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Abstract 

The reincorporation process of Colombian ex-combatants is hindered by their chronic 

exposure to violence, which affects their Emotional Processing (EP). Characterizing their 

EP will contribute to their reinsertion. The objective of this work is to define an EEG-based 

brain connectivity approach to identify differences in EP between Colombian ex-combatants 

and individuals who were not directly exposed to the armed conflict. The proposed approach 

involves defining the Regions of Interest (ROI) and selecting one of five commonly used 

brain connectivity metrics: Correlation, Cross-Correlation, Coherence, Imaginary part of 

Coherency, and Phase-Lag Index. Significant differences were found in the positive valence 

stimuli in the Beta frequency band. These results support the previously reported trend in 

the literature regarding the difficulties ex-combatants have to process emotional 

information with positive valence. 

 
Keywords 

Brain Connectivity, Colombian Ex-combatants, EEG, Emotional Processing, ROI 

selection. 

 

 
Resumen 

El proceso de reincorporación social de los excombatientes colombianos, se dificulta 

debido a que la exposición crónica a la violencia afecta su procesamiento emocional (PE). 

Este proceso de reincorporación se puede facilitar mediante la caracterización de su PE. El 

objetivo de este artículo es definir una metodología de conectividad con EEG que permita 

identificar diferencias entre el EP de excombatientes y personas no directamente expuestas 

al conflicto armado. La metodología propuesta consiste en definir las Regiones de Interés 

(ROI) y seleccionar una de cinco métricas de conectividad funcional cerebral comúnmente 

utilizadas: correlación, correlación cruzada, coherencia, parte imaginaria de la coherencia y 

el índice de desfase. Se encontraron diferencias significativas en los estímulos con valencia 

positiva en la banda de frecuencias Beta. Estos resultados apoyan la tendencia previamente 

reportada en la literatura hacia las dificultades de los excombatientes para procesar 

información emocional con valencia positiva. 

 

 
Palabras clave 

Conectividad cerebral, excombatientes colombianos, EEG, procesamiento emocional, 

selección de las ROI. 
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1. INTRODUCTION 

 

Reincorporation is a process whereby 

Colombian ex-combatants adapt to society 

after being part of an illegal armed group. 

This process is affected by their chronic 

exposure to violence, which is evidenced in 

changes in the expression of personality 

traits, social and cognitive behavior [1]. In 

the cognitive domain, some ex-combatants 

describe functional illiteracy or exhibit 

deficits in the executive function [2]. To-

gether, these findings suggest that the 

exposition to combat experiences increases 

the expression of atypical socio-cognitive 

processes, especially in Emotional Pro-

cessing (EP). EP is a neurocognitive mech-

anism in charge of the perception, recogni-

tion, evaluation and generation of a re-

sponse to stimuli and relevant emotional 

information in the environment. It is cru-

cial for human adaptation and survival [3]. 

This process begins by identifying changes 

in internal and external circumstances 

with different valences that act as trigger-

ing situations in emotional recognition [4]. 

This process activates multiple sources of 

cortical and subcortical brain structures 

during the observation of a stimuli and 

facilitates a rapid response appropriate to 

the social context [4]. 

The assessment of their cognitive and 

behavioral EP profile is crucial to charac-

terize ex-combatants after chronic exposi-

tion to war. Moreover, the characterization 

of EP will contribute to design cognitive 

training aimed to help ex-combatants in 

their reintegration process [1]. With this 

purpose, in this work we propose the use of 

brain connectivity analysis to detect atypi-

cal functioning in the EP of Colombian ex-

combatants. 

Studies in veterans have shown that 

experiences of combat and trauma during 

deployment were strongly associated with 

aggressive and violent behaviors. Veterans 

mainly manifest differences in emotional 

information processing [5]. Regarding Co-

lombian ex-combatants, an atypical func-

tioning of similar mechanisms is hypothe-

sized. In [2], the authors proposed psycho-

logical tests to evaluate how Colombian ex-

combatants are processing emotional in-

formation. They found a slight tendency of 

ex-combatants to poorly recognize positive 

emotional valence (specifically, recognizing 

happy faces), but it did not reach statistical 

significance compared to the control group. 

Another way to study EP consists in 

evaluating the Event Related Potentials 

(ERP) modulation [3, 6, 7]. In [6], the au-

thors found associations between the ex-

combatants’ ERPs responses to emotional 

images from the International Affective 

Picture System (IAPS) system and their 

empathy levels. In a previous work [7], it 

was found that when using ERP modula-

tions and the analysis of aggressive re-

sponses and social interactions, both 

groups (ex-combatant and civilian) could 

be automatically separated by applying 

supervised machine learning techniques. 

However, we only used psychological tests 

and ERPs modulations in response to visu-

al stimuli [3]. Based on these approaches, 

it is not possible to recognize how different 

functional areas contribute to the expres-

sion of failures in emotional processing of 

ex-combatants. 

Brain connectivity analysis has been 

proposed as a useful methodology to evalu-

ate interconnected activation during EP [8, 

9]. This technique focuses on how the brain 

processes the information to establish the 

pattern of activation required to generate a 

cognitive process [10]. Connectivity can be 

described at several levels: anatomical or 

structural, functional, and effective [11]. 

Functional connectivity is modified by life 

experiences [11] and has been employed to 

evaluate the EP of clinical populations 

with psychiatric disorders [12]. Thus, func-

tional connectivity analysis can be useful 

for the evaluation of the EP of subjects 

without clinical conditions but with special 

characteristics, such as exposure to armed 

conflict [11]. 
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Functional connectivity is defined as 

the temporal dependency of neural activa-

tion patterns of brain areas. It does not 

include directionality information. It relies 

on statistical measures such as correlation, 

covariance, spectral coherence or phase 

locking. Commonly, the computation of 

functional connectivity requires high tem-

poral resolution and, for this specific popu-

lation, it should be portable; therefore, 

electroencephalography (EEG) is a viable 

recording option [11]. 

The interpretation of the connectivity 

analysis performed on scalp-level EEG 

data is difficult and error-prone, because 

any neurophysiological interpretation of 

EEG data is hindered by the volume con-

duction problem [13]. Volume conduction 

can lead to uncertainties for many but not 

all connectivity analysis. Uncertainties 

exist because the connectivity could come 

from electrodes measuring activity from a 

single brain source, and not from true in-

teractions between electrodes [13]. 

There are several metrics to estimate 

functional connectivity, each of them af-

fected to different degrees by this phenom-

enon. In this work, we propose to select one 

of five functional connectivity metrics: 

Correlation, Cross-Correlation, Coherence, 

Imaginary part of Coherency and the 

Phase-Lag Index [14]. To achieve this, we 

provide an explanation of how these con-

nectivity metrics work, including their 

quantitative definition. 

To assess the EP in ex-combatants, 

thirty Colombian ex-combatants and 20 

Colombian individuals participated in the 

study. They performed an emotional 

recognition computerized task that used 

visual stimuli from the IAPS [15], syn-

chronized with EEG recordings. In general, 

these stimuli can generate emotional acti-

vation in a similar way to real conditions 

[16]. Using this dataset, we generated 

connectivity maps based on the metrics 

previously mentioned to compare their 

performance in group analysis. Finally, by 

using statistical tests we identified signifi-

cant differences between the emotional 

processing of ex-combatants and civilians. 

 

 

2. METHODOLOGY 

 
2.1 Experiment set-up 

 
2.1.1 Participants 

 

Fifty participants took part in the ex-

periment: 30 Colombian ex-combatants 

(Two female) recruited from the govern-

ment's ARN (Reincorporation and Normal-

ization Agency, former ACR) program and 

20 civilian people with no combat back-

ground (paired by gender, age and educa-

tional level). All the participants read and 

signed an informed consent form before the 

beginning of the study. The study's proce-

dures and informed consent were approved 

by the Bioethical Committee of the Faculty 

of Medicine of University of Antioquia in 

Medellín, Colombia. None of the partici-

pants manifested to have psychiatric, neu-

rological or drug abuse disorders. Their 

demographic information is provided in 

Table 1 (M= Mean, SD= Standard Devia-

tion). A Wilcoxon signed-rank test was 

performed to ensure consistency in age, 

gender and educational level differences 

across groups; the p-values are reported in 

the last column of Table 1. 
 

Table 1. Descriptive statistics of demographic variables. Source: Authors. 

 Ex-combatants n=30 Civilians n=20 p-values 

Gender (Female: Male) 2:28 2:18 0.678 

Age (years) M=37.5 

SD=8.22 

 

M=36.17 

SD=9.17 

0.589 

Educational level (years) M=10.33 

SD=3.10 

M=11.05 

SD=2.14 

0.373 
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2.1.2 Emotional processing - experimental 
task 

 

Participants performed an emotional 

categorization task based on the Interna-

tional Affective Picture System (IAPS) [15] 

validated for Colombian population [17]. 

This system consists of a set of visual 

stimuli with a wide range of semantic cat-

egories (positive, negative and neutral); 

positive and negative images contain high 

emotional intensity. These visual stimuli 

generate emotional activation in a similar 

way to real conditions: induction of mental 

representations, psycho-physiological 

changes, and facial action [16]. The task 

was designed in E-prime Software [18]. 

The participants were asked to categorize 

the stimulus displayed on a computer 

screen according to their valence, respond-

ing whether the stimuli were positive, 

neutral or negative as quickly as possible. 

In total, 60 images were selected from the 

IAPS, in accordance according with their 

Colombian validation [17]. The task was 

divided into four blocks. Each block con-

sisted of 60 trials with images (20 posi-

tives, 20 neutrals and 20 negatives). Each 

stimulus was presented randomly present-

ed per block, in total 240 stimuli were pre-

sented. The IAPS images were controlled 

in terms of brightness, color and intensity. 

They were presented in a 17-inch screen, 

60 cm away from the participant. 

 Fig. 1 shows the task pipeline; it con-

sists of four steps per trial. At first, a fixa-

tion cross is presented for 1000 ms to pro-

mote attentional focus on the center. Sec-

ond, there is an inter-stimulus interval 

ranging from 700 to 1000 ms. This step 

avoids habituation and the prediction of 

the next stimulus. Third, the stimulus is 

presented: IAPS images with different 

valence (positive, negative or neutral). This 

step lasts 500 ms. Finally, a response time 

of maximum 10 s was set. 

 
2.1.3 Data acquisition 

 

EEG recordings were acquired with a 

64-electrode NeuroScan EEG SynAmps2 

amplifier [19] at a sample rate of 1000 Hz. 

The electrodes were placed in accordance 

with the international 10-20 system. The 

impedances were maintained below 10 kΩ 

to obtain a good conductivity between the 

scalp and the electrodes. Scan 4.5 software 

was used for data recording [19]. The par-

ticipants were seated in a comfortable 

chair in front of a computer monitor, at a 

distance of 60 cm, inside a Faraday cage 

with the lights off for guaranteeing isolat-

ed electric conditions. The participants 

were asked to try not to blink, move, or 

speak while performing the task. 

 

 

 
Fig. 1. Stimulus design. The trial starts with a fixation cross, followed by a random Inter-Stimulus Interval (ISI) between 

700 and 1000 ms. The target stimulus is presented for 500 ms. The participants must respond within 10 s. Source: Authors. 
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2.1.4 Signals preprocessing 

 

EEG recordings were preprocessed in 

EEGLab toolbox for MATLAB [20]. The 

first step in the preprocessing was to 

down-sample the signal from 1000 Hz to 

500 Hz. They were re-referenced using 

Mastoids as a common reference for all 

channels. Then, a band-pass IIR digital 

filter was applied from 0.1 to 60 Hz to re-

duce environmental artifacts (power line 

noise) in the EEG data and to extract spe-

cific frequency bands associated with hu-

man cognition. 

To distinguish between artifacts and 

neural components of EEG signals, an 

automatic method described in [21] was 

employed. The automatic method is based 

on Independent Component Analysis (ICA) 

and Support Vector Machine (SVM). This 

method has the ability to isolate artifact 

components such as eye blinking, eye 

movements (EOG), muscular contractions 

(EMG) or cardiac signals (ECG) with high 

accuracy [21].  

After identifying the artifacts’ inde-

pendent components, they were removed 

and the original configuration (64-channel 

EEG) of the signals was reconstructed. 

Then, the recordings were segmented from 

200 ms before the stimulus to 800 ms after 

it. For each trial, the stimulus was tagged 

as negative, neutral or positive for the 

emotional processing task. Baseline correc-

tion was performed by subtracting the 

mean of the signal during the time window 

from -200 to 0 ms before the stimulus. 

Then, each trial was inspected for leftover 

noise in the signals to make sure only 

clean segments underwent further analy-

sis. Finally, four electrodes (HEO, VEO, 

CB1 and CB2) were excluded as they do 

not record neural activity. 
 

2.2 Selection of the functional connectivity 

metric 

 

There are several connectivity metrics 

used to estimate how different brain areas 

are connected during an experimental 

task. Functional connectivity is assessed 

by metrics that establish the existence of 

any type of covariance between two neuro-

physiological signals without providing any 

causal information. Below, five metrics 

divided into three different categories are 

described (see Fig. 2). 

As shown in Fig. 2, not all functional 

connectivity metrics are represented in the 

frequency domain. Then, before computing 

the non-frequency-based ones, it was nec-

essary to extract specific frequency bands 

associated with human cognition. Five 

band-pass IIR digital filters (with orders 

varying from 9 to 12, depending on the 

band) were applied to the previously pre-

processed EEG signals to divide them into 

different frequency bands of interest: Delta 

(0.10 Hz-3.99 Hz), Theta (4.00 Hz-7.99Hz), 

Alpha (8.00 Hz-13.99 Hz), Beta (14.00 Hz-

29.99 Hz) and Gamma (30.00 Hz-59.9 Hz). 

The Pearson’s Correlation Coefficient 

(COR) and the Cross-Correlation Function 

(XCOR) are time-domain-based. The COR 

is defined as the covariance of two signals 

scaled by the variance of each one of them 

and it estimates the linear correlation 

between them [22]. If (𝑡) ∈ ℝ𝑇and 𝑦(𝑡) ∈
ℝ𝑇are EEG signals at two different elec-

trodes, and 𝑇 is the number of time sam-

ples per epoch ( 𝑡 = 1,2, … , 𝑇) the COR 𝑅𝑥𝑦 is 

defined as: 

𝑅𝑥𝑦 =
∑ (𝑥(𝑡) − 𝑥̅

𝑻

𝒕=𝟏
)(𝑦(𝑡) − 𝑦̅)

√∑ (𝑥(𝑡) − 𝑥̅
𝑻

𝒕=𝟏
)2   ∑ (𝑦(𝑡) − 𝑦̅

𝑻

𝒕=𝟏
)2

 

 

 

(1) 

Where 𝑥̅ and 𝑦̅ are the sample mean of 

𝑥(𝑡) and 𝑦(𝑡) respectively. The result of 

computing 𝑅𝑥𝑦 is a scalar value at a given 

time window. The range of COR is 0 ≤
 𝑅𝑥𝑦  ≤  1. When 𝑅𝑥𝑦 = 0, signals 𝑥(𝑡) 

and 𝑦(𝑡) have no linear interdependence, 

while 𝑅𝑥𝑦 = 1 means complete linear direct 

correlation between the two signals. There-

fore, higher correlations indicate stronger 

functional connection between the related 

signals. 
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Fig. 2. Functional connectivity metrics are divided into three categories. Metrics computed from time, frequency or phase 

domain of EEG signals. Source: Authors.  

 

The XCOR is the cross-covariance of 

two EEG signals, 𝑥(𝑡) and 𝑦(𝑡), scaled by 

their individual variance [22]. The XCOR 

appraises the linear correlation between 

the signals as a function of time (𝑡 =
1,2, … , 𝑇 − 𝜏): 

 

𝐶𝑥𝑦(𝜏) =
∑ (𝑥(𝑡−𝜏)−𝑥̅

𝑻−𝜏

𝒕=𝟏
)(𝑦(𝑡)−𝑦̅)

√∑ (𝑥(𝑡)−𝑥̅
𝑻−𝜏

𝒕=𝟏
)2   ∑ (𝑦(𝑡)−𝑦̅

𝑻−𝜏

𝒕=𝟏
)2

  (2) 

 

Where 𝜏 is the time lag determined by 

the argument of the maximum XCOR 

When 𝜏 = 0, XCOR is equal to the Pear-

son’s correlation coefficient. The result of 

𝐶𝑥𝑦 is a scalar value at a given time win-

dow. XCOR values ranges between 0 ≤
 𝐶𝑥𝑦(𝜏)  ≤  1. When 𝐶𝑥𝑦(𝜏) = 0, signals 𝑥(𝑡) 

and 𝑦(𝑡) have no linear interdependence at 

time lag𝜏, and 𝐶𝑥𝑦(𝜏) = 1 represents com-

plete linear direct correlation at time lag 𝜏. 

In the frequency domain, the Coherence 

Function (COH) quantifies the linear rela-

tions between signals at a specific frequen-

cy. COH is defined as the absolute value of 

the complex coherence [23]. Coherence 

estimates how the phases in two different 

channels are coupled to each other. Coher-

ence is calculated by the cross-spectral 

density function 𝑆𝑥𝑦 of the two EEG sig-

nals, normalized by their individual auto-

spectral density functions. Complex coher-

ence is calculated as follows: 

 

𝐶𝐶𝑥𝑦 =
𝑆𝑥𝑦(𝑓)

√𝑆𝑥𝑥(𝑓)𝑆𝑦𝑦(𝑓)
 

(3) 

 

In Eq. (3), 𝑆𝑥𝑥(𝑓) and 𝑆𝑦𝑦(𝑓) are the au-

to-spectral densities of 𝑥(𝑡) and 𝑦(𝑡), re-

spectively. Then, COH coefficients are 

computed for each frequency f as follows: 

 

𝛤𝑥𝑦(𝑓) =
 |𝑆𝑥𝑦(𝑓)|2

𝑆𝑥𝑥(𝑓)𝑆𝑦𝑦(𝑓)
 

(4) 

 

The normalization factor puts coher-

ence on a scale from 0 to 1, where one 

means complete coherence and zero, com-

plete independence between 𝑥(𝑡) and 

𝑦(𝑡) at frequency 𝑓. 
The Imaginary Part of Coherency 

(ICOH) is obtained when complex values of 

the coherence are projected onto the imag-

inary axis [24]. ICOH is a metric of phase-

synchronization between two signals 

𝑥(𝑡)  and 𝑦(𝑡)  that uses the same equation 

as COH (Eq. 3), except that the imaginary 

part of coherence is selected before compu-

ting the magnitude. ICOH is zero when the 

cross-spectrum between the two EEG sig-

nals, 𝑥(𝑡)   and 𝑦(𝑡), has a 0° or 180° phase, 

and maximum when the cross-spectrum 

has a phase of ±90°. Then, ICOH is not 

affected by the 0° or 180° cross-spectral 

relationship between the volume-

conducted activities of a single source at 

two separate sensors. Discarding contribu-

tions to the connectivity estimate along the 

real axis explicitly removes instantaneous 

potentially-spurious interactions due to 

field spread of volume conduction. Thus, 

ICOH captures true source interactions at 

a given time lag [24]. 

 

Functional Connectivity  

Time Domain 

Pearson’s Correlation 

Coefficient 

 

Cross-Correlation func-

tion 

Frequency Domain 

Coherence Function 

Phase Domain 

Imaginary Part of Co-

herency 

 

Phase Lag Index 
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Phase-Lag Index (PLI) is a phase-

synchronization metric that quantifies the 

asymmetry of the distribution of phase 

differences between two signals [25]. PLI is 

based on the imaginary component of the 

cross-spectrum; then, it is not spuriously 

affected by volume conduction or by a 

common reference. PLI is computed by 

averaging the sign of the estimated phase 

difference between 𝑥(𝑡) and 𝑦(𝑡) per obser-

vation: 

 
𝑃𝐿𝐼𝑥𝑦 =  𝖤[sgn[(∆𝜑𝑡)]]  (5) 

 

Where 𝖤[·] is the expected value opera-

tor, sgn[⋅] is the sign function, and ∆𝜑𝑡  is 

the phase angle difference between the 

signals at time instant t. The range of PLI 

is 0 ≤  𝑃𝐿𝐼𝑥𝑦  ≤  1. When  𝑃𝐿𝐼𝑥𝑦 =  0 there is 

no coupling between the signals 𝑥(𝑡) and 

𝑦(𝑡), when 𝑃𝐿𝐼𝑥𝑦 = 1, there is perfect phase 

locking at a value of ∆𝜑𝑡  between both 

signals. 

 
2.3 Selection of the Regions of Interest 

(ROIs) 

 

Several studies have reported that a 

circuit of activated or deactivated brain 

regions is involved in many aspects of emo-

tion (i.e. affective style, aggressive and 

violent behavior, emotional processing and 

emotion regulation),. The circuit involves 

not only subcortical areas (e.g., amygdala 

or the basal ganglia), but also cortical are-

as, mainly Prefrontal Cortex (PFC), Ante-

rior Cingulate Cortex (ACC), as well tem-

poral and medial parietal cortices [26]. 

Considering these findings, we defined 10 

initial regions of interest (ROI) for further 

connectivity analysis of interaction pat-

terns. Subsequently, the connectivity spa-

tial patterns of the selected metric and the 

results of a Wilcoxon Rank-Sum statistical 

test were analyzed to eliminate the regions 

where no significant differences were 

found between ex-combatants and controls 

for any of the connections across these and 

other regions. The initial ROIs are depict-

ed in Fig. 3. 

Linear Discriminant Analysis LDA [27] 

was used to compare the performance of 

the functional connectivity metrics when 

classifying ex-combatants vs. civilians for 

each condition of the emotional processing 

experimental task (negative, neutral and 

positive) in the previously described ROIs 

and for each tested frequency band. 

 

 

 
 

Fig. 3. ROIs and related electrodes defined for the connectivity analysis. Source: Authors.
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We used the Wilcoxon rank-sum test 

[28] to identify the group differences in 

functional connectivity between ex-

combatants and civilians. Three between-

group Wilcoxon Rank-Sum tests were cal-

culated: 1. Group (Ex-combatants vs. Con-

trols), 2. Condition × Group, and 3. Condi-

tion × Band × Group. Statistical analyses 

were performed using MATLAB and a 

significance level of p < 0.05. All the tests 

were subjected to correction for multiple 

comparison. With these comparisons, we 

expected to find significant differences 

between Colombian ex-combatants and 

individuals not directly exposed to the 

armed conflict 

 

 

3. RESULTS AND DISCUSSION 

 
3.1 Selection of the functional connectivity 

metric 

 

The connectivity metrics presented 

above were analyzed. Different LDAs were 

implemented for task conditions and fre-

quency bands. Forty-five features for LDA 

were obtained by averaging the connectivi-

ty values from all electrodes from one ROI 

to another. For instance, the connectivity 

from left frontal-central to right frontal-

central regions (RoI 3 and RoI 4 in Fig. 3) 

is the average connectivity of all pairs from 

(F1, Fc1, F3 and Fc3) to (F2, F4, Fc2 and 

Fc4). Then, a vector of 45 features per 

subject was the input for each LDA classi-

fier. The LDA performances were evaluat-

ed using a 10-fold cross-validation for each 

class. LDA classification accuracy for nega-

tive, neutral and positive conditions is 

shown in Tables 2, 3 and 4, respectively. 

For the negative condition, Table 2 

shows that the metric with highest per-

formance was ICOH in three out of five 

(Delta, Theta and Alpha) frequency bands. 

COH had a better performance for Beta 

and Gamma bands. For the neutral condi-

tion, Table. 3 shows no concrete results 

about which metric was better, since each 

one had higher accuracy for one or two out 

of five frequency bands, except for COH 

with none. 

For the positive condition, Table. 4 

shows that the performance of ICOH was 

considerably better in the Beta band than 

the other metrics. Additionally, ICOH had 

a better performance in Theta and Gamma 

bands. COH showed better performance in 

the Delta band and PLI showed better 

performance in the Alpha band.  

 
3.2 Representation of spatial patterns 

 

The topographical connectivity maps 

for Alpha and Beta frequency bands across 

each condition are depicted in Fig. 4. Each 

map represents the within-group average 

value of the connectivity metric per elec-

trode. The strongest connection is depicted 

in red color and the weakest in dark blue. 

All the maps were plotted using the topo-

graphic plot function of EEGLab toolbox 

[20]. Based on Fig. 4, the connectivity spa-

tial patterns of COR, XCOR and COH 

suggest that their results were affected by 

volume conduction. Besides, the ICOH and 

PLI patterns were similar to each other in 

both groups, concentrated in the occipital-

parietal brain areas. Together with LDA 

results, ICOH had the best performance 

when classifying ex-combatants vs. civil-

ians. Thus, ICOH was selected for further 

analysis. 

 
3.3 Selection of the brain region of interest 

 

Regarding the ROI, the connectivity spa-

tial patterns of ICOH exhibit low connec-

tivity in the frontal regions in most fre-

quency bands (See Fig. S1-S5) for every 

task condition. Additionally, no significant 

differences were found between ex-

combatants and controls in any of the con-

nections across the frontal regions (ROI1 to 

ROI4) and the remaining area. Even 

though the frontal lobe is crucial for cogni-

tive control functioning, there is no evi-

dence of a difference in this dimension in
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Fig. 4. Topographic plots. Spatial patters of five connectivity metrics for ex-combatants and civilians by condition (negative, 

neutral and positive) and frequency band (Alpha and Beta). Source: Authors. 

 

ex-combatants. Indeed, previous studies 

have suggested a reorganization of posteri-

or neural regions during the processing of 

social cognition among ex-combatants [3, 

6]. Particularly, N170 is a posterior ERP 

component that has been associated with 

valence recognition of faces and words. In 

this line, studies in ex-combatants have 

suggested a larger activation across parie-

tal regions during face processing and 

limited modulation for the emotional con-

tent of words. This kind of modulation has 

not been reported in frontal areas. It 

should be noted that this is an emotional 

recognition task designed to modulate and 

activate posterior and central areas, i.e., 

the task does not include an explicit cogni-

tive control instruction necessary to elicit 

more robust anterior activation. 

Then, the four frontal ROIs were reject-

ed for the final model. The new ROIs were 

ROI1= C1, Cp1, C3 and Cp3, ROI2= Cz 

and CpZ, ROI3= C2, Cp2, C4 and Cp4, 

ROI4= P1, P3, Po3 and Po5, ROI5= PZ and 

PoZ, and ROI6= P2, P4, Po4 and PO6. 
 

3.4 Statistical test results 

 

Group (Ex-combatants vs. Controls): In 

this test, the full information (all frequency 

bands and all conditions) was included. No 

significant differences were found in each 

pair. However, the p-values suggested a 

tendency to differentiate the connectivity 

of both groups between pairs: ROI1-ROI2 

(p=0.021, q=0.173), ROI2-ROI3 (p=0.023, 

q=0.173) and ROI3-ROI5 (p=0.049, 

q=0.245). In these three cases, the median 

connectivity between ROIs was higher in 

the controls than in the ex-combatants 

group, and the percentages of difference in 

connectivity were 11%, 8% and 10%, re-

spectively (See Table S1). 

Condition × Group: No significant dif-

ferences were found between ex-

combatants and controls for negative and 

neutral conditions. Significant differences 
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Table 2. LDA classification accuracy (95% confidence) for the negative condition. Source: Authors.  

Negative DELTA THETA ALPHA BETA GAMMA 

COR 
54 % 

(39, 45 % - 67, 9 7 %) 

50 % 

(35, 71 % - 64, 28 %) 

54 % 

(39, 45 % - 67, 97 %) 

56 % 

(41, 34 % - 69, 7 9 %) 

52 % 

(37, 57% - 66, 13 %) 

XCOR 
58 % 

(43, 26 % - 71, 5 9 %) 

50 % 

(35, 7 1 % - 64, 28 %) 

52 % 

(37, 57 % - 66, 13 %) 

54 % 

(39, 45 % - 67, 97 %) 

52 % 

(37, 57 % - 66, 13 %) 

COH 
50 % 

(35, 71 % - 64, 28 %) 

52 % 

(37, 57 % - 66, 13 %) 

52 % 

(37, 57 % - 66, 13 %) 

62 % 

(47, 16 % - 75, 12 %) 

56 % 

(41, 34 % - 69, 79 %) 

ICOH 
64% 

(49, 14 % - 76, 85 %) 

64 % 

(49, 14 % - 76, 85 %) 

68 % 

(53, 1 6 % - 80, 26 %) 

56 % 

(41, 34 % - 69, 79 %) 

54 % 

(39, 45 % - 67, 97 %) 

PLI 
52 % 

(37, 57 % - 66, 13 %) 

54 % 

(39, 45 % - 67, 97 %) 

58 % 

(43, 26 % - 71, 59 %) 

54 % 

(39, 45 % - 67, 97 %) 

54 % 

(39, 45 % - 67, 97%) 

 
Table 3. LDA classification accuracy (95% confidence) for the neutral condition. Source: Authors.  

Neutral DELTA THETA ALPHA BETA GAMMA 

COR 

64 % 

(49, 14 % - 76, 85 %) 

58 % 

(43, 26 % - 71, 59 %) 

62 % 

(47, 16 % - 75, 12 %) 

50 % 

(35, 71 % - 64, 28 %) 

54 % 

(39, 45 % - 67, 97 %) 

XCOR 

52 % 

(37, 57 % - 66, 13 %) 

62 % 

(47, 16 % - 75, 12 %) 

52 % 

(37, 57 % - 66, 13 %) 

66 % 

(51, 14 % - 78, 57 %) 

54 % 

(39, 45 % - 67, 97 %) 

COH 
52 % 

(37, 5 7 % - 66, 13 %) 

52 % 

(37, 57 % - 66, 13 %) 

50 % 

(35, 71 % - 64, 28 %) 

52 % 

(37, 57 % - 66, 13 %) 

52 % 

(37, 57 % - 66, 13 %) 

ICOH 
52 % 

(37, 57 % - 66, 13 %) 

54 % 

(39, 45 % - 67, 97 %) 

58 % 

(43, 26 % - 71, 59 %) 

54 % 

(39, 45 % - 67, 97 %) 

58 % 

(43, 26 % - 71, 59 %) 

PLI 
58 % 

(43, 26 % - 71, 59 %) 

52 % 

(37, 57 % - 66, 13 %) 

54 % 

(39, 45 % - 67, 97 %) 

66 %  

(51, 14 % - 78, 57 %) 

54 % 

(39, 45 % - 67, 97 %) 

 

Table 4. LDA classification accuracy (95% confidence) for the positive condition. Source: Authors.  

Positive DELTA THETA ALPHA BETA GAMMA 

COR 
60 % 

(45, 2 % - 73, 36 %) 

56 % 

(41, 34 % - 69, 79 %) 

52 % 

(37, 57 % - 66, 13 %) 

50 % 

(35, 71 % - 64, 28 %) 

50% 

(35, 71% - 64, 28%) 

XCOR 
60 % 

(45, 2 % - 73, 36 %) 

58 % 

(43, 26 % - 71, 59 %) 

50 % 

(35, 71 % - 64, 28 %) 

68 % 

(53, 16 % - 80, 26 %) 

52 % 

(37, 57 % - 66, 13 %) 

COH 
62 % 

(47, 16 % - 75, 12 %) 

54 % 

(39, 45 % - 67, 97 %) 

56 % 

(41, 34 % - 69, 79 %) 

62 % 

(47, 16 % - 75, 12 %) 

50 % 

(35, 71 % - 64, 28 %) 

ICOH 
52 % 

(37, 57 % - 66, 13 %) 

60% 

(45, 2% - 73, 36%) 

50% 

(35, 71% - 64, 28%) 

76 % 

(61, 51 % - 86, 77 %) 

56 % 

(41, 34 % - 69, 79 %) 

PLI 
54 % 

(39, 45 % - 67, 97 %) 

56 % 

(41, 34 % - 69, 79 %) 

64 % 

(49, 14 % - 76, 85 %) 

56 % 

(41, 34 % - 69, 79 %) 

52 % 

(37, 57 % - 66, 13 %) 

 

between ex-combatants and controls were 

found in the connectivity across ROI1-

ROI4 (p=0.0027, q=0.0209) and ROI3-ROI4 

(p=0.0010, q=0.0152) for the positive condi-

tion. Consistently with the differences 

found in the first test, the connectivity 

across these regions was higher in controls. 

The connectivity across regions ROI1 and 

ROI4 was 17.42%, and across ROI3 and 

ROI4 was 26.79% higher in the control 

group (See Table S2). 

Condition × Band × Group: No signifi-

cant differences between ex-combatants 

and controls were found in Delta, Theta, 

Alpha, and Gamma bands for any condi-

tion. In the Beta band, significant differ-

ences between ex-combatants and controls 

were found for positive condition in the 
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connectivity between regions ROI2-ROI4 

(p=0.0044, q=0.0336), and between regions 

ROI3-ROI4 (p=0.0005, q=0.0088). The 

connectivity of controls in ROI2-ROI4 and 

ROI3-ROI4 was 17.63% and 27.46% higher 

than the ex-combatants’ connectivity, re-

spectively (See Table S3-S7). 

With the proposed methodology, signifi-

cant differences between ex-combatants 

and civilian people were obtained. Differ-

ences in the connectivity were found in the 

stimulus with positive valence in the Beta 

frequency band. Even though neutral va-

lence is commonly misclassified as nega-

tive in normal population, the recognition 

of emotional stimuli that refers to potential 

negative/neutral information is necessary 

for evolutionary purposes [29]. In this 

sense, combat experience might preserve 

the ability to categorize images with con-

tent. 

The overall results are consistent with 

Table. 4, in which the best performance for 

the ICOH metric in the beta band corre-

sponded to the positive stimulus. The Beta 

band has been associated with emotional 

processing in the evaluation of all types of 

valence [30]. Some studies demonstrated a 

wide posterior and anterior synchroniza-

tion associated with the evaluation of posi-

tive content [30]. The authors found that 

the Beta band was more strongly involved 

in the evaluation of positive content than 

negative-valence content [31]. Additionally, 

these findings support the literature re-

garding the difficulties Colombian ex-

combatants have to process emotional 

information with positive valence [6, 7]. 

 

 

4. CONCLUSIONS 

 

In this work, we presented a methodol-

ogy to find atypical functioning in the EP 

of Colombian ex-combatants using brain 

connectivity analysis. First, we presented 

the advantages and drawbacks of five 

widely used functional connectivity met-

rics: COR, XCOR, COH, ICOH, and PLI. 

Their connectivity spatial pattern repre-

sentations were affected and several LDA 

were implemented. As a result, we identi-

fied that COR, XCOR and COH metrics 

were influenced by the volume conduction, 

because their patterns revealed that the 

connectivity was dominated by local con-

nections among adjacent sensors. In con-

trast, PLI and ICOH patterns were similar 

to each other. Additionally, local connec-

tions were absent in ICOH and PLI. Then, 

with the results of the LDA we concluded 

that ICOH presented the best perfor-

mance, because using this metric we ob-

tained higher accuracy values for two out 

of the three task conditions. 

By using the ICOH metric, ex-

combatants presented significant differ-

ences in the processing of emotional infor-

mation with positive valence. These differ-

ences were found in the connectivity across 

two pairs in the Beta frequency band: the 

first is composed of the medial central-

parietal (Cz-Cpz) and the right central-

parietal (C2, Cp2, C4, Cp4) regions, and 

the second one comprises the right central-

parietal and left parietal-occipital (P1, P3, 

Po3, Po5) regions. Based on these results, 

we conclude that Colombian ex-combatants 

and civilians present a similar processing 

of emotional information for stimuli with 

neutral and negative valence, but there are 

differences in the stimuli with positive 

valence. This atypical connectivity may be 

due to the conditions experienced in the 

armed conflict. There is potential in using 

these functional markers in diagnosis and 

as a first step in the development of future 

intervention treatments. The use of biolog-

ical markers obtained with this method 

might help to complement neuropsychiat-

ric evaluation of chronic exposition to com-

bat (i.e., Post-traumatic Stress Disorder) 

and be the basis for future intervention 

treatments, not only for ex-combatants, 

but for population directly exposed to 

armed conflicts. 
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