella sp. 2	1	1																						
Cytherella sp. 3	1	1	1	1																				
Anebocythereis hostizea	1	3	17	17	8	6	4		1	1	1	2	2	1	1	1	5				1			
Bradleya johnsoni	1	1	1	2		1			1								1							
Taracythere sp.	1			1			1																	
Bairdoppilata hirsuta	1		1																					
Bradleya thomasi	1																					1		
Krithe sp. 3	1		2		1		2																	
Krithe sp. 6	1			4																				
Cytherelloidea sp.	1				1																			
Krithe sp. 7	1				1																			
Krithe sp. 8	1				1																			
Legitimocythere presequenta	1					1		1									1							
Pennyella praedorsosserrata	1					1																		
Krithe sp. 4	1			1			2		1															
Henryhowella sp. 2	1							1																1
Australoecia sp.	1						1																	
Henryhowella asperrima	1		1				2								2									
Henryhowella sp. 1	1						1		1	1					1									
Krithe sp. 1	1						1																	
Krithe sp. 5	1					1						1								1				
Pseudobosquetina nobilis	1						1																	
Dutoitella sp. 2																		1						
Agrenocythere hazelae																			1		1			
Dutoitella sp. 3																					1			
Krithe sp. 2	L_																						1	
NUMBER OF SPECIES		6	8	8	5	5	9	2	4	2	1	2	1	1	3	1	3	1	1	1	3	1	1	1

Fig. 2 – Occurrence and abundance of species in the samples studied. The shadowed column refer to the faunal threshold.

Origin: 119-744A-19H-5W-5 (163.150 mbsf).

Age: Late Eocene. Material: one V.

Discussion: Maddocks (1969), in the revision on Bairdiidae, states that this is a widespread deep sea species with some degree of variability in the length and position of the posterior caudate extension, which could even correspond to more than one species or subspecies. The present specimen has both the hinge and duplicature poorly developed, being characterized as a juvenile.

Distribution: Eocene: ODP site 744A (Indian Ocean).

Recent: Kerguelen Island (Pacific Ocean). Gulf of Mex-

Superfamily Trachyleberidoidea Liebau 2005
Family Trachyleberididae Sylvester-Bradley 1948
Genus Agrenocythere Benson 1972
Type species Agrenocythere spinosa Benson 1972
Agrenocythere hazelae (Bold 1946)
Fig. 3.7

1946 *Cythereis hazeli* (sic) Bold, p. 92, pl. 10, figs. 4a-c. 1972 *Agrenocythere hazelae* (Bold) – Benson, p. 66-72, figs. 31-38.

1978 Agrenocythere hazelae (Bold) – Benson, p. 785, pl. 1, figs. 7-8.

1987 Agrenocythere hazelae (Bold) – Whatley and Coles

2003 Agrenocythere hazelae (Bold) – Dall'Antonia, p. 36, pl. 2, fig. 18.

Figured specimen: U-7111, LV, l: 1.45 mm, h: 0.79 mm. Origin: 119-744A-11H-1W-7 (89.770 mbsf).

Age: Early Miocene.

Material: one adult and one juvenile V.

Distribution: Miocene: ODP site 744A (Indian Ocean), DSDP III 14 (South Atlantic) Hyblean Plateau (Mediterranean), East Oriente Province (Cuba), Cipero Formation (Trinidad), ODP Site 960 (Gulf of Guinea), DSDP site 372 (Mediterranean). Pliocene: DSDP Site 608 (North Atlantic). Recent: Malpelo Rise (Pacific Ocean).

Genus Anebocythereis Bate 1972
Type species Anebocythereis amoena Bate 1972
Anebocythereis hostizea (Hornibrook 1952)
Figs. 3.8-12

1952 *Cythereis hostizea* Hornibrook, pl. 5, figs. 72, 75, 78.

1993 *Henryhowella melobesioides* Brady-Guernet, p. 354, pl. 3, figs. 8, 11, 12, 14.

Non 1869 *Henryhowella melobesioides* Brady, p. 162, pl. 12, figs. 10-12.

1995 Anebocythereis hostizea (Hornibrook) – Ayress, p. 910, pl. 9, fig. 9.

Figured specimens and origin: U-7112 (RV, I: 1.13 mm, h: 0.66 mm, 119-744A-16H-5W-4); U-7113 (RV, I: 1.05 mm, h: 0.63 mm, 119-744A-18H-1W-4); U-7114 (LV, I: 1.02 mm, h: 0.63 mm, 119-744A-19H-2W-5), U-7115 (LV, I: 1.16 mm, h: 0.66 mm, 119-744A-15H-1W-6).

Age: Eocene-Oligocene.

Material: seven adults and 65 juveniles V.

Dicussion: Bate (1972) proposed the genus *Anebocy-thereis* for the Cretaceous of Australia stressing the similarity between the type species *A. amoena* and *Cythereis hostizea* Hornibrook. Although they are indisputably different species, *C. hostizea* seems to fit better into the diagnosis of *Anebocythereis* than into the one of *Cythereis* Jones. Whatley and Millson (1992) proposed the genus *Marwickcythereis* for Eocene/Oligocene species from New Zealand, electing *Cythereis marwicki* Hornibrook the type species. In our opinion, however, the diagnosis

The outline, shape, ornamentation and the p of normal pore canals in the tubercles, clearly Figure 11, plate 3 of Guernet (1993), led us to ider species *Henryhowella melobesioides* (Brady) re by him as *Anebocythereis hostizea* (Hornibrook)

Distribution: Late Eocene: Canterbury (New Zee Eocene-Miocene: ODP site 744A (Indian Ocean) ne-Pleistocene: ODP sites 762 and 763 (Indian Ocean)

Genus *Pseudobosquetina* Guernet and Moullad Type species *Cytheropteron mucronalatum* Brad *Pseudobosquetina nobilis* Jellinek et al. 200

Fig. 3.13

2006 *Pseudobosquetina nobilis* Jellinek, Swans Mazzini, p.42, fig. 6a-h (see this for a comple onymic list).

Figured specimen: U-7116, RV, 1: 1.12 mm, h: 0. Origin: 119-744A-16H-5W-4 (143.240 mbsf).

Age: Early Oligocene.

Material: one V.

Discussion: The only specimen found in this s broken; however, the morphological elements carapace allowed a specific identification.

Distribution: Oligocene: ODP site 744A (Indian of Miocene-Quaternary: DSDP site 609 (North At Recent: Angola Basin.

Genus *Henryhowella* Puri 1957 Type species *Cythere evax* Ulrich and Bassler *Henryhowella asperrima* (Reuss 1850) Fig. 3.14

1850 *Cypridina asperrima* Reuss, p. 74, pl. 15a-b.

1988 *Henryhowella* cf. *evax* Ulrich and Bassler-Cand Fourcade, p. 148, pl. 3, figs. 18-20.

2005 Henryhowella asperrima Reuss-Mazzini, figs. 26a-d (see this for a more complete synonim Figured specimen: U-7117, LV, 1: 0.79 mm, h: 0 Origin: 119-744A-14H-3W-6 (127.260 mbsf).

Age: Early Oligocene.

Material: three adults V

CRISTIANINI T. BERGUE and ABIRAMAN GOVINDAN

for instance, is hardly achieved in many studies, due to either the poorly precise descriptions of the type material or the inadequacy of their original illustrations. The widespread use of the taxonomic terms *aff.*, *cf.* or *gr.* is a testimony of this problem. The present material is considered cospecific to the topotypic material figured by Mazzini (2005).

Henryhowella sp. 1 Fig. 3.15

Figured specimen: U-7118, RV, 1: 0.81 mm, h: 0.42 mm. Origin: 119-744A-14H-3W-6 (127.260 mbsf).

Age: Early Oligocene. Material: four V.

752

Henryhowella sp. 2 Fig. 3.16

Figured specimen: U-7119, LV, 1: 0.92 mm, h: 0.61 mm. Origin: 119-744A-16H-2W-4 (138.740 mbsf).

Age: Early Oligocene. Material: one juvenile V.

Genus *Pennyella* Neale 1974
Type species *Pennyella pennyi* Neale 1974 *Pennyella praedorsoserrata* Coles and Whatley 1989
Fig. 3.17

1989 *Pennyella praedorsoserrata* Coles and Whatley, p. 119, pl. 5, figs. 1-5.

Figured specimen: U-7120, LV, 1: 0.73 mm, h: 0.44 mm. Origin: 119-744A-18H-1W-4 (147.640 mbsf).

Age: Late Eocene. Material: one juvenile V.

Dicussion: The specimen here studied differs a little from the holotype. However, its size and internal features reflect its juvenile condition, which explains these differences.

Genus Legitimocythere Coles and Whatley 1989 Type species Cythere acanthoderma Brady 1880 Legitimocythere presequenta (Benson 1977) 1989 *Legitimocythere presequenta* (Benson) – Coles and Whatley, p. 116, pl. 4, figs. 10, 11.

2002 *Legitimocythere presequenta* (Benson) – Majoran and Dingle, p. 146, fig. 3.21.

2003 Legitimocythere presequenta (Benson) – Dall'Antonia et al., p. 98, fig. 3.1.

Figured specimen: U-7121, LV, l: 0.79 mm, h: 0.47 mm. Origin: 119-744A-16H-4W-5 (141.756 mbsf).

Age: Early Oligocene. Material: three V.

Dicussion: Legitimocythere presequenta is a widespread deep-sea species with some degree of morphological variation. Coles and Whatley (1989) argue that this species became bigger, more spinose and less robust from the Miocene onwards.

Distribution: Eocene: DSDP Site 549 (North Atlantic). Eocene-Oligocene: Italy. Oligocene: ODP Site 357 (South Atlantic). Miocene: DSDP Sites 372 (Mediterranean) and 574 (Pacific Ocean).

Genus *Taracythere* Ayress 1995
Type species *Trachyleberis proterva* Hornibrook 1953 *Taracythere* sp.
Fig. 3.19

Figured specimen: U-7122, RV,1: 0.97 mm, h: 0.52 mm. Origin: 119-744A-19H-2W-5 (158.560 mbsf).

Age: Late Eocene.

Material: one adult and one juvenile V.

Discussion: Jellinek and Swanson (2003) sustain that the subdivision of trachyleberids into natural groups might be possible only through a detailed study of soft parts. The spinosity, reticulation and a ventro-lateral spinose ridge in the present species would allow its inclusion in *Legitimocythere* Coles and Whatley. However, based on the discussion presented by Jellinek and Swanson *op. cit.* about the age of the genotype elected for this genus, we prefer not to adopt it for the present species. According to the age and geographic distribution, the genus *Taracythere* Ayress seems to be a more suitable option.

Fig. 3.18

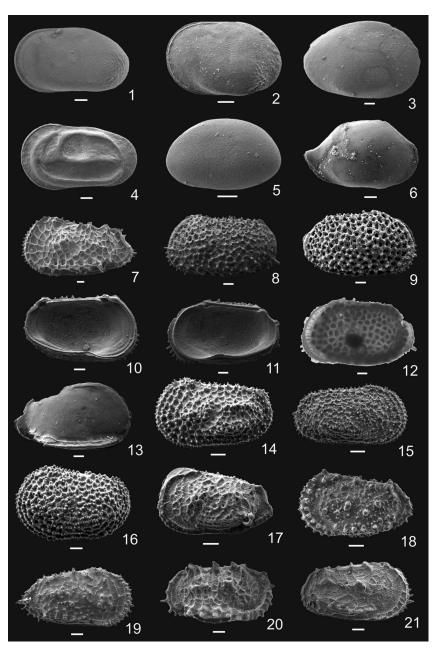


Fig. 3 – 1. *Cytherella* sp. 1, LV, 119-744A-19H-5W-5; 2. *Cytherella* sp. 2, LV, 119-744A-18H-3W-6; 3. *Cytherella* sp. 3, RV, 119-744A-18H-3W-6; 4. *Cytherelloidea* sp., LV, 119-744A-18H-3W-6; 5. *Australoecia* sp., LV, 119-744A-16H-5W-4; 6. *Bairdoppilata hirsuta* RV, 119-744A-19H-5W-5; 7. *Agrenocythere hazelae* (Bold), LV, 119-744A-11H-1W-7; 8-12. *Anebocythereis hostizea* (Hornibrook) 119-744A-19H-2W-5; 9. RV, 119-744A-16H-5W-4. 10. LV internal view, 119-744A-15H-1W-6; 11. RV internal view, 119-744A-16H-5W-4. 12. RV internal view in optical microscopy. 13. *Pseudobosquetina nobilis* Jellinek et al., RV, 119-744A-16H-5W-4; 14. *Henry*

CRISTIANINI T. BERGUE and ABIRAMAN GOVINDAN

754

1880 *Cythere suhmi* Brady, p. 106, pl. 26, fig. 3a-h. 1976 *Cythere suhmi* Brady-Puri and Hulings, pl. 17, figs. 7-12.

1985 "Cythereis" crassinodosa Guernet, p. 291, pl. III, figs. 8, 9, 11, 12.

1987 "Sumhmicythere" suhmi (Brady) – Whatley and Coles, p. 96, pl. 6, figs. 18-21.

1990 Dutoitella suhmi (Brady) – Dingle et al., p. 290, fig. 27e-f.

2003 Dutoitella suhmi (Brady) – Dingle, p. 149, pl. 5, fig. 1.

Figured specimen: U-7123, RV,1: 0.95 mm, h: 0.55 mm. Origin: 19-744A-20H-1W-6 (166.668 mbsf).

Age: Late Eocene.

Material: two adults and one juvenile V.

Distribution: Eocene: DSDP Site 214 (Indian Ocean). Recent: Prince Edward Island (Indian Ocean), Southwest Africa, DSDP site 609 (Atlantic Ocean).

Dutoitella sp. 1 Fig. 3.21

Figured specimen: U-7124, RV, l: 0.95 mm, h: 0.5 mm.

Origin: 119-744A-13H-5W-6 (114.760 mbsf). Age: Late Oligocene.

Age: Late Oligocene Material: one V.

Dutoitella sp. 2 Fig. 4.1

Figured specimen: U-7125, LV, 1: 1.08 mm, h: 0.61 mm. Origin: 119-744A-13H-5W-6 (114.760 mbsf).

Age: Late Oligocene. Material: one V.

> Family Thaerocytheridae Hazel 1967 Subfamily Bradleyinae Benson 1972 Genus *Bradleya* Hornibrook 1952 Type species *Cythere arata* Brady 1880 *Bradleya johnsoni* Benson and Peypouquet 1983

Fig. 4.2

1983 Bradleya johnsoni Benson and Peypouquet, p. 816,

1993 *Bradleya johnsoni* Benson and Peypouquet – Guernet, p. 351, pl. 2, fig. 10.

Figured specimen: U-7126, LV, 1: 0.97 mm, h: 0.55 mm.

Origin: 119-744A-16H-2W-4 (138.740 mbsf).

Age: Early Oligocene.

Material: two V.

Dicussion: The specimen here figured is slightly different from the holotype (Lower Miocene, South Atlantic), which has a more robust reticulation. However, it is more similar to the specimen recorded by Steineck and Yozzo (1988) in the Equatorial Pacific.

Distribution: Eocene-Miocene: ODP sites 762 and 763 (Indian Ocean). Oligocene-Miocene: Central Equatorial Pacific. Miocene: ODP Site 516 (South Atlantic).

Bradleya thomasi Steineck and Yozzo 1988 Fig. 4.3

1983 Bradleya cf. B. dictyon Cronin, p. 109, pl. III, fig. D.

1988 *Bradleya thomasi* Steineck and Yozzo, p. 197, pl. 3, figs. 1-11.

Figured specimen: U-7127, RV,1: 0.92 mm, h: 0.51 mm. Origin: 119-744A-8H-2W-90 (65.100 mbsf).

Age: Miocene Material: one V.

Distribution: Miocene-Quaternary: DSDP Sites 572, 573, 574. Recent: Florida-Hatteras slope (Atlantic Ocean).

Superfamily Cytherideoidea Liebau 2005 Family Krithidae Mandelstam 1960 Genus *Krithe* Brady, Crosskey and Robertson 1874 Type species *Cythere (Cytherideis) barthonensis*

Jones 1857 *Krithe* sp. 1 Figs. 4.4-5

Figured specimen: U-7128, LV, 1: 0.87 mm, h: 0.44 mm. Origin: 119-744A-16H-5W-4 (143.240 mbsf).

Age: Early Oligocene. Material: one V.

Krithe sp. 2

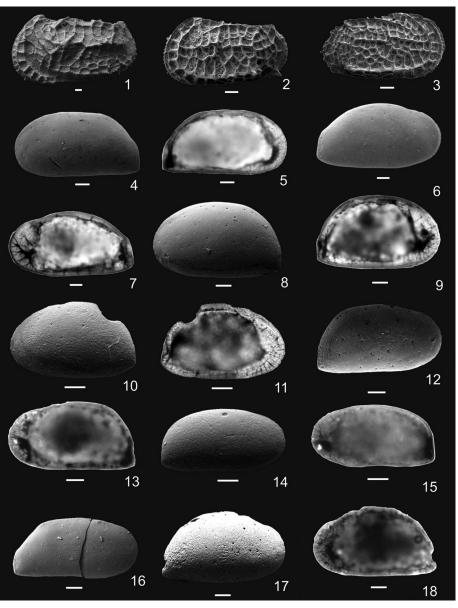


Fig. 4 – 1. *Dutoitella* sp. 2, LV, 119-744A-13H-5W-6. 2. *Bradleya johnsoni* Benson, LV, 119-744A-16H-2W-4; 3. *Bradleya thomasi* and Yozzo RV, 119-744A-8H-2W-90; 4-5. *Krithe* sp. 1. 4. LV, 119-744A-16H-5W-4. 5. Same specimen in optical microscopy; 6-7. *I* 2, 6. RV, 119-744A-6H-2W-6. 7. Same specimen in optical microscopy; 8-9. *Krithe* sp. 3, 8, LV, 119-744A-18h-3W-6. 9. Same specimen in optical microscopy. 10-11. *Krithe* sp. 4. 10. LV, 119-744A-16H-2W-4. 11. Same specimen in optical microscopy. 12-13. *Krithe* sp. LV, 119-744A-16H-1W-4. 13. Same specimen in optical microscopy. 14-15. *Krithe* sp. 6. 14. RV, 119-744A-19H-2W-5. 15. Same

-. 16 V-id- -- 7 DV 110 7444 10H 2W 6 17 10 V-id- -- 0 17 DV 110 7444 10H 2W 6

CRISTIANINI T. BERGUE and ABIRAMAN GOVINDAN

Origin: 119-744A-6H-2W-6 (43.670 mbsf).

Age: Late Miocene. Material: one V.

756

Discussion: This species has an unusual set of anterior radial pore canals that could not be matched with any of the types figured either by Peypouquet (1979) or Coles et al. (1994).

> Krithe sp. 3 Figs. 4.8-9

Figured specimen: U-7130, LV, 1: 0.79 mm, h: 0.47 mm

Origin: 119-744A-18H-3W-6 (150.660 mbsf).

Age: Late Eocene. Material: five V.

> Krithe sp. 4 Figs. 4.10-11

Figured specimen: U-7131, LV, 1: 0.60mm, h: 0.39 mm.

Origin: 119-744A-16H-2W-4 (138.740 mbsf).

Age: Early Oligocene Material: four V.

> Krithe sp. 5 Figs. 4.12-13

Figured specimen: U-7132, LV, 1: 0.71 mm, h: 0.39 mm.

Origin: 119-744A-19H-2W-5 (158.650).

Age: Late Eocene Material: three V.

> Krithe sp. 6 Figs. 4.14-15

Figured specimen: U-7133, RV, 1: 0.60 mm, h: 0.31 mm.

Origin: 119-744A-18H-3W-6 (150.660 mbsf).

Age: Late Eocene. Material: four V.

> Krithe sp. 7 Figs. 4.16

Figured specimen: U-7134, RV, 1: 0.76 mm, h: 0.36 mm. Origin: 119-744A-18H-3W-6 (150.660 mbsf).

Age: Late Eocene.

Figured specimen: U-7135, RV, 1: 0.79 mm, h: 0.44 mm. Origin: 119-744A-19H-2W-5 (158.650 mbsf).

Age: Late Eocene.

Material: one V.

RESULTS

In this study, 28 species belonging to 14 genera and six families were identified. Krithe is the most diversified genus (eight spp.), followed by Cytherella and Dutoitella (three spp. for each). The ostracode incidence decreases from the bottom to the top of the section, being the peak of abundance and richness between the Late Eocene and the Early Oligocene. From the sample 119-744A-16H-4W5 of Early Oligocene age and younger ones there is a significant reduction in the richness and abundance. In most of these samples, the richness oscillates between one and two species, and the total abundance of this section is only 36 specimens (Fig. 2).

The Early Oligocene threshold also depicts a faunal turnover, where 16 species only occur before this age, and six after it. Anebocythereis hostizea (Hornibrook) is the most abundant species and, with Bradleya johnsoni Benson, Legitimocythere presequenta (Benson), Krithe sp. 4, Krithe sp. 5, Henryhowella asperrima and Henryhowella sp., constitute the only species occurring both before and after the threshold. Some juvenile specimens of Krithe which were found in the majority of the studied samples, were not identified in the eight groups here presented, and their occurrences were not included in Figure 2.

The assemblages studied at this site present some similarity with the other faunal record of DSDP/ODP sites, in particular with the site 214, from Indian Ocean, studied by Guernet (1985). Three species are common to these two regions: Cytherella sp. 1, Cytherella sp. 2, and Dutoitella suhmi (Brady). Krithe sp. 2 is possibly cospecific with Krithe sp. 1 of Guernet (op. cit., p. 287, pl. 1, fig. 16) but, due to the complex morphology of this genus, it is hard to sustain this assumption based only on Guernet's SEM pictures. Some slight variation in size was noticed in the species Rradleva johnsoni Ren-

DISCUSSION AND CONCLUSIONS

OCEANOGRAPHIC EVENTS RECORDED AT ODP SITE 744A AND ADJACENT AREAS

In the Cenozoic, several climatic changes driven by orbital oscillations and their influences in the carbon cycle and glaciations have been recorded, which correspond to the transition from the Cretaceous greenhouse to the Cenozoic icehouse (Barker and Thomas 2004, Zachos et al. 2001a). The Oligocene experienced a long glacial interval, except close to the Oligocene/Miocene boundary. Considering both geochemichal and orbital data, Zachos et al. (2001b) divided the Oligocene into four phases; the interval corresponding to the second and third ones (31 to 27 Ma) shows more positive ¹⁸O signals, a factor that could explain at least in part the faunal threshold seen in the site 744A.

Positive peaks of ¹⁸O in sea water are caused either by ice formation or cooling. Both have had different weight during Cenozoic events, and to find out which one was the most influent is not always straightforward (Lear et al. 2000). Considering that the ostracode faunal composition results from historic and oceanographic events, the cooling of the water and circulation changes in periods marked by ¹⁸O peaks may influence both the evolution and migration of taxa prompting faunal turnovers.

Similar faunal trends have been found in the ostracodes from other ODP sites. Majoran and Dingle's (2002) study at the site 689 (Antarctica) recorded high values of richness and abundance in the Eocene-Oligocene interval, which they attributed to either taphonomic or hydrologic processes that resulted from the progressive cooling of Antarctica during that time. Guernet and Galbrun (1992) recorded at site 762 a high diversity and abundance of ostracodes from the Eocene to the Lower Miocene, and a sharp reduction from the Upper Miocene and younger ages. They did not propose any plausible explanation for this trend, but supposed that it could be a result of fluctuations of sedimentation rate linked to variations in the surface productivity.

The reduction in abundance seen in the upper portion of the studied section might be explained either Oligocene interval in the Kerguelen Plateau: the in productivity was normally linked to an increase bonate dissolution, except when the region was the influence of a warm, carbonate saturated wate (WSDW- warm saline deep water). Hence, the ate preservation is strongly marked by the remove of oceanic circulation and productivity, and mig strongly influenced the fossil record in the upper of the section here studied. The presence of spec (mainly *Krithe*) with a variable degree of dissolutions this hypothesis. A similar cause could exp scarcity of fossils in the younger samples studied. Oligocene onwards), in as much as no other would easily explain the fossil record pattern.

INTRASPECIFIC VARIATION IN DEEP SEA OSTRACO

The discussion on the intraspecific variation in codes pervades the fields of ecology and systema their discussion on deep sea ostracodes diversity nek and Swanson (2003) state that a precise tax approach would not be achieved based exclusively carapace morphology, at least in some ostracod (Trachyleberididae, for instance). The refinement taxonomic knowledge on deep sea ostracodes is sis for their paleoceanographical use, and recent show that much has to be done in this field. Scho (2005), for instance, concluded that at least five were lumped under the name *Pedicythere polita* longo and Pasini around the world, making them so composite species.

However, species such as Krithe dolichodeir Legitimocythere presequenta (Benson) and Agathere hazelae (Bold), actually have near global butions in the deep ocean. In these species, sligly phological variations are present especially on sornamentation, as can be seen even in this studidences from the previously discussed studies that intraspecific variation could also be a commonomenon in deep sea faunas, which is resulted in from clinal variation, but also induced by change perature, dissolved oxygen and salinity.

Considering that climatic changes evert in

CRISTIANINI T. BERGUE and ABIRAMAN GOVINDAN

variants of a species in these environments. This can be achieved only through an accurate taxonomic knowledge and the understanding of the intraspecific variation processes, reinforcing the use of ostracode diversity as a proxy for hydrological changes.

ACKNOWLEDGMENTS

The authors wish to thank Gerson Fauth and Carlos Eduardo Lucas Vieira for the assistance with the SEM and optical microscopy, respectively. Thomas M. Cronin and Julio Rodriguez Lazaro are thanked for the constructive criticism which improved considerably this article. We are also grateful to the Ocean Drilling Project for providing the samples of the site 744A.

RESUMO

Ostracodes do intervalo Eoceno-Plioceno do sítio 744A do ODP (Platô Kerguelen) são aqui estudados sob o aspecto taxonômico e paleoecológico. 28 espécies são identificadas, sendo os gêneros Krithe, Cytherella e Dutoitella os mais diversificados. Uma transição faunística registrada no Eoligoceno é investigada com base em estudos paleoceanográficos realizados no Platô Kerguelen e em áreas adjacentes. A transição e as variações de riqueza e abundância possivelmente refletem o estabelecimento da psicrosfera e mudanças hidrológicas associadas, na composição da fauna. Além disso, a influência destas mudanças na preservação do carbonato é discutida como possível causa do empobrecimento da fauna na porção superior do testemunho.

Palavras-chave: Cenozóico, ostracodes, paleoceanografia, paleozoogeografia.

REFERENCES

- AYRESS M, NEIL H, PASSLOW V AND SWANSON K. 1997. Benthonic ostracods and deep watermasses: a qualitative comparison of Southwest Pacific, Southern and Atlantic Oceans. Palaeogeogr Palaeocl 131: 287-302.
- AYRESS MA. 1995. Late Eocene Ostracoda (Crustacea) from the Wahao district, south Canterbury, New Zealand. J

Paleont 69(5): 897-921.

- BALDAUF JG AND BARRON JA. 1991. Diatom Biostratigraphy: Kerguelen Plateau and Prydz Bay Regions of the Southern Ocean. 119. In: BARRON J ET AL. (Eds), Proceedings of Ocean Drilling Program Scientific Results 119: 547-598.
- BARKER PF AND THOMAS E. 2004. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth-Sci Rev 66: 143-162.
- BARRON J, LARSEN B AND BALDAUF JG. 1991. Evidence for late Eocene to early Oligocene Antarctic glaciation and observations on the late Neogene history of Antarctica: results from leg 119. In: BARRON J ET AL. (Eds), Proceedings of the Ocean Drilling Program Scientific Results 119: 869-894.
- BATE RH. 1972. Upper Cretaceous Ostracoda from the Carnarvon Basin, western Australia. Spec Pap Palaeontol 10(I-IV): 1-85.
- BENSON RH. 1972. The Bradleya problem, with description of two new psychrospheric ostracode genera, Agrenocythere and Poseidonamicus (Ostracoda: Crustacea). Smithsonian Contrib Paleont 12: 1-138.
- BENSON RH. 1975. The origin of the psychrosphere as recorded in changes of deep-sea ostracode assemblages. Lethaia 8: 69-83.
- BENSON RH. 1977. The Cenozoic Ostracode faunas of the São Paulo Plateau and the Rio Grande Rise (DSDP Leg 39, Sites 356 and 357). In: SUPKO PR ET AL. (Eds), Initial Reports of the Deep Sea Drilling Project 39: 869-883.
- BENSON RH. 1978. The paleoecology of the ostracods of DSDP Leg 42A. In: HSÜ K ET AL. (Eds), Initial Reports of the Deep Sea Drilling Project 42: 777-787.
- BENSON RH. 1988. Ostracods and palaeoceanography. In: DE DECKKER P, COLIN JP AND PEYPOUQUET J-P (Eds), Ostracoda in the Earth Sciences, Amsterdam: Elsevier, p. 1-26.
- BENSON RH AND PEYPOUQUET JP. 1983. The upper and mid-bathyal Cenozoic ostracode faunas of the Rio Grande Rise found on Leg 72 Deep Sea Drilling Project. In: WHALEN E ET AL. (Eds), Initial Reports of the Deep Sea Drilling Project 72: 805-820.
- BERGUE CT AND COIMBRA JC. 2008. Late Pleistocene and Holocene bathyal ostracodes from the Santos Basin, southeastern Brazil. Palaeontr Abt A 285: 101-144.
- BOLD WA VAN DEN 1946 Contribution to the study of

- BRADY G. 1869. Descriptions of Ostracoda. In: FOLIN AGL AND PERIER L (Eds), Les fonds de la mer, étude internationale sur les particularités nouvelles des régions sous-marines 1: 113–176.
- BRADY G. 1880. Report on the Ostracoda dredged by H.M.S. Challenger during the years 1873-76. Report of Scientific Results of the Voyage of H.M.S. Challenger-Zoology 1: 1–184.
- CAULET JP. 1991. Radiolarians from the Kerguelen Plateau, Leg 119. In: BARRON J ET AL. (Eds), Proceedings of the ODP Scientific Results 119: 513–546.
- COLES G AND WHATLEY RC. 1989. New Palaeocene to Miocene genera and species of Ostracoda from DSDP sites in the North Atlantic. Rev Esp Microp 23: 81–124.
- COLES GP, WHATLEY RC AND MOGUILEVSKY A. 1994. The ostracod genus *Krithe* from the Tertiary and Quaternary of the North Atlantic. Palaeontology 37: 71–120.
- CRONIN TM. 1983. Bathyal ostracodes from the Florida-Hatteras slope, the straits of Florida, and the Blake Plateau. Mar Micropal 8: 89–119.
- CRONIN TM, DE MARTINO DM, DWYER G AND RODRI-GUEZ-LÁZARO J. 1999. Deep-sea ostracode species diversity: response to late Quaternary climate change. Mar Micropal 37: 231–249.
- CRONIN TM, BOOMER I, DWYER GS AND RODRIGUEZ-LÁZARO J. 2002. Ostracoda and paleoceanography. In: HOLMES JA AND CHIVAS AR (Eds), The Ostracoda: applications in Quaternary research. Geophysical Monograph 131, Washington: American Geophysical Union, Washington, USA, p. 99–119.
- Dall'Antonia B. 2003. Miocene ostracods from the Trimiti Islands and Hyblean Plateau: biostratigraphy and description of new and poorly known species. Geobios 36: 27–54.
- DALL'ANTONIA B, BOSSIO A AND GUERNET C. 2003. The Eocene/Oligocene boundary and the psychrospheric event in the Tethys as recorded by deep-sea ostracodes from the Massignano Global Boundary Stratotype section and Point, Central Italy. Mar Micropal 48: 91–106.
- DIEKMANN B, KUHN G, GERSONDE R AND MACKENSEN A. 2004. Middle Eocene to early Miocene environmental changes in the sub-Antarctic Southern Ocean: evidence from biogenic and terrigenous depositional patterns at ODP Site 1090. Global Planet Change 40: 295–313.

- DINGLE RV. 2003. Recent subantarctic benthic ostra nas from the Marion and Prince Edward Island pelago, Southern Ocean. Rev Esp Microp 35: 11
- DINGLE RV, LORD A AND BOOMER I. 1990. Dec Quaternary ostracoda from the continental ma south-western Africa (SE Atlantic Ocean). An Mus 99(9): 245–366.
- GUERNET C. 1985. Ostracodes paleogenes de quelq "D.S.D.P." de l'Ocean Indien (legs 22 et 23). Rev 4(2): 279–295.
- GUERNET C. 1993. Ostracodes du Plateau d'Exmouth Indien): remarques systématiques et evolution de nements océaniques profonds au cours du Céne Geobios 26(3): 345–360.
- GUERNET C. 1998. Neogene and Pleistocene ost Sites 959 and 960, Gulf of Guinea. In: MASC AL. (Eds), Proceedings of the ODP Scientific 159: 525–531.
- GUERNET C AND FOURCADE E. 1988. Cenozoic os from hole 628A, ODP Leg 101, Bahamas. In: M. ET AL. (Eds), Proceedings of the Ocean Drilling Scientific Results 101: 139–151.
- GUERNET C AND GALBRUN B. 1992. Preliminar on the ostracodes of Leg 122 (Exmouth Plateau Ocean). In: HAD U ET AL. (Eds), Proceeding Ocean Drilling Program Scientific Results 122: 8
- HORNIBROOK NB. 1952. Tertiary and recent marin coda of New Zealand, their origin affinities and tion. New Zeal Geol Surv Palaeont Bull 18: 1–82
- HORNIBROOK NB. 1953. Some New Zealand Terti rine Ostracoda useful in Stratigraphy. Trans R Zealand 81(2): 303–311.
- HUBER BT. 1999. Paleogene and early Neogene platforaminifer biostratigraphy of Sites 738 and 744, len Plateau (southern Indian Ocean). In: BARRAL. (Eds.), Proceedings of the ODP Scientific Rest 427–449.
- JELLINEK T AND SWANSON K. 2003. Report on the omy, biogeography and phylogeny of mostly live thic Ostracoda (Crustacea) from deep-sea sample mediate Water depths) from the Challenger Plate man Sea) and Campbell Plateau (Southern Ocea Zealand. Abh senckenberg naturforsch Ges 558:
- JELLINEK T, SWANSON K AND MAZZINI I. 2006. cosmopolitan model still valid for deep-sea po

CRISTIANINI T. BERGUE and ABIRAMAN GOVINDAN

- Mg/Ca in benthic foraminiferal calcite. Science 287: 269–272.
- MADDOCKS RF. 1969. Revision of Recent Bairdiidae (Ostracoda). Bull Smith Inst 295: 1–126.
- MAJORAN S AND DINGLE R. 2002. Cenozoic deep-sea ostracods from *Maud* Rise, Weddell Sea, Antarctica (ODP Site 689): a palaeoceanographical perspective. Geobios 35: 137–152.
- MAZZINI I. 2005. Taxonomy, biogeography and ecology of Quaternary benthic Ostracoda (Crustacea) from circumpolar deep water of the Emerald Basin (Southern Ocean) and the S Tasman Rise (Tasman Sea). Sencken Mar 35(1): 1–119.
- PÄLIKE H, NORRIS RD, HERRLE JO, WILSON PA, COX-ALL HK, LEAR CH, HACKLETON NJ, TRIPATI AK AND WADE B. 2006. The heartbeat of the Oligocene climate system. Science 314: 1894–1898.
- PEYPOUQUET J-P. 1979. Ostracodes et paléoenvironnements. Méthodologie et application aux domains profonds du Cénozoïque. Bulletin du BRGM (deuxième série), Section IV 1: 3–79.
- PURI H AND HULINGS N. 1976. Designation of lectotypes of some ostracods from the Challenger expedition. Bull British Mus Zool 29(5): 252–315.
- SCHORNIKOV EI. 2005. The question of cosmopolitanism in the deep-sea ostracod fauna: the example of the genus *Pedicythere*. Hydrobiologia 538: 193–215.
- SCHRÖDER-ADAMS CJ. 1991. Middle Eocene to Holocene benthic foraminifer assemblages from the Kerguelen Plateau (southern Indian Ocean). In: BARRON J ET AL. (Eds), Proceedings of the ODP Scientific Results 119: 611–630.

- STEINECK PL AND THOMAS E. 1996. The latest Paleocene crisis in the deep sea: ostracode sucession at Maud Rise, Southern Ocean. Geology 24(7): 583–586.
- STEINECK PL AND YOZZO D. 1988. The Late Eocene-Recent *Bradleya johnsoni* Benson lineage (Crustacea, Ostracoda) in the Central Equatorial Pacific. J Micropaleontol 7(2): 187–199.
- WHATLEY RC AND COLES G. 1987. The late Miocene to Quaternary ostracoda of the Leg 94, Deep Sea Drilling Project. Rev Esp Microp XIX: 33–97.
- WHATLEY RC AND MILLSON KJ. 1992. Marwickcythereis, a new ostracod genus from the Tertiary of New Zealand. New Zeal Nat Sci 19: 41–44.
- WHATLEY RC, STAUNTON M, KAESLER RL AND MOGUILEVSKY A. 1996. The taxonomy of recent Ostracoda from the southern part of the Strait of Magellan. Rev Esp Microp 28(3): 51–76.
- YASUHARA M, CRONIN TM, DE MENOCAL PB, OKAHA-SHI H AND LINSLEY B. 2008. Abrupt climate change and collapse of deep-sea ecosystems. PNAS 105(5): 1556–1560.
- ZACHOS J, PAGANI M, SLOAN L, THOMAS E AND BILLUPS K. 2001a. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.
- ZACHOS JC, SHACKLETON NJ, REVENAUGH JS, PÄLIKE H AND FLOWER BP. 2001b. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science 292: 274–278.