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Feature extraction based on time-singularity multifractal spectrum distribution in intracardiac atrial fibrillation
signals

Abstract

Non-linear analysis of electrograms (EGM) has been proposed as a tool to detect critical
conduction sites (e.g., rotors vortex, multiple wavefronts) in atrial fibrillation (AF).
Likewise, studies have shown that multifractal analysis is useful to detect critical activity in
EGM signals. However, the multifractal spectrum does not consider the temporal
information. There is a new mathematical formalism to overcome this limitation: the time-
singularity multifractal spectrum distribution (TS-MFSD), which involves the time
variation of the spectrum. In this manuscript, we describe the methodology to compute the
TS-MFSD from EGM signals. Moreover, we propose a methodology to extract features from
time-singularity spectrum and from singularity energy spectrum (SES). We tested the
features in an EGM database labeled by experts as: non-fragmented, discrete fragmented
potentials, disorganized activity, and continuous activity. We tested the area under the
receiver operating characteristic (ROC) curve. The proposed features achieve an area under
the ROC curve of 95.17% when detecting signals with continuous activity. These results
outperform those reported using multifractal analysis. To our knowledge, this is the first
work that report the use of TS-MFSD in biomedical signals and our findings suggest that
time-singularity has the potential to be used in the study of non-stationary behavior of EGM
signals in AF.

Keywords
Cardiac signals, Detrended Fluctuation Analysis, multifractal singularity spectrum, non-
linear signal processing, time series analysis.

Resumen

El analisis de la dindmica no lineal de sefiales de Electrogramas Intracardiacos (EGM)
ha sido propuesto como una herramienta para detectar sitios criticos de conduccién eléctrica
(eym: rotores o multiples frentes de onda) en fibrilacién auricular (AF). Estudios previos han
mostrado que el andlisis multifractal puede ser de utilidad para detectar actividad critica en
la senial EGM. A pesar de esto, el analisis multifractal no considera la informacién temporal
de la sefial. Existe un nuevo formalismo matematico para superar esta limitaciéon, el cual es
llamado Distribucién Tiempo-Singularidad del Espectro Multifractal (TS-MFSD), que
involucra la variacién en el tiempo del espectro. Este articulo describe una nueva
metodologia para calcular caracteristicas a partir del TS-MFSD en senales EGM. Nosotros
evaluamos los métodos descritos en una base de datos de EGM etiquetada por expertos en
cuatro clases: no fragmentada, potenciales fragmentados discretos, actividad desorganizada
y actividad continua. Para evaluar el rendimiento se calculé el area bajo la curva ROC. El
mejor resultado de las caracteristicas propuestas alcanzdé un 4area bajo la curva ROC de
95.17% en la detecciéon de sefales con actividad continua. Este resultado supera los
reportados mediante la utilizacion del analisis multifractal. Hasta donde sabemos, este es el
primer trabajo que reporta la utilizaciéon de la TS-MFSD en sefiales biomédicas, y nuestros
resultados sugieren que el analisis Tiempo-Singularidad tiene el potencial para estudiar el
comportamiento no estacionario de las sefiales EGM en AF.

Palabras clave

Analisis de series de tiempo, andlisis no lineal de sefiales, Espectro de Singularidad
Multifractal, sefiales cardiacas.
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1. INTRODUCTION
Atrial Fibrillation (AF) is one of the
most common arrhythmias, with a preva-
lence of approximately 3% in adults and it
is associated with heart failure and
stroke[1]. Besides pharmacological treat-
ment to control AF, catheter ablation of AF
1s the recommended treatment to cure AF.
This procedure uses a radiofrequency cath-
eter to burn sites in the endocardium to
block the action potential propagation.
Pulmonary vein isolation (PVI) is one of
the most useful types of ablation. PVI is
used to isolate the ectopic foci that are
located in pulmonary veins and initialize
AF. PVI presents a success rate of around
80% in patients with paroxysmal AF. Nev-
ertheless, in patients with persistent AF,
the correct rate is less than 40% [2]. Au-
thors have developed other ablation strat-
egies to improve the success rate of AF
ablation. Since PVI is only guided by ana-
tomical information, ablation guided by the
analysis of electrogram (EGM) signals has
been proposed to detect critical conduction
sites on the atria. Critical sites are related
with arrhythmogenic substrates or mecha-
nisms that generate or sustain the ar-
rhythmia —e.g., ectopic foci, multiple wave-
fronts or rotors’ vortices. EGM are signals
acquired using intra-cardiac catheters in
contact with the endocardium. Several
studies have shown that sites related with
sustaining mechanisms of AF present
EGM signals with continuous activity or
local activity with multiple deflections
(fragmented EGMs) [3], [4]. Therefore,
several authors have proposed mathemati-
cal tools to study EGM complexity. Studies
have shown that EGMs exhibit a non-
linear behavior. Therefore, the computa-
tion of entropy measures and fractal anal-
ysis has been useful to detect fragmented
EGMs [5]-[7].

Evidence obtained in a previous work
shows that fragmented EGM signals can
be detected by using multifractal analysis
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(MF), which outperform fractal and entro-
py features [8]. Multifractal analysis is an
extension of the fractal concept. Fractal
signals present self-similarities and statis-
tic properties of scale invariance, which
can be described by a single quantity —e.g.,
Hausdorff dimension or Hurst exponent. If
the fractal properties are not homogenous
and change with time, the signal must be
described by different local Hurst expo-
nents [9]. Accordingly, multifractal analy-
sis is a more suitable method for studying
EGM signals.

The multifractal spectrum shows the
distribution of singularity exponents.
However, this spectrum does not display
the temporal information. This condition
makes it difficult to describe the non-
stationary behavior of biomedical signals.
There is a new mathematical formalism to
overcome such limitation: time-singularity
multifractal spectrum distribution (TS-
MFSD), which involves the time variation
of the MF spectrum [10]. The difference
between MF and TS-MFSD could be com-
pared to the difference between frequency
and time-frequency transforms. TS-MFSD
has been reported as a mathematic tool
and it has been tested in synthetic signals;
however, its application in biomedical sig-
nals has not been tested.

This paper describes the methodology
to compute the TS-MFSD from EGM sig-
nals and the development of new methods
to extract features from the time-
singularity spectrum. We tested the fea-
tures in an EGM database labeled with
four classes, including continuous activity.
The aim of this work is to test TS-MFSD
on EGM signals and compare the perfor-
mance of TS-MFSD with respect to MF
analysis. Features computed from TS-
MFSD could improve the performance of
the detection of signals with continuous
activity. Then, these features could be used
as a tool to detect critical conduction sites
in AF and assist ablation procedures guid-
ed by EGM.

(99]
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2. MATERIALS AND METHODS
2.1 EGM Database

A database of 429 EGM signals ac-
quired from 11 AF patients was used in
this work. This database was collected in
the Staedtisches Klinikum Karlsruhe in
Germany and it was made available to our
group by the Karlsruhe Institute of Tech-
nology [11]. In this database, signals were
recorded using the NavX system (St. Jude
Medical, St. Paul, USA) and a multipolar
circular catheter during AF ablation pro-
cedures. The sample frequency was 1200
Hz and the signals were filtered with a
band-pass filter between 30 Hz and 250
Hz. Each EGM was independently anno-
tated by two electrophysiologists and di-
vided into four classes. Class 0: EGM with
non-fragmented potentials and organized
activity. Class 1: EGM with fragmented
potentials separated by a non-activity
baseline. Class 2: EGM with fragmented
potentials and disorganized activity. Class
3: EGM with continuous electrical activity.

signals

In this work, the aim of the analysis is to
detect signals belonging to Class 3.

The 429 EGM signals were distributed
as follows: 153 signals in Class 0, 75 sig-
nals in Class 1, 148 signals in Class 2, and
53 signals in Class 3. A signal of each
Class 1s shown in Fig. 1. For a complete
description of the database, see the manu-
script by Schilling et al. [12].

2.2 TS-MFSD Power Law Representation

Fractals describe irregularities of time-
series whose properties of self-similarity
are evidenced with statistical similarity at
different scales. For fractal dimension
estimation, the covering of the set is con-
sidered by means of balls of diameter &€ >
0, where N(&)represents the number of
balls needed to cover the whole set. Thus,
an approximation of the irregular longitu-
dinal measurement is defined as L(g) =
eN(&), where N(g) satisfies the power law
N(e)~&ePase— 0. Constant D represents
the fractal dimension or Hausdorff dimen-

[100]

sion [13].
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Fig. 1. Samples of EGM signals from Classes 0, 1, 2 and 3. Source: Authors.
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Fractal dimension has shown to contain
relevant information about the signals that
present a nonlinear dynamic, but a single
fractal dimension cannot completely char-
acterize a signal with a single descriptor.
Therefore, it becomes necessary to incorpo-
rate multifractal analysis, a term used for
systems characterized by a range of differ-
ent fractal dimensions with which a func-
tion f(a) noted as multifractal spectrum
(MFS) or spectrum of singularities is asso-
ciated. In this sense, the power law be-
comes N(a)~ef@  where, a is the singu-
larity exponent (SE) or Hélder exponent
[14].

The multifractal spectrum measures
the global distribution of singularities with
different regularities. However, it has no
information on the time-varying singulari-
ties exponents, which makes it complex to
analyze the dynamics involved in non-
stationary and non-linear processes [10].

Xiong, in 2012, introduces the mathe-
matical formalism of the TS-MFSD. It is
given by the function f (&, @), which repre-
sents a convex function and indicates the

08

06

f(a)

02F

0.2 1 L L M

a)

characteristic spectral points of the signal
evolution. After the analysis of the theory
of measurement and Hausdorff dimension,
the power law is N (a)~& & [10].

Fig. 2 shows a comparison between
MFS f(a) and TS-MFS f(t,a). The repre-
sentation of the fractal dimension D corre-
sponds to a single point in the MFS space.
MFS is composed of several points, which
highlights the minimum singularity expo-
nent @i, the maximum singularity expo-
nent o, and the singularity exponent
o, that correspond to the maximal f(«@) .
By contrast, TS-MFSD is composed of the
time distribution of MFS.

2.3 TS-MFSD based on Detrended Fluctua-
tion Analysis (DFA-MFSD)

MFS estimation can be computed by
several methods; the well-known Detrend-
ed Fluctuation Analysis (DFA) proposed by
Kantelhardten in 2002 [15] is one of the
most commonly used in practical applica-
tions. DFA consists of five basic steps:

b)
Fig. 2. a) MFS example of an EGM signal. Points amin, a0 and amax are marked in the spectrum. b) TS-MFSD example of
the same signal. Values of f(t, a) are plotted in a jet color scale. Source: Authors.

TecnoLdgicas, ISSN-p 0123-7799 / ISSN-e 2256-5337, Vol. 20, No. 40, sep-dic de 2017, pp. 97-111 [101]



Feature extraction based on time-singularity multifractal spectrum distribution in intracardiac atrial fibrillation

1. Determine the time series “profile” Y,
by subtracting the mean value and in-
tegrate the time series. This step con-
verts the signal to a random walk like
time series.

2. Divide the profile into non-overlapping
N, segments of an equal length of scale
s.

3. Determine the local fluctuation
F%(s,v) for each segment, v =1,...,Nj.
F?(s,v) is computed based on the vari-
ance of the series profile Y by subtrac-
tion the fitting polynomial fit(Y,) in
the segment v, as in [16]:

F2(s,v) =135V, — fit(¥, 0} (1)
4. Estimate the average of the segments
for different scales s and the g-order
statistical moments (q € R —{0}) for
obtaining the fluctuation function, de-

fined as:
1

ol
RO ] LI CRY) I S )

5. Determine the correlation of the power
law Fg(s)~s™® using the log-log graph
of F(s,v) and sfor each q, where the
exponent h(q)is called generalized
Hurst exponent.
By analogy with the multifractal for-
malism, Kantelhardt relates h(q) with
the exponent of scalet(q), ast(q) =
qh(q) — 1, where 7(q) is defined by the
partition function Z,(s):

Zy(5) = 5p24|Ps(@)]7 ~ s™@ 3)
With P (v) as a probability box [15].
The singularity spectrum f(a)is ob-

tained via the Legendre transform, as
follows:

a =17'(q) and f(a) = qa — 7(q) (4)

In the estimation of TS-MFSD by DFA,
Xiong et al defined the instantaneous
cyclic autocorrelation function of a dis-
crete time-series x (k) as [17]:

r.(k) = x(k)x*(n + k); )
nk=0,123,...N—1

Where k denotes the delayed sample
and n the time series samples. Estima-
tion of instantaneous cyclic autocorre-
lation is the new first step in DFA. The
series profile for each n value is com-
puted by subtracting the mean of
(ry,) to r,,(k) as follows:

Da(®) = ) [rali0) = ()]
i=0 (6)

i=0123 .. ,N-1

Finally, the steps 2 to 5 of DFA are fol-

lowed for each instant of time n; for
more detailed information see [17].

2.4 Singularity Energy Spectrum estimation

If the TS-MFSD contains additional in-
formation to the MFS, the Singularity
Energy Spectrum (SES) could describe it.
By analogy with traditional energy, the
energy of a TS-MFSD is the sum of the
square modules of f(t,a) on the time axis
[17]. SES was proposed in 2012 for practi-
cal applications in engineering.

Given the analysis presented by the au-
thors in [17] and based on the fractal ener-
gy measurement theory, the estimation of
the multifractal spectrum distribution
energy of the signal can be seen as:

W(am) = Zn”xam(n)nz (7

Where x, represents a signal that cor-

responds to a discrete fractal sub-band
defined as:

Xe,, (M) = {(n,x())}, a(m) € [a(m),a(m + 1)]

To obtain a,,, the SE, a(n) € [@min, Cmaxl,
is divided into such a uniform partition
that satisfy the Eq. (8) for a(m) < a(n) <
a(m+1).

[102] TecnoLoégicas, ISSN-p 0123-7799 / ISSN-e 2256-5337, Vol. 20, No. 40, sep-dic de 2017, pp. 97-111
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a(m) = [amin = Qo) Aqy e, Hjm1, A Ajy 1y oee , A2, A1 = amax] (8)

15

0.5

f(t, )
o

05

P_‘-

2000

1000

t a =0 o oatd a «
('vmm m-ig i g i i m-£ max

Fig. 3. SES computation from the TS-MFSD of an EGM. Solid rectangles represent the small intervals 4;(8) = [a; — 8, a; + 8],
that are used to compute the energy over time. Source: Authors.
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Fig. 4. a) SES of an EGM signal and representation of 68.2% of the area. This area is computed centered on the mean and
uses one standard deviation. b) SE of an EGM — time vs a. f(t, @) is represented by a color scale (black is the maximum
and blue is the minimum value). Source: Authors.

As depicted in Fig. 3, the ay,, and Fig. 4. A) shows an example of
®max are extracted from the SE. Each the W(a,,). Using W(a,,), we propose to
a,, represents the interval 4;(6), evaluate the energy contained in the 68.2%
where 8§ = (a; — @;11)/2. of the total area centered on the mean (u).

The square module of f(n,4;) is taken This value was selected based on one

standard deviation. Although this is true

for all a,,,(n) € A; at each time sample n. e . .
m(1) ! P only for the normal distribution, in this

TecnoLdgicas, ISSN-p 0123-7799 / ISSN-e 2256-5337, Vol. 20, No. 40, sep-dic de 2017, pp. 97-111 [103]
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signals

work we use it as a practical rule of thumb
[18]. The difference between SES for EGMs
belonging to different classes can be cap-
tured by these features. The variability of
the SE over time is evidenced in Fig. 4. B),
where the black continuous line represents
the maximum of the function f(t,a) over
time.

2.5 Receiver Operating Characteristic

We used the Receiver Operating Char-
acteristic (ROC) curves to evaluate the
performance of each characteristic in Table
1 and detect continuous activity in EGM.
For each feature, a threshold ¢ to discrimi-
nate two classes is selected. The perfor-
mance of the classification can be deter-
mined by the confusion matrix shown in
Table 2 [19]. We computed the

sensitivity(Sens) = TPT+PFN and the
specificity(Spec) = T;ivpp for a set of values

of c. The ROC curve is given by ROC(-) =
{(1 — Spec(c),Sens(c))}. The best -cut-off
point is defined as in [20].

min {\[(Sens(c))2 +(1- Spec(c))z} 9)

3. RESULTS AND DISCUSSION

Experimental results of the TS-MFSD
on EGM signals showed a representative

change when is computed in signals from
different AF classes. Fig. 5 shows the time-
singularity spectrum for some samples of
EGM signals. We can see difference be-
tween spectrum width and changes in SE
distribution in time.

Given the dynamic behavior in time of
the SE, the visual analysis can be more
representative if we focus on the following
three lines: the minimum singularity ex-
ponent apin(t); the maximum singularity
exponent a4, (t) ; and the singularity
exponent a, (t). The latter corresponds to
the maximal f (¢, «). Fig. 6 illustrates the-
ses lines for the EGM signals shown in Fig.
5. We can see that these lines for the class
3 signal shows a lower variance in the SE,
particularly in ag (t). This line is analo-
gous to the maximum of the spectrum in
multifractal analysis [21]. However, in
multifractal spectrum, the maximum is a
scalar value, and it cannot capture the
changes in time of this feature. By con-
trast, In TS-MFSD, «, (t) is a vector. Ac-
cordingly, we used the standard deviation
as features to describe the deviation in
time of @, (t). The same analysis is made
for Umin (1), Amax (t)

On the other hand, we computed the
SES for a more complete analysis of the
information contained in the time-
singularity spectrum. Fig. 7 shows the SES
of samples of EGM signals in each Class.

Table 1. Characteristics extracted from TS-MFSD to be tested in atrial fibrillation. Source: Authors.

Method Feature Description
Width SES The width of the SES that corresponds to 68.2% of the total energy.
Std(ctmin) Standard deviation of the time-varying minimum singularity exponent
TS-MFSD Standard deviation of the time-varying singularity exponent that corresponds
Std(ao) .
to the maximal f(t, @)
Std(amax) Standard deviation of the time-varying maximum singularity exponent

Table 2. Confusion matrix to compute the performance of each feature. Source: Authors

Test (T)

Positive (T >= ¢)
True Positive (TP)
Class B False Negative (FN)

Class A

Negative (T < ¢)
False Positive (FP)
True Negative (TN)

[104] TecnoLoégicas, ISSN-p 0123-7799 / ISSN-e 2256-5337, Vol. 20, No. 40, sep-dic de 2017, pp. 97-111
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Fig. 5. TS-MFSD representation of the four Classes of EGM signals. The SE distribution for Class 0 signal is wider and the
values are skewed to the right. SE distribution in Class 3 is narrower and it is not clearly skewed. Source: Authors.
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Fig. 6. Distribution of time-varying singularity exponent. Source: Authors
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Fig. 7. Singularity energy exponent (SES) in EGM signals. Source: Authors

We can see the characteristics described in
the spectrum, where class 0 and class 1 are
wider and skewed to the right. Class 3 is
narrower. This behavior is captured by the
proposed feature W (a,,).

At last, we computed four features: the
68.2% of the area from W(a), which con-
tains information about the SES; and the
standard deviation of
ao 1)) Amin () and aypay (¢), which repre-
sents the changes of the SE over time.

Fig. 8. and Fig. 9. shows the violin plot
distribution for each feature. We can see
the ability of all the features to distinguish
Classes. Only standard deviation of @, (t)
does not contain representative infor-
mation for this task. Taking into account
that some authors have suggested that
only a high level of fractionation is related
with critical sites (e.g., rotor’s vortex) [22],
[23], we calculated the Receiver Operating
Characteristic (ROC) curves only for dis-
tinguishing between Class 3 and the rest.
Table 3 shows the comparison between our
results and a previous study that reported

[106]

conventional and multifractal features
computed in the same database [8]. The
proposed features in this study outperform
those results regarding the discrimination
of Class 3 (signals with continuous electri-
cal activity).

Fig. 10 shows the ROC curves for the
proposed characteristic. The thresholds for
each cut-off point are 0.544, 0.238, 0.197,
and 0.493 for Width SES, Std (amin), Std
(a0), Std (amax), respectively.

TS-MFSD was proposed by Xiong et al.
[10] to overcome the limitation of capturing
temporal information of multifractal anal-
ysis. TS-MFSD has been tested in synthet-
ic signals and in one application using sea
clutter data from an ocean radar. To the
best of our knowledge, this manuscript is
the first work that reports an application
of TS-MFSD in biomedical signals pro-
cessing.

Instantaneous cyclic autocorrelation
function (ICAF) is the most representative
step in the computation of TS-MFSD. The
process of ICAF calculation generates sev-

TecnoLdgicas, ISSN-p 0123-7799 / ISSN-e 2256-5337, Vol. 20, No. 40, sep-dic de 2017, pp. 97-111
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Table 2. Comparison of the results of ROC curves between features reported in a previous study and the width SES and distri-
bution of time-varying singularity exponent in this work. Sensitivity (Sens) and specificity (Spec) of the area under the curve
(AUCQC) are reported. Source: Authors.

Author (year) Method Features Results (Sens - Spec) %
h-fluctuation index (hFI) 83.3 88.4
Multifractal Asymmetric Ratio (AR) 84.8 66.2
(MF-DFA) hpue = @ 74.2 82.6
Orozco-Duque et al, width 89.4 83.2
(2015) [8] Correlation dimension 84.0 78.3
Fractal
Fractal dimension 77.3 76.3
Dominant frequency 50.0 87.0
No-Fractal
CFE mean 74.2 85.1
width SES 92.45 85.64
Std(ctmin) 64.15 67.55
Current study TS-MFSD
Std(a) 92.45 87.50
Std(ctma) 94.34 86.17
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Fig. 10. ROC curve of the features extracted from the TS-MFSD. Source: Author
eral temporal series with a high computa- tional cost limits its application in real
tional cost. Although TS-MFSD includes time. However, TS-MFSD can become an
temporal information of the multifractal important tool for offline medical applica-
spectrum and it could be a useful approach tions where non-linear systems are in-
to study biomedical signals, the computa- volved.
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EGM signals during AF exhibit non-
homogeneous local scaling properties that
change over time. In a previous work, a
multifractal analysis was performed using
the same database of EGM signals [8].
Those results showed that multifractal
features outperformed fractal features to
discriminate between four Classes of frac-
tionation. Particularly, the detection of the
Class with continuous activity achieved a
sensitivity of 83.3% and a specificity of
88.4%. Since EGMs are non-stationary and
non-homogeneous signals, in our work we
hypothesized that the time-singularity
spectrum is a better descriptor of the dy-
namic involved in the system. Our results
showed that, in the particular case of de-
tecting EGMs with continuous activity, T'S-
MFDS presents better performance (92.4%
sensitivity and 87.5% specificity) than
multifractal features.

Some studies only distinguish between
non-fragmented and fragmented EGM
signals in AF [3]. However, fragmented
signals include different morphologies
associated with different conduction pat-
terns [24]. Therefore, the classification of
different levels of fractionation has been
proposed [11], [25]. Likewise, some studies
have shown that catheter ablation of sites
that display continuous activity is associ-
ated with termination of chronic AF [11],
[22], [25]. Therefore, a highly-accurate
detection of continuous activity (Class 3)
could help to guide ablation procedures.
Our findings suggest that the features
extracted from TS-MFDS are reliable for
discriminating continuous activity in EGM
and improving the performance of previ-
ously reported features.

The degree of fractionation of EGM sig-
nals is, in reality, assumed to be naturally
continuous. Nevertheless, a discrete set of
levels of fractionation is used in this study
due to the impossibility of having experts
classify the signals on a smoother scale. In
this regard, our findings show that Class 2
and Class 3 are difficult to differentiate.
Despite this, the proposed features pre-

sented higher sensitivity than specificity.
Therefore, the probability of Type II errors
is lower than that of Type I errors. Accord-
ing to Hunter el al [23], both Classes are
associated with critical sites for AF (e.g.,
focal drivers and rotors). Even so, the effi-
cacy achieved when ablating areas with
continuous electrical activity (Class 3) may
suggest greater proximity to the rotor vor-
tex. Therefore, if our features are used to
guide ablation procedures, Type I errors
imply that Class 2 signals could be classi-
fied as continuous activity and a broader
region would be ablated. On the other
hand, Type II errors imply that signals
with continuous activity are not classified
as Class 3, which may result in the target
area not being ablated. Thus, higher sensi-
tivity is expected in this application.

Future work will be focused on feature
selection and classification among the four
Classes described in the databases. Moreo-
ver, some parameters required to compute
the proposed features could be optimized.
TS-MFDS features could be used in combi-
nation with others as the input for a classi-
fier. Classifying different levels of fraction-
ation could help to locate different conduc-
tion patterns on the atrial surface.

4. CONCLUSIONS

Our findings suggest that TS-MFSD
implementation using MF-DFA is a useful
tool to study the underlying non-linear
dynamics of biomedical signals —e.g., EGM
during AF. Likewise, the features extract-
ed from the time-singularity spectrum and
the singularity energy spectrum exhibit
better performance to detect EGM with
continuous activity than multifractal fea-
tures. This property can be used to locate
critical conduction sites in AF. As future
work, new features from TS-MFSD must
be explored and their discrimination abil-
ity tested in a recognition task and the
electrophysiological meaning of the TS-
MFSD and SES in AF.
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