Cecagno, Diego; Anghinoni, Ibanor; Valadão Gigante de Andrade Costa, Sêrgio Ely; Martins Brambilla, Daniel; Posselt Martins, Amanda; Cavazini Magiero, Emanuelle; Bagatini, Tatiane; Assmann, Joice Mari; Nabinger, Carlos
Long-term nitrogen fertilization in native pasture with Italian ryegrass introduction - Effects on soil health attribute indicators
Ciência Rural, vol. 47, núm. 5, 2017, pp. 1-6
Universidade Federal de Santa Maria
Santa Maria, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=33150130015
Long-term nitrogen fertilization in native pasture with Italian ryegrass introduction - Effects on soil health attribute indicators

Diego Cecagno¹ Ibanor Anghinoni¹ Sérgio Ely Valadão Gigante de Andrade Costa¹ Daniel Martins Brambilla² Amanda Posselt Martins¹ Emanuelle Cavazini Magiero¹ Tatiane Bagatini¹ Joice Mari Assmann¹ Carlos Nabinger²

¹Departamento de Solos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 7712, 91540-000, Porto Alegre, RS, Brasil. E-mail: dcecagno@hotmail.com. ²Corresponding author.

INTRODUCTION

Pampa’s biome native pasture is the main nutritional source used to feed sheep and beef cattle in the Rio Grande do Sul State (SEBRAE/SENAR/FAR-SUL, 2005). However, incorrect anthropogenic actions have been degrading native pastoral ecosystems from this region, by decreasing the occurrence of desirable forage species and animal load bearing capacity of the native pasture. Excessive stocking rates and improper fertilization used in pastoral environments has caused reduction in plant biomass production and soil organic matter (SOM) content and lability as well as soil microbial biomass (SOUZA et al., 2010; CONTE et al, 2011).

The use of nitrogen (N) fertilizer is required for intensifying the meat production on pasture since N is an essential nutrient required in large amounts by grass species (SARMENTO et al., 2008). In addition, summer species predominate in the Pampas biome, becoming necessary the introduction during winter season of species with high yields such as Italian ryegrass (Lolium multiflorum Lam.) (CONTERATO et al., 2016). Both nitrogen fertilization and Italian ryegrass introduction in native grassland can be an alternative for sustainable Pampa biome exploration. However, these factors affect the carbon (C) dynamics in soil due to their effects on chemical, physical and biological properties (CARTER, 2002). Considering the existing coupling between C and N...
N in the soil system, monitoring C dynamics in these conditions is necessary to monitor the environmental impacts over time.

According to SOUSSANA & LEMAIRE (2014), plants coupling atmospheric C and mineral N in the photosynthesis process are an ongoing process. Thus, these compounds are added to the soil in a coupled form, accumulating both simultaneously. However, since plants normally have a higher C:N ratio compared to the soil, constant N inputs in the soil can increase C sequestration (FORNARA & TILMAN, 2012).

Both microbial biomass and soil organic fraction are indicators of soil quality and sustainability of production systems, being affected by soil management (NANNIPIERI et al., 2003; BODDEY et al., 2010). Thus, over time, N fertilization can increase crop production and soil C stocks (COSTA et al., 2008). However, OLSON et al. (2005) observed a decrease in C stocks with N fertilization, due to its potential to increase soil microbial activity. There may be both positive (MAJUMDER et al., 2007) and negative effects (YU et al., 2016) in microbial biomass by nitrogen fertilization.

Thus, looking for a strategy to manage native grasslands and avoid pasture and environmental degradation, this study aimed to evaluate the long-term N fertilization impacts in an Ultisol under native grassland with Italian ryegrass introduction, by measuring some soil attributes that are considered as soil health indicators.

MATERIALS AND METHODS

The experiment was carried out since 1996 at the Agronomic Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, Brazil, on a Rhodic Paleudult clay loam soil. In the 0-20 and 20-40cm soil layers clay contents were 130 and 200g kg⁻¹, respectively. The climate is subtropical with warm summer weather (CfA), according to the Köppen classification. The historical annual average from 1970 to 2009 for air temperature, rainfall and reference evapotranspiration (ETo) are 18.8°C, 1455 and 1161mm, respectively (BERGAMASCHI et al., 2013).

In 1996, the soil was fertilized with 500kg ha⁻¹ of 05-20-20 fertilizer and limed to reach pH 6.0 with 3.0Mg ha⁻¹ of lime broadcast applied. In this year, grazing began with beef cattle and sheep. The stocking rate was controlled to keep the forage supply at the level of 12% (12kg dry mass offered / 100kg live weight / day). Some years had beef cattle grazing, while others sheep. Treatments consisted of topdressed N annual rates of 0, 100 and 200kg ha⁻¹ yr⁻¹ (called in the current study as “without N”, “moderate N” and “high N”, respectively) conducted since 1996. The N source was always urea and the rates were splitted in two applications (50% in May and 50% in July). The experiment is characterized by a secondary succession of native grassland spanning an area of 3.11 hectares, and was carried out in a randomized block design with two replicates. Experimental plots size ranged from 0.3961 to 0.6587ha. The Italian ryegrass introduction occurred in 2007, when soil was again limed and fertilized with 300kg ha⁻¹ of 12-52-00 fertilizer. During winter and summer, Italian ryegrass and *Paspalum notatum* and *Cynodon dactylon* were the predominant species. In 2010, N was applied July 30th and November 2nd, with rainfall around 15mm (nine and seven days after application). The average forage accumulation rate in 2010 was 7918, 9657 and 14144kg ha⁻¹ of dry matter, and grazing pressures of 757, 895 and 1167kg ha⁻¹ of live weight were recorded for N rates of 0, 100 and 200kg ha⁻¹, respectively. To estimate the dry matter accumulation rate (kg ha⁻¹) three exclusion cages per plot using the double-pairing technique were used. The accumulation rate was obtained by the difference between the forage mass outside the cage at measurement i-1 and the forage mass from within the cage at measurement i, after approximately 28 days.

The average soil chemical attributes in the 0-20cm layer from shovel sampling in August 28th of 2010 were, for SOM, available phosphorus (P Mehlich 1) and potassium (K Mehlich 1), exchangeable calcium and magnesium (KCl 1mol L⁻¹): 18.2g kg⁻¹, 18.6mg dm⁻³, 0.31cmol⁻¹ kg⁻¹, 1.45cmol⁻¹ kg⁻¹ and 0.83cmol⁻¹ kg⁻¹, respectively. Total (TOC, TN), particulate (POC, PN) and mineral-associated carbon and nitrogen stocks (MAC, MAN) were determined for combined soil samples (ten subsamples) of the 0-20 and 20-40cm soil layers sampled during August of 2010. A native grassland area without grazing located about 500m from the experiment was also sampled. This area was grazed with traditional cattle management until approximately 1980 when grazing has been suspended. SOM fractionation was performed according to CAMBARDELLA & ELLIOT (1992). Total organic carbon and POC were analyzed by dry combustion using a Shimadzu TOC-V CSH analyzer. TN and PN were determined by Kjeldahl method. MAC and MAN were calculated by the difference between total and particulate stocks. Carbon and N stocks were calculated using the soil equivalent mass according to ELLIERT & BETTANY (1995). For stock calculations, soil bulk density was estimated using volumetric rings (270 cm³); soil density values were 1.50 and 1.56kg dm⁻³ for the 0-20 and 20-40cm layers, respectively.
Combined soil samples from five subsamples per plot sampled from the 0-5 and 5-10cm soil layers were used to determine soil microbial biomass. Soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), microbial respiration and metabolic quotient were determined according to VANCE et al. (1987), BROOKES et al. (1985), ALEF & NANNIPIERI (1995) and ANDERSON & DOMSH (1993), respectively.

Results were submitted to analysis of variance (ANOVA) and, when significant (P<0.10), averages were compared by Tukey test (P<0.10) using the SISVAR software. The following statistical model was used for the ANOVA:

\[Y_{ijk} = \mu + B_{i} + N_{j} + E_{r} + (B_{i}N_{j}) + e_{ijk} \]

where \(\mu \) = the overall experiment average; \(B \) = the blocks (i = 1, 2); \(N \) = the nitrogen rates (j = 1, 2, 3); L = the soil layer (k = 1, 2); and Error = the experimental error.

RESULTS AND DISCUSSION

C stocks and C fractions were not affected by topdressed nitrogen fertilization over time, being similar to those observed in the reference area (Table 1). TOC stocks in 0-20cm were around 25% lower than those reported by CONTE et al. (2011) in similar climate, inputs in the system, keeping the C stocks under similar levels.

Table 1: Carbon and nitrogen stocks and fractions in an Ultisol with continuous grazing in native pasture with Italian ryegrass introduction, under different nitrogen topdressing rates.

<table>
<thead>
<tr>
<th>Stocks</th>
<th>Fractions</th>
<th>Soil layer</th>
<th>Reference area</th>
<th>Nitrogen rate – kg ha(^{-1})</th>
<th>Mg ha(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>cm</td>
<td>0</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

	Total\(^{*}\)	0 – 20	25.77±2.28	25.88±3.06	30.95±2.55	29.42±1.24	28.01±1.72a
	Particulate\(^{**}\)	20 – 40	18.37±1.71	21.12±0.48	24.93±4.23	20.16±0.42	21.15±1.07b
	Mineral-asso.\(^{**}\)	0 – 20	6.72±0.52	5.08±0.30	5.67±1.17	4.42±0.10	5.47±0.40a
		20 – 40	2.23±0.31	1.73±0.07	2.03±0.48	1.32±0.37	1.83±0.32b
		0 – 20	19.06±1.76	20.79±2.76	25.27±1.38	25.00±1.14	22.53±1.32a
		20 – 40	16.14±1.65	19.40±0.41	22.90±3.74	19.33±0.78	19.44±0.84b
	Total\(^{**}\)	0 – 20	2.46±0.15	2.42±0.25	2.97±0.16	2.91±0.02	2.69±0.11a
	Particulate\(^{**}\)	20 – 40	1.65±0.22	1.79±0.24	1.79±0.36	1.65±0.05	1.72±0.17b
	Mineral-asso.\(^{**}\)	0 – 20	0.62±0.04 aAB	0.41±0.06 aC	0.64±0.03aA	0.55±0.03aB	0.56±0.03
		20 – 40	0.35±0.02 bA	0.22±0.00 bB	0.22±0.02bB	0.25±0.03bB	0.26±0.01
		0 – 20	1.84±0.11	2.01±0.20	2.33±0.13	2.36±0.00	2.14±0.08a
		20 – 40	1.30±0.20	1.57±0.24	1.57±0.35	1.40±0.02	1.46±0.15b

Values are mean and standard error (n=2) and those followed by the same capital letter in the lines and lower case letter in the columns do not differ according to Tukey test (\(^{*}\) = P<0.10; \(^{**}\) = P<0.05; \(^{***}\) = P<0.01).
Total nitrogen stocks also were not affected by N fertilization (Table 1). Grazing recycles (as manure, urine and plant senescent material) a large soil N fraction of soil or fertilizer-N. Residue decomposition increases N inorganic availability becoming available to leaching, denitrification and ammonia volatilization processes (PARDON et al., 2016).

Rainfall events with at least 5mm within two days after urea application led N volatilization losses of less than 20% of the applied N (WHITEHEAD, 1995). Nitrogen applications under this trial were always carried under low soil moisture conditions. In the evaluated year (2010), rainfall of at least 5mm occurred nine and seven days after the first and second application, respectively, leading to potential NH₃ losses. Therefore, a fraction of the applied N rates was potentially lost even before soil absorption.

Cation exchange capacity (CEC), pH, buffering capacity and SOM content are important factors that influence ammonia losses by volatilization (KNOBLAUCH et al., 2012). The surrounding urea granule region may rise up to 3 pH units, creating favorable conditions for NH₃ volatilization even in acidic soils (WHITEHEAD, 1995). In low buffering capacity soils and low CEC⁺ₚH₇.₅⁺ as in the present trial, volatilization may have occurred a long time after fertilization (FRENEY et al., 1983).

The N losses by nitrate leaching occurs from 10 to 30% of the fertilized N (MEISINGER et al., 2008) and may differ according to the soil texture, N rates and the water percolation in the soil profile. In average, historically, there is an annual water surplus of 300mm (BERGAMASCHI et al., 2013), that can be leached into the soil profile. As a result, the lack of increase in N stocks even after long-term N fertilization may occur for two main reasons: 1) ammonia volatilization; and 2) soil texture and climate of the area favoring leaching losses (WHITEHEAD, 1995; MEISINGER et al., 2008).

The TN as well as the TOC stock was higher in the 0-20cm layer (Table 1). Such pattern results from surface residue deposition, higher biological activity due to higher root growth and exudates production (HAFNER et al., 2014). Despite N rates not affecting POC, the PN at 0-20cm layer was higher (P<0.10) under moderate rate, being similar to the reference area (Table 1). Such behavior can be explained by the higher microbial activity under high N rates. GAJDA (2010) also observed particulate organic matter losses in soils under high microbial activity.

Microbial activity responds faster to different grazing management processes than the TOC and TN, being more intense in the 0-5cm layer (Table 2). Despite the evaluated soil layer, the N rate effects only affected (P<0.10) the microbial respiration and, in the 0 to 5cm layer, the SMBN. SMBN was higher under the highest N rates and higher microbial respiration occurred under all N rates (Table 2). Similar N fertilization impacts in the long-term conditions were observed by HATCH et al. (2000), which can be explained by the increase in available N fraction.

Table 2 - Microbial activity in an Ultisol, with continuous grazing in native pasture with Italian ryegrass introduction, under different nitrogen topdressing rates.

<table>
<thead>
<tr>
<th>Soil attribute</th>
<th>Soil layer (cm)</th>
<th>Nitrogen rate – kg ha⁻¹</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil microbial biomass carbon* (µg g⁻¹)</td>
<td>0 – 5</td>
<td>255±8.1</td>
<td>285±0.6</td>
</tr>
<tr>
<td></td>
<td>5 – 10</td>
<td>171±24.3</td>
<td>169±13.7</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>213±8.1</td>
<td>227±6.5</td>
</tr>
<tr>
<td>Soil microbial biomass nitrogen*** (µg g⁻¹)</td>
<td>0 – 5</td>
<td>35±1.3</td>
<td>44±1.4 a</td>
</tr>
<tr>
<td></td>
<td>5 – 10</td>
<td>24±0.4 b</td>
<td>25±1.4 b</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>29±0.5</td>
<td>34±1.4</td>
</tr>
<tr>
<td>Microbial respiration** (µg CO₂ g⁻¹ soil h⁻¹)</td>
<td>0 – 5</td>
<td>1630±50</td>
<td>2090±78</td>
</tr>
<tr>
<td></td>
<td>5 – 10</td>
<td>740±223</td>
<td>800±100</td>
</tr>
<tr>
<td>Metabolic quotient* (µg C/µg Cmic g⁻¹ soil h⁻¹)</td>
<td>0 – 5</td>
<td>6.40±0.02</td>
<td>7.35±0.20</td>
</tr>
<tr>
<td></td>
<td>5 – 10</td>
<td>4.32±0.60</td>
<td>4.72±0.06</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>5.36±0.29</td>
<td>6.04±0.07</td>
</tr>
</tbody>
</table>

Values are mean and standard error (n=2) and those followed by the same capital letter in the lines and lower case letter in the columns do not differ according to Tukey test (* = P<0.10; ** = P<0.05; *** = P<0.01).
and microbial protein synthesis as well as increasing TOC and microbial biomass. As observed in this trial, PEREZ et al. (2005) reported no N addition effect in the SMBN in the 5-10cm layer. This occurs due to residues accumulation on the soil surface leading to an increase in microbial respiration (PEÑA et al., 2005). However, microbial respiration is high in all treatments compared with the results of SILVA et al. (2010). Even under conventional tillage and in a clayey soil, these authors reported lower values due to the higher organic matter physical protection resulted from clay-organic matter interactions.

CONCLUSION

The long-term nitrogen fertilization in a native pasture with Italian ryegrass does not change total soil carbon and nitrogen stocks. Yet, rates of 100kg N ha\(^{-1}\) yr\(^{-1}\) increase soil nitrogen in its particulate fraction. The increase in N fertilization rates up to 200kg N ha\(^{-1}\) yr\(^{-1}\) led to increases in the soil microbial biomass nitrogen as well as microbial respiration. Thus, the rate of 100kg ha\(^{-1}\) yr\(^{-1}\) increases in soil health, increasing N in the more labile organic matter fraction and enhancing N cycling in the soil system.

REFERENCES

