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Groenewold-von Neumann product
via Segal-Bargmann transform

JOHN B. MORENO*

Universidad del Atlantico, Programa de Mateméaticas, Barranquilla, Colombia.

Abstract. Using standard techniques from geometric quantization, we re-
derive the product of functions on R? which was first introduced by von
Neumann and later reintroduced by Groenewold and which is the integral
version of the Moyal product. More specifically, by pairing the diagonal real

polarization on the pair groupoid R? x R~ with its standard holomorphic
polarization, we obtain the well-known Segal-Bargmann transform in a ro-
tated and scaled (and half-conjugated) form. Together with a convolution
of functions in the Segal-Bargmann space, which is a natural deformation
of the usual convolution of functions on the pair groupoid, this defines the
Groenewold-von Neumann product on L?(R?).

Keywords: Geometric quantization, star product, Segal-Bargmann trans-
form, Fock spaces.
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Producto de Groenewold-von Neumann mediante
una transformada de Segal-Bargmann

Resumen. Usando técnicas de cuantizacion geométrica, obtenemos el pro-
ducto de funciones en R2, primeramente introducido por von Neumann y
posteriormente reintroducido por Groenewold, el cual es la version integral
del producto de Moyal-Weyl. De forma mas especifica, por el empareamiento
de polarizaciones reales en el par grupoide R? x @2 con sus polarizaciones
holomorfas estandares, obtenemos una transformada de Segal-Bargamann
deformada (por rotacion y traslacion). Junto con una convolucion de fun-
ciones en el espacio de Segal-Bargmann, la cual es una deformacion natural
de la convolucion de funciones en el par grupoide, se obtiene el producto de
Groenewold-von Neumann en L2(R?).

Palabras clave: Cuantizacion geométrica, producto estrella, transformada de
Segal-Bargmann, espacios Fock.
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136 J.B. MORENO

1. Introduction

Let M be a symplectic symmetric space, TM its tangent bundle, and let M x M be the
symplectic pair groupoid. Since M is a symplectic symmetric space, the pushforward of
the vertical fibration of 7'M under the map

®:TM — M x M, (m,v) = (exp,,(—v), exp,,(v)) (1)

determines a foliation Fy on M x M which, if regular, defines a real polarization on the
symplectic pair groupoid (cf. [4],[13], for instance). The regularity condition fails if M
is compact, but it is satisfied if M is noncompact with no compact factors. This short
paper considers only the simplest possible case: M = R?" (actually we here fix n = 1 to
make matters simpler without any significant loss of generality).

Now, the integral version of the Weyl-Moyal product of functions on R?" also known
as the Groenewold-von Neumann product, has been obtained and re-obtained in vari-
ous ways since the original work of von Neumann [11]. But in [5], Gracia-Bondia and
Varilly re-derived this product via geometric quantization, using the pairing of two non-
transversal real polarizations on the pair groupoid R?” x R27, one being the polarization
Fv described above (more recently, the polarization Fy has been used together with an
“averaging procedure” to re-derive this product via geometric quantization [13]). Here
we will once again re-derive this product, again via geometric quantization and again
using pairing of polarizations, but now pairing the real polarization Fy to a transversal
holomorphic polarization on R?" x R27,

Although our derivation presented below could be considered as a simple exercise in
geometric quantization, we have not yet found it explicitly done in detail in the litera-
ture. In fact, the main idea for this derivation is already found in the aforementioned
paper by Gracia-Bondia and Varilly ([5], Section VI), but their treatment there is some-
what sketchy and incomplete and uses references to previous papers by Daubechies and
Grossmann ([2],[3]). On the other hand, appropriate generalizations of this technique to
other noncompact hermitian symmetric spaces can in principle be helpful. For instance,
if M = H? is the hyperbolic plane, it is not possible to find another real polarization
on the symplectic pair groupoid whose degree of transversality to Fy is everywhere con-
. . . . =2
stant, but in contrast, the standard holomorphic polarizations on H? x H™ are everywhere
transversal to Fy. This fact shall be thoroughly explored in subsequent papers and con-
stitutes the main motivation for us to working out this technique in detail for the case
of R? in this note.

As we shall see below in detail, the geometric quantization pairing of 7y, and a standard
holomorphic polarization on R? x R2 defines a Segal-Bargmann transform from functions
on R? to holomorphic functions on C x C, which is isometric to the standard Segal-
Bargmann transform. This latter, originally introduced by V. Bargmann [1], has many
applications in quantum optics as well as in signal processing and harmonic analysis on
phase space [6], and is usually defined by

1.2
e 2%
Bf](z) = =7 / fl@)e 3 V22, 2 e C, 2)
T Rn
where 22 = 22 + 22 + -+ 22, similarly for 22, with 2z = 2121 + 2222 + - Ty 2.
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Groenewold-von Neumann product via Segal-Bargmann transform 137

Then, B maps isometrically the space L?(R", dz) of square integrable functions on R"
onto the Segal-Bargmann space HL?(C") of holomorphic functions on C” which are
e*‘zﬁdu(z)—square integrable, du(z) being the Lebesgue measure on C™.

It is well known that geometric quantization can be used to construct the Segal-Bargmann
space for C" and its associated Segal-Bargmann transform (cf. e.g. [7],[12],[14]), and
the generalized Segal-Bargmann transform for Lie Groups of compact type can also be
developed using geometric quantization (cf. [8],[9]).

In this short note, again via geometric quantization, we shall obtain the 2-d Segal-
Bargmann transform in a “rotated and scaled” form:

%h[.ﬂ(whwz) _ Ch efﬁwlwz/ f(yhyZ)e*%(yf+y§)e%[yl(w1+w2)7z‘y2(w17w2)]dy1dy27
R2
3)

where w = (w1, w2) € C?, y = (y1,72) € R2, and Planck’s constant i € R* can also be
considered as a free positive parameter whenever this is convenient.

Now, (3) takes the form (2) under the linear changes of variables:

0y s C? = C2, Wy z = (zlzz—\l/ﬁ(wl + wa), 22:2\%‘1(10271”1))’ (4)
Ch: R? - R, Y=z =y\/2/R, (5)

so that _
Bi[f] = BLf o G ' omn (6)

for an appropriate choice of constant C},, and therefore both forms of the Segal-Bargmann
transform, albeit appearing different, are fully equivalent.

That is, observing that under the linear change n; given by (4) we have that
12 1 | 2
e dp(z) = e dp(w), (7)

then the map ‘B — B 1 defined by (6) is, modulo an overall constant factor, an isometry
from HL?*(C?) to HLZ,(C?), where HL?(C?), ¢t > 0, is the space of holomorphic functions
on C? which are e*|z|2/tdu(z)—square integrable. It follows that B, given by (3) is an
isometry from L?(R?, dy) to HL3,(C?), and conjugating the second variable it produces
the transform from L?(R?,dy) to HL3,(C x C) (cf. Theorem 2.3, which is also referred
to as the Daubechies-Grossmann transform [2],[3]).

Thus, in Section 2 of this short paper we present our detailed derivation of this transform
(cf. (19)-(24)), which immediately generalizes to all even dimensional cases. Then, in
Section 3, combining this transform with a natural deformation of the usual convolution
of functions on the pair groupoid, we obtain the integral formulation of the Moyal-Weyl
product, i.e., the Groenewold-von Neumann product of (complex) functions on the real
plane, which is given by (cf. e.g. [13]):

g1 *n g2](@,y) = /z ) 91(21,y1)g2 (w2, yo et (P1v2 -2V U =Tk E2=2Y2) oy dyy divo dys.
R2 xR
(8)
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138 J.B. MORENO

2. A Segal-Bargmann transform via geometric quantization

Let R2? be the plane with coordinates (z,y) and canonical symplectic form w = dz A dy.
In this case, the map

@ : TR? — R? x R?, (m,v) — (exp,,(—v), exp,,(v))
of (1), is given explicitly by
<D(£7 Y3 v1'7vy) = (33 T Uz, Y T Uy T + Vg, Y +Uy) = (x,, Y- Ty, y+)' (9)

Denote by R? x R’ the symplectic manifold with symplectic form given by Q = w — w.
If R? x R has coordinates (z—,y—;z4+,y+) as above, then Q = dx_ Ady— — dzy Adyy,
and since ® is a diffeomorphism with inverse ®~! given by

Tty _ Y-ty Ty — T Y+ — Y-

r = 2 ) 2 ) DIZT7 vy:T7 (10)

the pull-back symplectic form ®*(Q2) = IT on TR? is given by
II = 2(dvy A dz — dv, A dy). (11)
On the other hand, taking
Zo=x_+iy—, z4 =4 +iys (12)

as holomorphic coordinates in R? x R? ~ C x C, then

0= %dz_ Adz_ — %dz+ Adz,. (13)

Consider the following respective polarizations on TR? and R? x R
P= (0vg,0vy) and F = (0Z_,0z1).
From (11), the symplectic potential adapted to the polarization Pis given by
05 = 2(vydx — v, dy),
while from (13) the symplectic potential adapted to the polarization F' is given by
i

_ (.
6F = 7527(127 — §Z+d2+.

For F = (®71),F, we have from (9)-(10) that
Op = —[(vudy + xdvy — ydv, —vydx) + id((z — )%+ (y—vy)? + (@ +v)? 4+ (y+v,)?)

Therefore, B
Op - 05 =dVY, (14)
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Groenewold-von Neumann product via Segal-Bargmann transform 139

where

U(2,y, v, vy) = (20, — yv,) + i[(x — )+ (Y —vy)? + (2 +02)* + (y+v,)%, (15)
which in terms of the holomorphic coordinates on R? x R? can be written as
Vod ' =W(z,7 ,24,74) = i (Z42— —Z_zg +2-Z- + 24724), (16)
with explicit expressions in holomorphic coordinates for the map

Qil(z—a Z_5 24, 2—‘-) = (1:7 Y; U, ’Uy)

obtained by combining (10) and (12).
Now, recall that a connection on a hermitian line bundle L associated to the pre-quantum
principal S'-bundle over a symplectic manifold M is given locally by

Vy =X - (i/RO(X), X eX(M),

where © is a symplectic potential. Then, consider the polarized section sy of L over
R2 xR adapted to the symplectic potential ©r and its pull-back 59 adapted to © %, as
well as the polarized section ¢ of L over TR2 adapted to the symplectic potential © 5
and its push-forward ty adapted to © p, where P = Q*f’, satisfying

V;(‘tvo = —(Z/h)eﬁ;(), ('{0"{0) = 1,
Vido = ~/MOFy ()= 1,
where (-,-) is the hermitian product of the line bundle L and X € ¥(TR2), with similar

expressions for ¢g and sg in terms of P, F, (-,-) on L, and X € X(R? x Ez).

The polarized sections ¢ € Flsf/ are given by t = gto, with § € Cc (TR?) satisfying
Xg =0, for X € }Z(TR2715); thus, it follows that g depends only on the variables
(x,y) € R? seen as the zero section of TR2. Similarly, the polarized sections s € TrL
are of the form s = fsg, where 087{ = % =0, that is, f = f(z—,Z4+) is holomorphic.

Furthermore, as the pre-quantum line bundle is a linear bundle, we have that so = (5?0
for a nonvanishing function ¢ € Cg (TR2). Therefore,

V £30 = Vgdto = (X@)to + oV gto;
whence we get
d_¢; B .
¢
(cf. (14)-(15)); thus, ¢ = Ce¥/" . Similarly for so = ¢to, ¢ = C'et¥/h (cf. (16)). Hence

we have
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140 J.B. MORENO

Lemma 2.1. ForteTpL, ¢ FI;Z/, sel'rLl,s€ I‘};i, the hermitian products of these
polarized sections are given modulo multiplicative constants by the formulas

(£3) = 9@, 9)F (5 (2,03 00, 0y), 24 (2,5 00, vy) eV @000/,

(t’ 8) = g(‘r(z*?Z*;Z+7E+)ay(zfaE*;Z+a2+))f(2*7E#’)eiq,(Zi’Ei;ZJﬁng)/h?
with z_ (T, y; Vg, Vy), Z4 (T, Y; Uz, vy) and x(z2—, Z_; 24, 24 ), y(2—, Z—; 24, Zy) obtained from
(9)-(10) and (12), with ¥ (z,y;vs, vy) and V(z_,Z_; 24, Z1) given by (15) and (16).

Remark 2.2. Tt will be sometimes convenient to rewrite the product (¢, s) above as

(ts) =g (% %) Flom, 74 )em @y = v o= dhlle [F+121),

Now, as P is the natural polarization on the tangent bundle, given q € R? and
m € m7~1(g), with 7 the canonical projection, then T,R? = T}, (TR?)/P,,; thus,

A

L (Pa) = By (Tn(TR?) © A (T,R2),

2

S

and so the volume form ¢ of R? determines a (—3) — P-density, given by 0 = |ex|~2|e|2,
where ey is the volume form of T'(TR?). Then,

v{0vy, 0vy } = (lex {0z, Oy; 8’01,6%})71/2 - (lel{ O, 0y})1/2.

On the other hand, if J is a complex structure compatible with 2 and the euclidean
metric, then (R*, .J) is a Kéhler manifold and the polarization F is a holomorphic polar-
ization; so, there is positive section v € A_; /5(F') uniquely determined by vT = leal =12,

. . . . =2
where £q is the Liouville volume form in R? x R”. Hence, we have

v{0z_,02, ) = (|eal{07_,02,;0z_, 0z, }) /4.

Since @, is an isomorphism, for P = ®,(P) and F = (®~1),(F), the natural half densites
in A_y/5(P) and A_y/5(F) are given respectively by

v = |(q>—1)*{_:1_”—1/2|(®—1)>s<€‘1/27 7 = ‘E@*Q|_1/4.
But as eg«q = 4[dz A dy A dv, A duy] (cf. (11)), then we have from (9)-(10) that
V{07,021, 07,020} = 1)2, 0 {®,(0v,), . (9v,)} = 1/2V/2,

where 92 = L((®71).(9z) +i(@71).(9y-)), 024 = (@ 1).(921) — (D). (Dyy)).

Therefore, from the definition of the pairing and Lemma 2.1, we have that

touvsev), =

C./ o2, 9) (o 2y Yo FliEsv——s v = (== P42 P gy gy g, dy,s, (17
R4
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Groenewold-von Neumann product via Segal-Bargmann transform 141

where x = (x4 +2_)/2, y = (y4+ +y—)/2, 2+ = x4+ +iy+ and C is a constant.

Now, consider the space

HL3,(CxC) =
f:C?=C| 87_]" _ 9 0’/ |f(z1,%2) e 2 (54122 gy dy dvadys < 00 p
821 622 R4
where 21 = 21 + iy1, 20 = X2 + 1Yo.
Clearly, HL2,(C x C) ~ HL3,(C?), the space of holomorphic functions on C? which are
eI/ 2hdy(z)-square integrable. Therefore, this is a reproducing kernel Hilbert space
(cf. e.g. Theorem 1.4.3(2) in [10]) with reproducing expression given by

1 o (z—@ ZyWy —W_ W —W4 W
f(ZﬂA):W/W flw,wy ez G- tavwemwow-mwe @) gy dg dpydqy, (18)

where w_ = p_ +i¢_ and wy = py + iqy4.

Then, with a bit of algebraic manipulation, from (17)-(18) we obtain

<t®v,’§®5'> = C"/ 9(@, y) f(w_, oy )e~ #@ay=20) g= g (2P hyHeite),
pr JRS8

er (@(@—tw )iy (- —wi)Fve (wy —w- ) —ivy (D +wy)),

1 _ _
eﬁ(—w,w,—uuruur

)dp_dq_dpdq,dadydu, dv,,

and calculating the integrals with respect to v, and v,, we get:

pr R6

e~ ﬁ(u’J,wf+w+w++u’,¥,w+)dpidqidijdqudxdy;

whence,
(tovie) = (Dl = G700
with
Sp: HL3,(C x C) — L*(R?) (19)
given by
Snlfl(y) = C'e” R |l my)em shormmehlemrua ol (20)
e 2n (@10 ©2w2) gy, dg, dpydgs
and
Ty : L*(R?) — HL3,(C x C) (21)
given by

Talgl(wr,02) = C'e™ 3000 [ gla e bt ekt o it mldzay, — (22)
R

Vol. 33, No. 2, 2015]



142 J.B. MORENO

where we have identified w_ = w; = p1 + iq1, wy = wa = P2 + iqa.

Now, in order to pass from HL3;(C x C) to HL3,(C?) and relate to the standard Segal-
Bargmann transform, we conjugate in the second variable, that is, denoting

C,:CxC—CxC, (w1, w2) > (wy,w2), (23)
we have that, for an appropriate choice of C’,
Thlg) 0 Cy = Bulg] = Blgo ¢ 'Jomn : L*(R?) — HL*(C?) (24)

(cf. (2)-(6) and (22)-(23), where 9B is the standard 2-d Segal-Bargmann transform).

Then, as is well known, the standard Segal-Bargamann transform is an invertible unitary
operator B : L?(R?) — HL?*(C?) whose inverse can be written as

12
- e 2" —1z2 zz,—|z|?
B 1[f](x) = ey /(:2 f(z)e 2 +V2 eIl dp(z), x € R2. (25)

Therefore, from (24) and (25), using (2)-(6) and (20)-(23) and the discussion following
equation (7), we have the following

Theorem 2.3. For an appropriate choice of C' = Cy, the “rotated and scaled” form of the
Segal-Bargmann transform By, given by (3) and (24), is an invertible unitary operator
L*(R?) — HL3,(C?) whose inverse %gl can be written as %gl[f] = Sp[f o C3Y], Sh
given by (20), from which it follows that Sy : HL3,(C x C) — L*(R?) is an invertible
unitary operator whose inverse S,{l =Ty, is given by (22).

3. Re-deriving the Groenewold-von Neumann product

Starting from the usual convolution of functions on the symplectic pair groupoid

[f1 ® fa](p1,q1:ps.q3) =/ f1(p1, q15 P2, 42) f2(P2, 425 3, ¢3)dp2dgs,
R2

and motivated by the measure in the Segal-Bargmann space and the pairing given by
equation (19), we define a deformed convolution on L3, (C x C) as follows

®p: HL3,(C x C) x HLE,(CxC) — HLZ(CxC) (26)
(fi,f2) = fi@nf,

where

[f1 @ fo](wr,w3) = / Fr(wi, @) fo(ws, s )e ™22 dpsdgs, (27)
R2
which can be straightforwardly checked to satisfy the following

Lemma 3.1. The deformed convolution defined by (26)-(27) above is associative.

[Revista Integracion



Groenewold-von Neumann product via Segal-Bargmann transform 143

From this, we define a new product on L?(R2) as follows

wp: LX(R?) x L*(R?) — L2(R?) (28)
(91,92) = g1 %n g2,

where

g1 *n g2 = Sp[ Tnlg1] @n Thlg2] |, (29)

which from Theorem 2.3 and Lemma 3.1 satisfies the following

Corollary 3.2. The product xp, defined by (28)-(29) above is associative.

Finally, by a straightforward computation, one can easily check the following

Proposition 3.3. The formula for the product xp, defined by (28)-(29) via (20)-(22) and
(26)-(27) coincides with formula (8) for the Groenewold-von Newmann product.

As a last remark, we emphasize that the whole treatment presented in this short paper
generalizes in an obvious way from R? to R?", for every n € N.
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