

Anais da Academia Brasileira de Ciências

ISSN: 0001-3765 aabc@abc.org.br Academia Brasileira de Ciências Brasil

Oliveira, Alexandre L.; Teixeira, Antonio F. F.
Diracs æther in curved spacetime
Anais da Academia Brasileira de Ciências, vol. 72, núm. 2, jun;, 2000, pp. 161-164
Academia Brasileira de Ciências
Rio de Janeiro, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=32772204

Complete issue

More information about this article

Journal's homepage in redalyc.org

Dirac's æther in curved spacetime

ALEXANDRE L. OLIVEIRA1 and ANTONIO F. F. TEIXEIRA2

¹Universidade Federal do Rio de Janeiro, Departamento de Astronomia
 Observatório do Valongo – 20080-090 Rio de Janeiro, RJ, Brazil
 ²Centro Brasileiro de Pesquisas Físicas – 22290-180 Rio de Janeiro, RJ, Brazil

Manuscript received on August 11, 1999; accepted for publication on December 1, 1999; presented by Affonso Guidão Gomes

ABSTRACT

Proca's equations for two types of fields in a Dirac's æther with electric conductivity σ are solved exactly. The Proca electromagnetic fields are assumed with cylindrical symmetry. The background is a static, curved spacetime whose spatial section is homogeneous and has the topology of either the three-sphere S^3 or the projective three-space P^3 . Simple relations between the range of Proca field λ , the Universe radius R, the limit of photon rest mass m_{γ} and the conductivity σ are written down.

Key words: Dirac's æther, Proca Field, curved spacetime, three-sphere, projective three-space.

INTRODUCTION

The possibility of a nonzero electric conductivity σ in cosmic scale (Dirac's æther) has been considered by several authors and in various contexts: Vigier (Vigier 1990), e.g., showed that introducing $\sigma > 0$ in the vacuum is equivalent to attributing a nonzero mass $m_{\gamma} > 0$ to the photon. Further study of the relation between σ and m_{γ} was performed by Kar, Sinha and Roy (Kar *et al.* 1993), who also discussed possible astrophysical consequences of having nonzero m_{γ} . More recently, Ahonen and Enqvist (Ahonen & Enqvist 1996) studied the electric conductivity in the hot plasma of the early universe.

In this paper we study the time evolution of an electromagnetic field with $m_{\gamma} > 0$; in the background we assume a curved spacetime together with a constant conductivity $\sigma > 0$. In the next section we present the three existing classes of exact solutions for the field; they depend on the relative values of σ , m_{γ} and the curvature of spacetime as given by a constant radius R. In the last section we describe in some detail a set of solutions in which the quantity $\mathbf{E}^2 + c^2 \mathbf{B}^2$ is homogeneous throughout the spacelike hypersurfaces t = const.

Correspondence to: A. L. Oliveira E-mail: alexandr@ov.ufrj.br

EQUATIONS AND SOLUTIONS

In the static elliptic spacetime we use the cylindrical Schrödinger coordinates $x^{\mu}=(ct;\rho,\phi,\zeta)$ and write the line element

$$ds^{2} = c^{2}dt^{2} - R^{2}(d\rho^{2} + \sin^{2}\rho d\phi^{2} + \cos^{2}\rho d\zeta^{2}), \qquad (1)$$

where R = const is the characteristic radius of the three-geometry.

We assume a nonstatic four-potential with cylindrical symmetry

$$\Phi^{\mu}(0; 0, cf(t), 0) , \qquad (2)$$

where f(t) is a function to be determined from the field equations; clearly Φ^{μ} satisfies the Lorentz gauge, $\partial_{\mu}[(-g)^{1/2}\Phi^{\mu}] = 0$. The only surviving independent components of $F_{\mu\nu} = \partial_{\mu}\Phi_{\nu} - \partial_{\nu}\Phi_{\mu}$ are then

$$F_0^2 = \dot{f} , \qquad F_1^2 = 2cf \cot \rho , \qquad (3)$$

where the overdot means the time t derivative. In the orthonormal basis the nonvanishing components of the \mathbf{E} and \mathbf{B} fields are

$$E_{\phi} = -R\dot{f}\sin\rho , \qquad B_{\zeta} = 2f\cos\rho . \tag{4}$$

Proca equations in a conducting medium are

$$F^{\mu\nu}_{;\mu} + (\kappa/\lambda^2)\Phi^{\nu} = (\sigma/c)u_{\alpha}F^{\nu\alpha}, \qquad (5)$$

where $\sigma > 0$ is the electric displacement conductivity, $u_{\alpha} = \delta_{\alpha}^{0}$ is the four-velocity of the observer, λ is the range of the Proca field, and $\kappa = \pm 1$ accounts for two different categories of field. For $\nu = 2$ eq.(5) gives

$$\ddot{f} + 2\Gamma \dot{f} + \gamma f = 0, \qquad (6)$$

where

$$\Gamma = \sigma/2 , \qquad \gamma = 4c^2/R^2 + \kappa c^2/\lambda^2 . \tag{7}$$

Three classes of solutions of (6) exist, depending on the relative values of the constants Γ (nonnegative) and γ (arbitrary); see Table I, where C_1 and C^2 are integration constants.

Solutions in which the field energy is homogeneously distributed in three-space are of particular interest. From eqs.(4) we find that the quantity $\Delta = E_{\phi}^2 + c^2 B_{\zeta}^2$ is independent of ρ only when $R^2 \dot{f}^2 = 4c^2 f^2$, which implies that $f(x) \propto \exp(2\epsilon ct/R)$, with $\epsilon = \pm 1$. Three non-equivalent sets of solutions with $\partial \Delta/\partial \rho = 0$ are discussed in the next section, and constraining relations among the quantities $\{\sigma, \lambda, R, c, \kappa, \epsilon\}$ in each set are given.

TABLE I

Potential functions.

Classes	Exact solution of (6)	
$\Gamma^2 = \gamma$	$f(t) = (C_1 + C_2 t)e^{-\Gamma t}$	
$\Gamma^2 < \gamma$	$f(t) = C_1 e^{-\Gamma t} \cos(\sqrt{\gamma - \Gamma^2}t + C_2)$	
$\Gamma^2 > \gamma$	$f(t) = e^{-\Gamma t} (C_1 e^{\sqrt{\Gamma^2 - \gamma}t} + C_2 e^{-\sqrt{\Gamma^2 - \gamma}t})$	

DISCUSSION

As is seen from (4), in all solutions the **E** and **B** fields are mutually orthogonal and spatially inhomogeneous. The **E** field is purely azimuthal, vanishes on the ζ axis (the axis where $\rho = 0$), and is maximum along the circle $\rho = \pi/2$. Oppositely, the **B** field is purely longitudinal, is maximum along the ζ axis and vanishes on the circle $\rho = \pi/2$. These expressions for the fields are globally possible whenever the topology of the underlying 3-space is either the simply connected 3-sphere S^3 or the multiply connected real projective 3-space P^3 . No other multiply connected 3-space endowed with the elliptical geometry (e.g. the Poincaré dodecahedron) seems appropriate to globally accommodate these forms of field.

From Table I we immediately distinguish two *static* solutions: one is the trivial no-field solution $\mathbf{E} = \mathbf{B} = 0$, corresponding to $C_1 = C2 = 0$; the other is a pure magnetostatic field with $\mathbf{E} = 0$ and $B_{\zeta} = 2C_1 \cos \rho$, and belongs to class $\Gamma^2 > \gamma$ with $C^2 = 0$, $\gamma = 0$, $\kappa = -1$, $\lambda = R/2$.

All *non-static* solutions are *standing* Proca waves. Most have exponential damping with increasing time. Nevertheless, in the class $\Gamma^2 > \gamma$, an exception deserves mentioning: when $\gamma < 0$, that is $\kappa = -1$ and $\lambda < R/2$ in eq.(7), the potential f(t) and the Proca fields show an exponential growth as time increases. Three sets of non-static solutions with the quantity $\Delta = E_{\phi}^2 + c^2 B_{\zeta}^2$ independent on the location in three-space were encountered: see Table II. Sets **a** and **b** both have $\Delta \propto \exp(-4ct/R)$ (damping along the time), and both contain $\lambda \to \infty$, $\sigma = 4c/R$ (a Maxwell field) as a special case. The set **c** has $\Delta \propto \exp(+4ct/R)$ (increasing along the time). Sets **b** and **c** both contain the special case $\lambda = R/\sqrt{8}$, $\sigma = 0$ (vanishing conductivity).

TABLE II $\label{eq:approx} \textbf{Parameters for uniform } \Delta(t).$

		$\sigma = 4c/R + cR/(2\lambda^2)$		
b	$\kappa = -1$	$\sigma = 4c/R - cR/(2\lambda^2)$	$\lambda \geq R/\sqrt{8}$	$\epsilon = -1$
c	$\kappa = -1$	$\sigma = cR/(2\lambda^2) - 4c/R$	$\lambda \leq R/\sqrt{8}$	$\epsilon = +1$

A few words seem worthwhile, concerning the physical values of the constants m_{γ} , λ , σ and R.

First recall that the mass m_{γ} and the range λ share the quantum correspondence $m_{\gamma}c = h/\lambda$, where $h = 6.6 \times 10^{-34} \, \mathrm{J} \, \mathrm{s}$ is Planck's constant. Assuming $\lambda \approx R \approx 10^{10} \, \mathrm{l.y.} \approx 10^{26} \, \mathrm{m}$, then $m_{\gamma} \approx 10^{-68} \, \mathrm{kg}$, which is fifteen orders of magnitude smaller than the upper limit obtained by experimental techniques (Goldhaber & Nieto 1971); this amounts to saying that a Proca field with that value for the range λ is presently indiscernible from a Maxwell field. From Table II, and still assuming $\lambda \approx R \approx 10^{26} \, \mathrm{m}$, one should have $\sigma \approx 10^{-17}/\mathrm{s}$ for systems with $\mathbf{E}^2 + c^2 \, \mathbf{B}^2$ homogeneous over the 3-space; this value for the conductivity coincides in order of magnitude with that of ref. (Kar et al. 1993), obtained in a different context. To conclude, if we consider the above values for the various constants in the damping harmonic class $\Gamma^2 < \gamma$ in Table I, then the resulting frequency would be $\delta \approx 10^{-18} \, \mathrm{Hz}$; fields with such a slow variation would seem static.

ACKNOWLEDGEMENTS

One of us (A.L.O.) wishes to thank Prof. A.O. Caride for calling attention to related work on finite-range theories, Dr. Hirokazu Hori for sending copies of his work on near-field optics and M.F. Carvalho for friendly encouragement and discussions on Dirac's æther.

REFERENCES

AHONEN J & ENQVIST K. 1996. Electrical conductivity in the early universe. Phys Lett B 382: 40-44.

GOLDHABER AS & NIETO MM. 1971. Terrestrial and Extraterrestrial Limits on The Photon Mass. *Rev Mod Phys* **43**: 277-296.

KAR G, SINHA M & ROY S. 1993. Maxwell Equations, Nonzero Photon Mass, and Conformal Metric Fluctuation. *Int J Theor Phys* **32:** 593-607.

VIGIER JP. 1990. Evidence For Nonzero Mass Photons Associated With a Vacuum-Induced Dissipative Red-Shift Mechanism. *IEEE Transactions on Plasma Science* **18:** 64-72.