Cichoski, Alexandre José; Cansian, Ana Paula; Di Luccio, Marco
Viability of Staphylococcus xylosus during shelf-life of dulce de leche prepared by vacuum evaporation
Ciência Rural, vol. 41, núm. 11, noviembre, 2011, pp. 2026-2031
Universidade Federal de Santa Maria
Santa María, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=33121065021
Viability of Staphylococcus xylosus during shelf-life of dulce de leche prepared by vacuum evaporation

Alexandre José Cichoski1 Ana Paula Cansian2 Marco Di Luccio2

ABSTRACT

In this research an innovation in the manufacture of dulce de leche by vacuum evaporation is presented, based on the addition of Staphylococcus xylosus. The culture growth, lactic acid bacteria, pH, acidity, water activity, and lactose and sucrose contents were monitored. The cell counting of S. xylosus varied from log$_{10}$ 6.22 cfu g$^{-1}$ to log$_{10}$ 6.83 cfu g$^{-1}$. Lactic acid bacteria naturally occurring in the milk varied from log$_{10}$ 3.62 cfu g$^{-1}$ to log$_{10}$ 4.38 cfu g$^{-1}$ (90th day of storage). The pH was favourable to the growth of S. xylosus, showing the viability of using this culture in this kind of product.

Key words: dulce de leche, starter culture, dairy products, Staphylococcus xylosus.

INTRODUCTION

Dulce de leche is a milk-based candy, prepared by slowly heating of sweetened milk, typically found in countries of Central and South America, but also with similar products found in France ("confiture de lait"). This product presents a basic composition similar to the sweetened condensed milk, but is normally prepared in an open cooker without vacuum; at 130-140°C for 1h. Variations on the operational conditions may be found. Depending on the cooking conditions, many changes in the product may occur, changing its nutritional characteristics (MALEC et al., 2005; CICHOSKI et al., 2005). The product colour may also vary from a light cream colour to a dark brown. This colour is a function of the degree of completeness of Maillard reactions that occur during cooking, which may also influence the product aroma and flavour (MALEC et al., 2005; CICHOSKI et al., 2006a).

Vacuum concentration can be used to concentrate a product under mild temperatures, minimizing the influence of high temperatures on the undesired reactions, and thus, on the nutritional and sensorial quality of the food (SINGH & HELDMAN, 1993). The preparation of dulce de leche by vacuum evaporation has the main advantage of the use of mild temperatures in the process. Thus, the contents of protein, sugar and flavour compounds are less affected

1Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria (UFSM), Campus Universitário, Prédio 42, Bairro Camobi, 97105-900, Santa Maria, RS, Brasil. E-mail: cijoale@gmail.com. Autor para correspondência.
2Departamento de Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, RS, Brasil.
by cooking than when normal boiling temperatures are used. The nutritional properties of the end product are then maintained and flavour characteristics can be improved when compared to the product obtained by cooking at higher pressure, minimizing the off-flavours characteristic of overcooking.

Staphylococcus xylosus are Gram-positive and coagulase-negative bacteria, of the family _Micrococccae_. It occurs in the first few days of cheese ripening, when the pH is still above 5.0 (MOUNIER et al., 2008). Thus, this culture is little used as pure starter culture in cheese making. This culture is commonly used in cured and fermented meat products, with the main objective to develop flavour, aroma and texture (LÜCKE, 1994). _Staphylococcus xylosus_ shows proteolytic and lipolytic activity, what may contribute to development of aroma and flavour in fermented meat products (STAHNKE, 1994; OLESEN et al., 2004). The application of such microorganisms in association to lactic acid bacteria has been investigated, to assess the application of such starters in aroma and flavour development (DALMIS & SOYER, 2008; CASABURI et al., 2008).

The objective of this work was to assess the viability of using a starter culture, _Staphylococcus xylosus_ in the production of _dulce de leche_ by vacuum evaporation, aiming to introduce technological innovation in this kind of dairy product. It is worth noting that all kind of _dulce de leche_ produced in South America do not include the addition of pure microbial cultures in their formulation.

MATERIALS AND METHODS

Milk pre-concentration

Thirty litres of standardised and pasteurised milk (1.3% fat) were concentrated in a vacuum cooker at 50ºC, vacuum pressure of -0.825kgf cm\(^{-2}\), stirring rate 170rpm, for 20min (CICHOSKI et al., 2005).

Preparation of sugar syrup

The amount of sucrose used in all experiments was 20% (w/w) in relation to the mass of pre-concentrated milk. Arabic gum was added to the solid sucrose in a ratio of 1g of Arabic gum to each 1L of non-concentrated milk. 25mL of water were added to each 100g of sucrose in the formulation. The mixture was heated to 110ºC and then 2% (w/w) of glucose was added in relation to the sucrose mass. This syrup was stored at 10ºC (CICHOSKI et al., 2005; 2006a; 2006b).

Preparation of the _dulce de leche_

The previously pre-concentrated milk was mixed with the sugar syrup and transferred to the vacuum evaporator. The candy was prepared at 50ºC, at a stirring speed 170rpm, vacuum pressure -0.825kgf cm\(^{-2}\) for 20min (CICHOSKI et al., 2005; 2006a; 2006b). After cooking, the mass was divided into two parts. 25g of lyophilised culture of _S. xylosus_ (Strain Flora Carn SX®100, Chr. Hansen) per kg of mass were added to one sample (the number of bacteria ranged from 5.7 to 5.9log cfu g\(^{-1}\) for all strains), hereby determined as “Test” sample. The other part of the mass was used for control experiments, where no culture was added. The candy was packed in 200mL-plastic jars with aluminium seal. The jars were stored for 120 days at 10ºC. The experiments were run in triplicates for evaluation of experimental error.

Physico-chemical analysis

The analyses of pH, acidity, water activity, lactose and sucrose were carried out just after product formulation (Day 0) and at the 120th day of storage. Content of moisture, protein, oil and fat, and total soluble solids (*°Brix*) was determined right after product formulation. Water activity (*a*\(_w*)) was determined at 10ºC in an Aqualab CX-2 Water Activity System, following the standard procedure described by the supplier. The calibration was carried out with a 6M solution of LiCl in deionised water.

Lactose was determined following the method described by FIL-IDF 28-A (1974). Protein, oil and fat, ashes and pH were determined following procedures described by AOAC (2000). Sucrose, Dornic acidity and total soluble solids (*°Brix*) were determined as described by IAL (2005).

Microbiological analysis

Microbiological analyses were carried out just after product formulation and at the 15th, 30th, 45th, 60th, 90th and 120th day of storage at 10ºC. The number of cells of _S. xylosus_ and lactic bacteria was determined following the procedure described by STAHNKE (1995), using mannitol salt agar (MSA) and Man, Rogosa & Sharp agar (MRS), respectively, following incubation at 30ºC for 72h.

Statistical analysis

The physico-chemical and microbiological analyses were carried out in triplicates. The results were analysed by analysis of variance, followed by Tukey’s test, applied to verify the significance level between the averages (P<0.05), using the software Statistica 6.1 (STATSOFT INC, TULSA, OK, USA).

RESULTS AND DISCUSSION

The composition of the _dulce de leche_ (Test and Control) right after production was 9.67% protein,
9.30% fat, 8.20% sucrose, 5.53% lactose, 2.00% ashes, 65.30% moisture and 54°Brix. The pH, acidity ("Dornic"), a_w and content of lactose and sucrose found in the samples are presented in table 1.

The Test and Control treatments were prepared with pure cultures of Staphylococcus xylosus, as a starter culture. The pH of the test sample was 6.36 (Table 1), which is lower than the growth inhibition limit of this microorganism (STANHKE, 1995). The acidity did not increase in the Test and Control samples, during the 120 days of storage at 10°C. Consequently, no significant differences were observed. This result is confirmed by the low variations observed in the content of lactose and sucrose.

The plate count of Staphylococcus xylosus during storage are presented in figure 1. The number of colonies of Staphylococcus xylosus in the control sample (that naturally occurs in milk) varied from log$_{10}$ 2.50cfu g$^{-1}$ to log$_{10}$ 4.27cfu g$^{-1}$. In the Test samples, where a starter culture was added, the number of colonies varied from log$_{10}$ 5.80cfu g$^{-1}$ to log$_{10}$ 6.83cfu g$^{-1}$ (Figure 1). The cell counting in the Test samples was always higher than in the control product.

The strain Staphylococcus xylosus presents a good growth between 15°C and 45°C, and can grow in NaCl concentrations up to 15%, and in pH higher than 5.7 (GEISEN et al., 1992; STANHKE, 1995). The lowest pH in the Test sample was 6.36 (Table 1), which is higher than the growth inhibition limit for Staphylococcus xylosus. (CARRASCOSA & CORNEJO, 1989).

Besides this positive characteristic presented by the Test sample, an important result was observed, which was the growth of Staphylococcus xylosus (Figure 1) at 10°C and at a sugar concentration of 13.73% (5.53% lactose + 8.20 sucrose, Table 1). This behavior is remarkable, since the osmotic pressure obtained at such a high sugar concentration and low temperature could have inhibited its growth. This proves the possibility of using a pure culture of Staphylococcus xylosus in dulce de leche, aiming at helping with development of special aroma, taste and texture to such products.

The Test samples presented a_w of 0.95, which is lower than the water activity that favour the rapid growth of bacteria. Most of bacteria grow fast in a_w between 0.99 to 0.98. However, the cell counting of Staphylococcus xylosus did not decrease, remaining practically constant during all the storage time (Figure 1). This result is important, since it shows that the added culture remains viable throughout the time of storage. This behaviour may be explained by the ability of the Staphylococcus xylosus to grow in low a_w. This strain was already detected in matured and fermented meat products, which show a_w between 0.86 and 0.85 (GARCIA et al., 1995; TERRA et al., 2007).

Different species of pure cultures of Staphylococcus xylosus have been added to traditional Italian salami ("saliscia Vallo di Diano"), to induce proteolysis and lipolysis, improving flavour and aroma. The processing and storage of this kind of meat product, the cell counting varied between 10^6 and 10^7cfu g$^{-1}$ (CASABURI et al., 2008).

In the present work, the cell counting of Staphylococcus xylosus in the Test samples during storage varied from log$_{10}$ 6.22cfu g$^{-1}$ to log$_{10}$ 6.83cfu g$^{-1}$, which is in accordance with the reported for Italian salami. This growth suggests that proteolysis may be occurring in the dulce de leche, what could improve aroma and taste of this product, evidencing the need of further studies that involve sensory analysis of the product. Further studies are thus needed for confirming this statement.

The evolution of naturally-occurring lactic bacteria is presented in figure 2. The naturally occurring lactic bacteria count in the Control samples varied from log$_{10}$ 3.41cfu g$^{-1}$ to log$_{10}$ 5.14cfu g$^{-1}$, while in the Test samples this countings varied from log$_{10}$ 3.62cfu g$^{-1}$ to 6.83cfu g$^{-1}$.

Table 1 - Acidity, pH, a_w, lactose and sucrose content in the Test and Control samples.

<table>
<thead>
<tr>
<th></th>
<th>Control 0h</th>
<th>Control 120h</th>
<th>Test 0h</th>
<th>Test 120h</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.50 ± 0.02a</td>
<td>6.36 ± 0.01b</td>
<td>6.50 ± 0.02a</td>
<td>6.57 ± 0.01b</td>
</tr>
<tr>
<td>Acidity ("Dornic")</td>
<td>28.80 ± 0.60a</td>
<td>30.45 ± 0.06a</td>
<td>28.80 ± 0.60a</td>
<td>30.89 ± 0.58a</td>
</tr>
<tr>
<td>a_w</td>
<td>0.956 ± 0.001a</td>
<td>0.955 ± 0.001a</td>
<td>0.956 ± 0.001a</td>
<td>0.955 ± 0.001a</td>
</tr>
<tr>
<td>Lactose (%)</td>
<td>5.53 ± 0.06a</td>
<td>5.52 ± 0.04a</td>
<td>5.53 ± 0.06a</td>
<td>5.41 ± 0.07a</td>
</tr>
<tr>
<td>Sucrose (%)</td>
<td>8.20 ± 0.10a</td>
<td>8.28 ± 0.05a</td>
<td>8.20 ± 0.10a</td>
<td>8.33 ± 0.03a</td>
</tr>
</tbody>
</table>

Different superscripts in the same line indicate significant differences (P<0.05), by Tukey’s test.
Viability of *Staphylococcus xylosus* during shelf-life of “dulce de leche” prepared by vacuum evaporation.

No significant differences ($P>0.05$) were observed between the Control and Test samples before the 60th of storage. Studies on Cheddar cheese showed that the naturally occurring lactic bacteria countings varied from $\log_{10} 7.0$ to $\log_{10} 8.0$ after 3 months of storage. These bacteria converted the lactose to lactic acid and also induced the proteolysis and lipolysis, which contributed to the improvement of flavour and aroma of the final product. Moisture, protein, fat content and pH of the cheese were about 38%, 25%, 32% and 5.5, respectively (EL SODA et al., 2000; FURTADO, 2005). In the present work, the Test *dulce de leche* presented final moisture 65.7%, sugar 13.73% (8.20% sucrose and 5.53% lactose), 9.67% protein, 9.30% fat and pH 6.50 (Table 1), while the counting of lactic acid bacteria after 3 months of storage was $\log_{10} 6.08$ cfu g$^{-1}$ (Figure 2). Although the Test sample presented higher moisture content when compared to the Cheddar cheese, the number of lactic bacteria was lower, as well as pH could have been inadequate for the growth. Proteolysis could also have been hindered.

In the fermented meat product with addition of pure culture of *Staphylococcus xylosus* and *Lactobacillus curvatus*, CASABURI et al. (2008) verified that the higher degree of proteolysis occurred when this product was compared to the product without the addition of *Lactobacillus*. The proteolysis was correlated to the drop in pH due to the action of *Lactobacillus curvatus*, what favoured the action of indigenous proteolytic enzymes of the meat. The milk
contains the indigenous plasmin that works best at pH between 6.5 and 8.0 (SCOLLARD et al., 2000; MARTINS, 2006; CORTELLINO et al., 2006). This enzyme plays an important role in aroma and flavour development in Emmental and Gouda cheese production, due to its ability to induce proteolysis (VARNAM & SUTHERLAND, 1995). In the present work, the number of lactic bacteria present in the Test samples was not able to reduce the pH of the product, which remained in the range favourable for the proteolytic action of plasmin.

CONCLUSION

The high sugar concentration and water activity of the “dulce de leche” did not inhibit the growth of the pure culture of Staphylococcus xylosus during storage for 120 days at 10°C, showing the possibility of using this culture in the production of dulce de leche. The sugar concentration of 13.73% and water activity of 0.95 did not inhibit the growth of the pure culture of Staphylococcus xylosus during storage at 10°C for 120 days. These results suggest the need of further investigation concerning the aroma, taste and texture of dulce de leche with addition of Staphylococcus xylosus.

The countings of lactic acid bacteria that naturally occurs in the dulce de leche did not cause significant changes in the in the sugar (lactose and sucrose) content, and consequently in the acidity and pH, thus not influencing the growth of the pure culture of Staphylococcus xylosus that was added to the product.

REFERENCES

MARTINS, J.M. Physical-chemical and microbiological characteristics in the maturation process of artisanal cheese. 2006. 146f. PhD (Thesis) - Federal Univeristy of Viçosa, MG, Brazil.

SCOLLARD, P.G et al. Plasmin activity, b-lactoglobulin denaturation and proteolysis in high pressure treated milk.
Viability of *Staphylococcus xylosus* during shelf-life of “dulce de leche” prepared by vacuum evaporation.

