

Análisis Económico

ISSN: 0185-3937

analeco@correo.azc.uam.mx

Universidad Autónoma Metropolitana Unidad Azcapotzalco México

Peláez Herreros, Óscar Convergencia-divergencia en las variables componentes del Índice de Marginación, 1970-

Análisis Económico, vol. XXXII, núm. 81, septiembre-diciembre, 2017, pp. 31-48 Universidad Autónoma Metropolitana Unidad Azcapotzalco Distrito Federal, México

Disponible en: http://www.redalyc.org/articulo.oa?id=41353526003

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica

Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

Análisis Económico

Núm. 81, vol. XXXII Tercer cuatrimestre de 2017

Convergencia-divergencia en las variables componentes del Índice de Marginación, 1970-2015

(Convergence-divergence in the Marginalization Index variables, 1970-2015)

(Recibido: 07/enero/2017 – Aceptado: 09/junio/2017)

Óscar Peláez Herreros*

Resumen

El objetivo de este artículo es comprobar si las entidades federativas con mayores rezagos en las variables que componen el Índice de Marginación (IM) consiguieron reducir la distancia con las entidades más avanzadas (convergencia) o si, por el contrario, sus brechas se ampliaron (divergencia) durante el periodo 1970-2015. Para ello, se recurre a la estimación de modelos de β -convergencia mediante datos de sección cruzada para el periodo completo y distintos subperiodos. Asimismo, se estiman modelos con datos de panel y se contrastan sus características. Los resultados muestran divergencia interregional para las variables incluidas en las dimensiones de educación y vivienda del IM. La convergencia, a lo sumo, es característica de sólo dos de las nueve variables que forman parte del índice: los porcentajes de población en localidades con menos de 5,000 habitantes, y de ocupados con ingresos de hasta 2 salarios mínimos.

Palabras clave: divergencia, indicadores de bienestar, datos de panel. **Clasificación JEL:** H75, I31, O11, R11.

^{*} Doctor en Economía por la Universidad de Cantabria, España.Profesor-Investigador de El Colegio de la Frontera Norte, sede Tijuana. <opelaez@colef.mx>.

Abstract

The objective of this paper is to test if the states with greater lags in the variables that compose the Marginalization Index reduced the distance with the more advanced states (convergence) or if, on the contrary, their gaps were widened (divergence) during the period 1970-2015. With this purpose, we estimate β -convergence models using cross-sectional data for the entire period and different subperiods. We also estimate panel data models and test their characteristics. The results show interregional divergence for the variables included in the education and housing dimensions of the Marginalization Index. At most, convergence is characteristic of only two of the nine index variables:the percentages of population in localities with less than 5,000 inhabitants, and of employees with incomes of up to 2 minimum wages.

Keywords: divergence, welfare indicators, panel data.

JEL Classification: H75, I31, O11, R11.

1. Introducción

Los análisis de convergencia entre regiones se han desarrollado fundamentalmente en términos de ingreso o de renta. Como explican Barro y Sala-i-Martin (1990:2) "en los modelos neoclásicos de crecimiento para economías cerradas, como los propuestos por Ramsey (1928), Solow (1956), Cass (1965) y Koopmans (1965), la tasa de crecimiento per cápita tiende a estar inversamente relacionada con el nivel inicial de producto por habitante". Según estos modelos, la progresiva disminución de los retornos de capital implica que las economías con menores niveles de producción disfruten de tasas de crecimiento superiores a las de las economías más avanzadas, convergiendo hacia éstas. Los intentos por verificar o refutar esta cuestión a nivel mundial o regional en el interior de países han generado abundante literatura al respecto.

Noorbakhsh (2006:5-6) argumenta que la fuerza que guía la convergencia económica (esto es, la progresiva reducción de los retornos de capital) también afecta a otros aspectos además de al ingreso, por ejemplo, a las variables vinculadas a la educación, ya que las primeras unidades de atención educacional son relativamente más sencillas y menos costosas de proveer que las de estudios más avanzados o especializados. Lo mismo ocurre con la esperanza de vida y las cuestiones rela-

¹ En concreto, Noorbakhsh (2006:6) explica que "en un país que ya ha alcanzado un nivel muy alto de matriculación en educación primaria y secundaria, sólo la inversión relativamente más costosa en educción superior puede mejorar el nivel de instrucción".

cionadas con la salud (Davis, 1956; Rosero-Bixby, 1991). Por ello, entiende que es legítimo analizar la convergencia de estas variables. No obstante, en realidad, puede resultar relevante contrastar la convergencia-divergencia de cualquier variable, y no sólo de aquellas que se ven afectadas por los rendimientos decrecientes del capital. El simple deseo de conocer si con el transcurso del tiempo se amplían o reducen las diferencias regionales en términos de esperanza de vida, de porcentaje de viviendas con energía eléctrica, de residentes con derecho a servicios de salud, o de cualquier otro indicador de calidad de vida, implica resolver un análisis de convergencia.

Estudios de este tipo ya se han aplicado a otras variables e indicadores compuestos, como el Índice de Desarrollo Humano (IDH) o índices de calidad de vida, si bien es cierto que son menos frecuentes que los análisis de convergencia económica.² En el caso específico de México, se tienen los trabajos de Peláez *et al.* (2010), para la esperanza de vida, y de Vargas y Cortés (2014), para un índice de marginación alternativo al del Consejo Nacional de Población (Conapo).

El objetivo de la presente investigación escomprobar si las entidades federativas con mayores rezagos en las variables que componen el Índice de Marginación (IM) consiguieron reducir la distancia con las entidades más avanzadas (convergencia) o si, por el contrario, estas brechas se ampliaron con el transcurso del tiempo (divergencia). Se recurre a las variables del IM porque cubren un amplio espectro de condiciones sociales: educación, vivienda, distribución de la población, e ingresos por trabajo; abarcando el periodo 1970-2015, suficientemente amplio como para extraer conclusiones de largo plazo o analizar subperiodos específicos. Lo ocurrido con las nueve variables que forman el IM debe complementar la información contenida en los numerosos estudios que ya se han realizado para México sobre convergencia regional del producto interno bruto (PIB) per cápita que se sintetizan en el siguiente apartado. Posteriormente, se describen las técnicas de análisis y las fuentes de datos que permiten realizar el estudio para el lapso de 45 años que se

² Variables como la esperanza de vida, la tasa de mortalidad infantil, la tasa de matriculación en educación secundaria o el consumo diario de calorías, han sido objeto de análisis de convergencia en trabajos como los de Ingram (1992), Micklewright y Stewart (1999), Sab y Smith (2001), Hobijn y Franses (2001), Neumayer (2003), Mazumdar (2003), Kenny (2005), Aguirre (2005), Branisa y Cardozo (2009), Royuela y García (2015). Análisis específicos de convergencia en la esperanza de vida se tienen en: Mayer-Foulkes (2001), Goesling y Firebaugh (2004), Becker *et al.* (2005), Moser *et al.* (2005), Ram (2006), Bloom y Canning (2007), Canning (2010), Peláez *et al.* (2010), Peláez (2012). Algunas investigaciones que han estudiado la convergencia en el IDH son: Mazumdar (2002), Noorbakhsh (2006), Konya y Guisan (2008), Gidwitz*et al.* (2010), Gray y Purser (2010), Martín-Mayoral y Yépez (2013), Benedek*et al.* (2015), Bucur y Stangaciu (2015), Jordá y Sarabia (2015), Yang *et al.* (2016). Entre los autores que han elaborado índices de calidad de vida y analizado su posible convergencia a lo largo del tiempo se encuentran: Giannias *et al.* (1999), O'Leary (2001), Royuela y Artís (2006), Marchante y Ortega (2006), Liargovas y Fotopoulos (2009), Vargas y Cortés (2014).

propone. En el cuarto apartado se presentan y discuten los resultados. Una sección de conclusiones cierra la investigación.

2. Análisis de convergencia para México

El estudio de Appendini y Murayama (1972) puede considerarse como pionero en el análisis de la convergencia interregional en México. Mediante el cálculo del coeficiente de variación del PIB per cápita a nivel de entidades federativas para el periodo 1900-1960, estos autores encuentran que "la brecha que separa a las regiones avanzadas de las atrasadas se ha ampliado al paso del tiempo" (p. 73).³ Además, afirman que el incremento de la "desigualdad entre las entidades se debe no tanto a la diferente dotación de recursos naturales y humanos sino al tipo de relaciones que se han establecido entre ellas, una relación "condicionada en bastante medida por la política económica gubernamental" (p. 67).

En fechas más recientes, se tiene la aportación de Ruiz (1997), que analiza el periodo 1900-1993 a nivel de entidades federativas, encontrando convergencia en el PIB per cápita sólo para el lapso 1940-1970. De manera semejante, Esquivel (1999) sostiene que el crecimiento regional fue convergente durante las décadas de 1940 a 1980, esto es, en el periodo previo a la liberalización económica, y divergente de 1980 a 1995. Estos resultados son casi los mismos que obtienen Juan y Rivera (1996), Arroyo (2001), Fuentes y Mendoza (2003) o Rodríguez y Sánchez (2005): reducción de las diferencias desde 1970 hasta 1985 y aumento a partir de esa fecha.

Por su parte, Esquivel (2000:18-19) no encuentra evidencia de convergencia a partir de 1960, de manera que la convergencia detectada por otros autores para las décadas de los sesenta y los setenta se habría visto anulada por la divergencia posterior. Asimismo, Messmacher (2000: 22) concluye que "la convergencia estatal en el producto per cápita ha sido muy limitada durante los últimos treinta años", esto es, desde 1970 hasta 1999. Esquivel y Messmacher (2002) confirman la ausencia de convergencia absoluta tras la apertura comercial. Silva (2003:16) no encuentra convergencia ni divergencia a nivel estatal en el periodo 1993-1999. Mientras que Calderón y Tykhonenko (2006) observan convergencia muy débil entre entidades para el periodo 1994-2002 recurriendo a la estimación de las velocidades de convergencia mediante cálculo bayesiano iterativo.

En un análisis reciente de muy largo plazo, que abarca el periodo 1900-2006, Peláez y López (2013) confirman que sólo es posible aceptar la hipótesis de

³ A partir de Barro y Sala-i-Martin (1990) esta situación pasó a denominarse σ -divergencia.

convergencia a nivel de entidades federativas en las décadas de 1940-1950, 1960-1970 y 1970-1980. Para el resto de periodos, no obtienen evidencia concluyente de convergencia ni de divergencia.

Los pocos estudios que detectan un acercamiento de los territorios rezagados hacia los avanzados durante las décadas más recientes son los que utilizan el nivel de desagregación municipal o recurren al concepto de convergencia condicionada. Entre los primeros destaca el de Unger (2005), que obtiene evidencia de convergencia absoluta para el periodo 1988-1998. Otros estudios a nivel municipal confirman esta convergencia, pero advierten que la misma se ha debilitado en los años más recientes (Fuentes, 2007a y b), o encuentran heterogeneidad espacial, que da lugar a dos modelos de convergencia diferentes y a la presencia de múltiples estados estacionarios locales (clubes de convergencia) para el lapso 1993-2003 (Valdivia, 2007).

Para regiones específicas del país, también se han desarrollado estudios de este tipo, como el de Meza y Naya (2010), con resultados de convergencia para los municipios de Chihuahua, Durango, Jalisco, Nayarit, Sinaloa, Sonora y Zacatecas de 1989 a 2006; o el de López y Peláez (2012), que muestra la existencia de convergencia entre los municipios de Chiapas en el quinquenio 2000-2005.

Las investigaciones que estiman la convergencia condicionada muestran resultados dispares. Por ejemplo, Díaz-Bautista (2000) y Díaz-Bautista y Díaz (2003) encuentran convergencia condicionada a los niveles de capital humano en el periodo 1970-2000. Asimismo, Peláez *et al.* (2011:64) confirman la existencia de convergencia condicionada por las dotaciones de capital físico y humano de las entidades federativas durante el periodo 1994-2006. Sin embargo, Bracamontes y Camberos (2010) no encuentran convergencia ni absoluta, ni condicionada por el capital humano, para los municipios de Sonora en el periodo 1989-2004; y Kido y Kido (2015) rechazan la hipótesis de convergencia económica condicionada a niveles productivos y de escolaridad en los municipios de Chiapas, Oaxaca, Guerrero y Michoacán, de 1990 a 2010.

Entre las pocas publicaciones que han abordado el análisis de la convergencia interregional para variables distintas al ingreso o la renta en el caso de México, destacan las de Peláez *et al.* (2010) y Vargas y Cortés (2014). La primera de ellas, analiza la convergencia de la esperanza de vida en las entidades federativas de 1990 a 2006, encontrando evidencia de un proceso de intensa β y σ -convergencia, esto es, de mayor crecimiento de la esperanza de vida en aquellos estados que en 1990 soportaban menores niveles para esta variable, así como una importante reducción de la dispersión relativa y absoluta de los datos.

Por su parte, Vargas y Cortés (2014) construyen un índice de marginación alternativo al de Conapo, que permite saber si la marginación de los municipios ha mejorado o empeorado con el transcurso del tiempo. Si bien no ajustan un modelo para contrastar la β -convergencia de este índice, sí calculan las desviaciones estándar y los coeficientes de variación, que aumentan desde el año 1990 al 2010, indicando σ -divergencia en los datos.

A diferencia del índice de marginación de Vargas y Cortés (2014), diseñado para estudiar la evolución de la marginación a lo largo del tiempo, el IM de Conapo no soporta los análisis de convergencia-divergencia ya que, por construcción, su dispersión es invariante en el tiempo. Al estar basado en la técnica de componentes principales y en la estandarización de variables, la media del IM es nula y su desviación estándar siempre es igual a la unidad. No obstante, los análisis de convergencia sí pueden aplicarse sobre cada una de sus variables componentes, lo que debe ayudar a complementar el panorama descrito por los estudios realizados para el PIB per cápita, teniendo además en cuenta que la evolución de estas variables es conocida para un lapso de casi medio siglo.

3. Fuentes de datos y técnicas de análisis

A partir de la definición de De la Vega *et al.* (2011:14), el IM a nivel de entidades federativas está compuesto por los nueve porcentajes siguientes: 1) población analfabeta de 15 años o más, 2) población de 15 años o más sin primaria completa, 3) ocupantes en viviendas sin drenaje ni excusado, 4) ocupantes en viviendas sin energía eléctrica, 5) ocupantes en viviendas sin agua entubada, 6) viviendas con algún nivel de hacinamiento, 7) ocupantes en viviendas con piso de tierra, 8) población en localidades con menos de 5,000 habitantes, y 9) población ocupada con ingresos de hasta 2 salarios mínimos. La ventaja de utilizar estas variables es que sus valores pueden conocerse para el intervalo 1970-2015 con periodicidad decenal o incluso quinquenal. Específicamente, la información de los años 1970 y 1980 es la que presenta Aparicio (2004:52-60), mientras que los datos por quinquenios de 1990a 2015 se obtienen de Conapo (2016).

Como se desprende de Martín-Mayoral y Yépez (2013:211), en el caso de la renta, se trata de verificar la convergencia hacia un estado estacionario teórico y ver si se cumple ese planteamiento. Sin embargo, con los indicadores del IM, el estado estacionario no es teórico, sino cierto por las características de las variables. Al tratarse de porcentajes, necesariamente comprendidos entre 0 y 1, y medir carencias que se van reduciendo con el transcurso del tiempo, las nueve variables tienden a anularse en el largo plazo. Por tanto, se trata de comprobar si, durante el periodo de

análisis, las entidades más rezagadas se aproximaron a ese estado estacionario más rápido que las entidades con menores carencias, dando lugar a convergencia; o si ocurrió lo contrario, ensanchándose la brecha entre unos y otros estados.

Dado que las series decrecen en valor hacia una asíntota situada en el cero, evolucionan de forma no lineal, pero linealizable mediante la aplicación de logaritmos. Por ello, el análisis de β -convergencia se puede llevar a cabo estimando la ecuación habitual:

$$y_{i;j;T} = \alpha_{i;T} + \beta_{i;T} . ln y_{i;j;t_0} + \varepsilon_{i;j;T}$$
 (1)

donde $y_{i;j;T}^{\bullet} = {}^{t_f - t_0} \sqrt{y_{i;j;t_f} / y_{i;j;t_0}}$ –1 son las tasas de variación acumulativa, que se explican con los valores iniciales de la variable en cuestión (i=1, ..., 9) expresados en logaritmos; t_0 representa el año inicial y t_f el año final. La ecuación (1) se puede estimar para el periodo completo, 1970-2015, o para distintos subperiodos del lapso total. Al trabajar con un nivel de desagregación territorial de entidades federativas, se tiene que j=1, ..., 32. De esta manera, un valor negativo y estadísticamente significativo del parámetro β_i indica que la carencia considerada se redujo más en aquellas áreas geográficas donde presentaba valores más altos al inicio del periodo de análisis (β -convergencia). Al contrario, un valor positivo y estadísticamente significativo del parámetro β_i es señal de β -divergencia.

Además de especificaciones de sección cruzada, aprovechando la información disponible se estiman modelos de datos de panel. Al considerar las j = 32 entidades federativas y los T = 7 periodos de tiempo para los que se conocen los valores iniciales de las variables y sus tasas de variación, es posible construir un panel de datos para cada uno de los i = 9 indicadores que integran el IM.

La ventaja de los modelos de datos de panel es que permiten comprobar si existen, y en su caso controlar, los efectos propios de cada entidad federativa que no quedan recogidos por la variable explicativa y que pueden afectar a su propensión a converger hacia el estado estacionario. El ajuste de un modelo del tipo:

$$y_{i, j; T}^{\bullet} = \alpha_i + \beta_i . \ln y_{i, j; t_0} + \varepsilon_{i, j; T}$$
 (2)

pormínimos cuadrados ordinarios (MCO) para el panel de datos de cada una de las 9 variables del IM implica asumir que no hay especificidades regionales, esto es, que todas las entidades federativas tienden a compartir una misma estructura en la evolución de la i-ésima variable y que, por tanto, los parámetros α_i y β_i son comunes para todos los estados. En ese caso, un valor negativo y estadísticamente significativo

del parámetro β_i es señal de β -convergencia absoluta en la i-ésima variable durante el periodo 1970-2015. Por el contrario, si la estimación presenta signo positivo y estadísticamente significativo, se tiene β -divergencia absoluta.

Los paneles no sólo se pueden modelizar como datos agrupados sino también mediante especificaciones del tipo:

$$y_{i;j;T}^{\bullet} = \alpha_{i;j} + \beta_{i} \cdot \ln y_{i;j;t_{0}} + \varepsilon_{i;j;T}$$
(3)

que permiten trayectorias diferentes para cada entidad federativa, controlando los efectos estatales no observados, mediante la estimación por efectos fijos (o intragrupo) de los parámetros $\alpha_{i;j}$. En estos otros modelos, un valor negativo y estadísticamente significativo de β_i es señal de β -convergencia condicionada en la variable i-ésima durante el periodo 1970-2015. Si el parámetro β_i es negativo y estadísticamente significativo se tiene β -divergencia condicionada por las particularidades no observadas pero contenidas en cada $\alpha_{i;j}$.

Con el fin de comparar cuál de las dos estructuras anteriores, (2) o (3), modeliza mejor el comportamiento de los paneles de datos, se realizan contrastes de tipo F mediante el estadístico:

$$F = \frac{\left(R_{(3)}^2 - R_{(2)}^2\right) / (j-1)}{\left(1 - R_{(3)}^2\right) / (jT - j - K)} \longrightarrow F_{j-1; jT - j - K}$$
(4)

donde $R^2_{(2)}$ es el coeficiente de determinación del modelo (2), $R^2_{(3)}$ es el coeficiente de determinación del modelo (3) estimado para el mismo panel de datos, j es el número de unidades territoriales, T es el número de periodos de tiempo, y K es el número de regresores; de manera que, para los casos planteados, j=32, T=7 y K=1. Si el estadístico F es mayor que el valor crítico tabulado para la distribución de probabilidad F con j-1=31 y jT-j-K=191 grados de libertad, respectivamente, se rechaza la hipótesis de que los modelos (2) y (3) son estadísticamente iguales, admitiendo que los coeficientes α_i son distintos para cada entidad federativa, por lo que resulta más apropiado el modelo (3) de convergencia-divergencia condicionada, que el modelo (2), de convergencia-divergencia absoluta.

En caso de encontrarse que el modelo (3) describe la realidad mejor que el (2), se contrasta si es más pertinente su estimación con efectos fijos o con efectos aleatorios. Para ello, se recurre al contraste de especificación diseñado por Hausman (1978), que mediante el análisis de la consistencia de los estimadores

de mínimos cuadrados generalizados permite verificar si el modelo debe incluir efectos aleatorios.

A la vista de que se dispone de información para las 32 entidades federativas del país, esto es, para la totalidad de los elementos analizados, y que posiblemente los efectos individuales estén correlacionados con los valores iniciales de las variables (Yang *et al.*, 2016:6), cabe esperar que los modelos de efectos fijos arrojen mejores resultados que los de efectos aleatorios. En cualquiera de los casos, dado que las variables del IM están acotadas entre 0 y 1, y sus valores tienden a anularse en el largo plazo, lo que realmente cabe esperar es que la convergencia, en el caso de detectarse, sea de tipo absoluto más que condicionada (Martín-Mayoral y Yépez, 2013:211) y que, por tanto, el modelo (2) se ajuste a los datos mejor que el (3).

4. Resultados

Tras aplicar las técnicas anteriores, en los modelos de sección cruzada se encuentran muchos más casos de β -divergencia que de β -convergencia (Cuadro 1). Para el periodo completo, 1970-2015, cuatro variables presentan coeficientes positivos y significativos al 99% de confianza: las dos variables de educación, y los porcentajes de ocupantes en viviendas sin drenaje ni excusado, y de población en localidades con menos de 5,000 habitantes. A ellas se suma el porcentaje de ocupantes en viviendas sin energía eléctrica, con una significatividad del 95%. Las otras cuatro variables componentes del IM no muestran evidencia concluyente al respecto. No obstante, tres de ellas (los porcentajes de ocupantes en viviendas sin agua entubada, viviendas con algún nivel de hacinamiento, y población ocupada con ingresos de hasta 2 salarios mínimos) tienen el signo negativo característico de la β -convergencia.

Cuadro 1. Estimaciones del parámetro β de la ecuación (1) según variable componente del IM y periodo temporal.

Variables	1970-201	15	1970-1	980	1980-1	990	1990-2	000	2000-2	010	2010-2	015
1) Población analfabeta	0.0062 * (0.002)	***	0.0164 (0.004)	***	0.0043 (0.003)		0.0016 (0.002)		0.0029 (0.002)	*	0.0097 (0.002)	***
2) Sin primaria completa	0.0207 * (0.005)	***	0.0419 (0.006)	***	0.0169 (0.004)	***	0.0090 (0.004)	**	0.0063 (0.002)	**	0.0145 (0.003)	***
3) Sin drenaje ni excusado	0.0537 * (0.011)	***	0.0349 (0.009)	***	0.0680 (0.019)	***	0.0117 (0.005)	**	0.0150 (0.004)	***	0.0119 (0.004)	**

Continúa...

Variables	1970-2015	1970-1980	1980-1990	1990-2000	2000-2010	2010-2015
4) Sin energía eléctrica	0.0096 **	0.0324 ***	0.0013	0.0133 **	-0.0052	0.0100
	(0.005)	(0.007)	(0.007)	(0.005)	(0.005)	(0.006)
5) Sin agua	-0.0014	-0.0067	0.0118	0.0159 **	0.0008	-0.0217 ***
entubada	(0.005)	(0.007)	(0.011)	(0.007)	(0.006)	(0.007)
6) Hacinamiento	-0.0037 (0.004)	-0.0210 (0.013)	-0.0365 *** (0.006)	0.0240 *** (0.005)	0.0054 * (0.003)	0.0244 ** (0.009)
7) Piso de tierra	0.0069	0.0306 ***	-0.0056	0.0136 **	-0.0121 **	0.0316 ***
	(0.004)	(0.006)	(0.005)	(0.005)	(0.005)	(0.008)
8) Menos de	0.0173 ***	0.0798 ***	-0.0023	-0.0001	-0.0119 ***	-0.0001 ***
5,000 habitantes	(0.003)	(0.016)	(0.003)	(0.002)	(0.003)	(0.000)
9) Hasta dos	-0.0041	-0.0799 ***	-0.0763 ***	0.0484 **	0.0022	-0.0141 * (0.007)
salarios mínimos	(0.003)	(0.012)	(0.015)	(0.019)	(0.007)	

Fuente: Elaboración propia.

Notas: Entre paréntesis se muestran los errores estándar. Las estimaciones son significativas al: *** 99%, ** 95%, o * 90% de confianza

En cada uno de los subperiodos se observan resultados diferentes para cada variable, aunque también destacan ciertos patrones comunes. Los dos indicadores de educación muestran siempre signos positivos en sus estimaciones. Esta β -divergencia es significativa en todos los subperiodos para el porcentaje de población de 15 años o más sin primaria completa, pero sólo en el primero y en los últimos para el porcentaje de población analfabeta de 15 años o más.

El porcentaje de ocupantes en viviendas sin drenaje ni excusado también presenta β -divergencia significativa en todos los subperiodos. La reducción de esta carencia tendió a ser menor en aquellos estados que al inicio de cada periodo soportaban más altos porcentajes de viviendas sin drenaje ni excusado, ensanchándose la brecha con los estados más avanzados.

El porcentaje de ocupantes en viviendas sin energía eléctrica sólo muestra evidencia significativa de β -divergencia en las décadas de los setenta y los noventa. Para el decenio 2000-2010, la estimación incluso se vuelve negativa. El porcentaje de ocupantes en viviendas sin agua entubada es divergente en la década de los noventa y convergente en el último lustro. Por su parte, la medida de hacinamiento presenta convergencia hasta 1990 y divergencia desde entonces. El porcentaje de ocupantes en viviendas con piso de tierra alterna periodos de divergencia y de convergencia, predominando la primera.

El indicador de concentración de la población se caracteriza por una fuerte divergencia interregional en la década de los setenta, que posteriormente se revierte a convergencia que empieza a ser significativa a partir del año 2000.

El porcentaje de población ocupada con ingresos de hasta 2 salarios mínimos es la variable del IM que ha tenido una dinámica más cercana a la convergencia. Las estimaciones muestran β -convergencia plenamente significativa de 1970 a 1990. En la década de los noventa se advierte divergencia, pero en el último periodo vuelve a encontrarse convergencia. Esta evolución de la variable más vinculada a la economía de entre las que componen el IM es muy parecida a la descrita por diversos autores para el PIB per cápita, que se caracteriza por la reducción de las diferencias regionales de 1970 a 1985 y por su aumento a partir de esa fecha, como se ha comentado en el apartado 2.

Por periodos, la década de los setenta destaca por la divergencia de seis de los nueve indicadores del IM. La población ocupada con ingresos de hasta 2 salarios mínimos es la única variable que converge durante esos años. En los ochenta, sin embargo, sólo se observan dos variables que divergen (los porcentajes de población de 15 años o más sin primaria completa, y de ocupantes en viviendas sin drenaje ni excusado) al tiempo que hay dos variables que convergen (los indicadores de hacinamiento y de ingreso). La década de los noventa supone una nueva intensificación de la divergencia, que afecta a siete de las variables analizadas. De 2000 a 2010, sólo cuatro indicadores divergen mientras que dos convergen. Entre 2010 y 2015, son cinco las variables que divergen y tres las que convergen.

Los resultados de los modelos de datos de panel (Cuadro 2) aportan información adicional en relación a las evoluciones de estas variables. Como se desprende de los contrastes de igualdad de interceptos, en la mayor parte de los casos, es preferible el modelo de datos agrupados frente al de efectos fijos. Únicamente para la variable que refleja el porcentaje de población en localidades con menos de 5,000 habitantes se admite con total confianza la idoneidad del modelo de efectos fijos y, con ello, la existencia de efectos diferenciados para cada estado. Considerando, además, que el signo de la estimación del parámetro β es negativo, se está ante la única variable de las nueve que experimenta β -convergencia condicionada durante el periodo 1970-2015. A partir de la información disponible, no todos los estados del país estarían convergiendo hacia el mismo estado estacionario en términos de concentración-dispersión poblacional.

⁴ Para el porcentaje de población en localidades con menos de 5,000 habitantes se obtiene un estadístico con valor igual a 262.07 en el contraste de Hausman, que implica rechazar la hipótesis nula de incorrelación entre los efectos aleatorios y los regresores. Debido a ello, se concluye que el modelo para esta variable no debe incluir efectos aleatorios.

Cuadro 2. Estimaciones del parámetro β en los modelos de datos agrupados y efectos fijos para las variables componentes del IM.

Variables	Datos agrupados	Efectos fijos	H ₀ : Interceptocomún		
variables	(ecuación 2)	(ecuación 3)	Estadístico F	p-valor	
1) Población analfabeta	0.0030 *** (0.001)	-0.0011 (0.002)	1.3314	0.1263	
2) Sin primaria completa	0.0055 *** (0.001)	0.0022 (0.001)	1.4818	0.0587	
3) Sin drenaje ni excusado	0.0049 (0.003)	-0.0002 (0.004)	0.2816	0.9999	
4) Sin energía eléctrica	0.0071 *** (0.002)	0.0066 ** (0.003)	0.5038	0.9872	
5) Sin agua entubada	0.0006 (0.003)	-0.0061 (0.005)	0.5987	0.9544	
6) Hacinamiento	0.0188 *** (0.007)	0.0238 ** (0.009)	0.1155	0.9999	
7) Piso de tierra	0.0205 *** (0.003)	0.0289 *** (0.004)	0.8477	0.6997	
8) Menos de 5,000 habitantes	-0.0039 ** (0.002)	-0.0576 *** (0.004)	8.7329	0.0000	
9) Hasta dos salarios mínimos	-0.0106 * (0.006)	-0.0263 *** (0.009)	0.3885	0.9987	

Fuente: Elaboración propia.

Notas: Entre paréntesis se muestran los errores estándar. Las estimaciones son significativas al: *** 99%, ** 95%, o * 90% de confianza.

La otra variable para la que puede admitirse que el modelo de efectos fijos consigue mejores resultados que el de datos agrupados es el porcentaje de población de 15 años o más sin primaria completa. En este caso, la significancia estadística en favor del modelo de efectos fijos es únicamente del 90%. No obstante, el test de Hausman arroja un estadístico con valor de 21.23 que lleva a elegir el modelo de efectos fijos frente al de efectos aleatorios con una confianza de 99%. El signo de la estimación del parámetro β es positivo, aunque no significativo en el modelo de efectos fijos.

La hipótesis de intercepto común no se rechaza en ninguna de las otras siete variables, para las que no hay diferencias entre estados, sino un mismo modelo: el de datos agrupados. De estas siete variables, el porcentaje de población ocupada con ingresos de hasta 2 salarios mínimos es la única que muestra signo negativo en la estimación de la pendiente. Además, este coeficiente es significativo al 90% de confianza indicando la existencia de β -convergencia absoluta interestatal durante el periodo 1970-2015.

Las seis variables restantes se caracterizan por estimaciones positivas para el parámetro β en los modelos de datos agrupados. En cuatro casos esta estimación es estadísticamente significativa. Se advierte, por tanto, divergencia absoluta en los porcentajes de: población analfabeta de 15 años o más, ocupantes en viviendas sin energía eléctrica, viviendas con algún nivel de hacinamiento, y ocupantes en viviendas con piso de tierra. No hay evidencia concluyente de divergencia absoluta para los porcentajes de ocupantes en viviendas sin drenaje ni excusado y de ocupantes en viviendas sin agua entubada; aunque el signo de la estimación apunta en este sentido, más que hacia la convergencia.

5. Conclusiones

Los estudios sobre convergencia económica realizados por distintos investigadores para los estados de México coinciden al indicar que el acercamiento que pudo haber hasta la década de los ochenta se vio interrumpido por el inicio de la fase de liberalización y apertura comercial. Para las décadas más recientes, si bien no encuentran evidencia de divergencia interestatal, tampoco advierten convergencia.

El IM contempla la evolución de otras características que afectan al bienestar de las personas. Incluye una variable relacionada con los ingresos por trabajo, pero también incorpora variables de educación, vivienda y distribución de la población. Debido a su procedimiento de cálculo, carece de sentido analizar la convergencia en términos del IM. No obstante, sí se puede calcular para cada una de las nueve variables que lo componen. Los resultados que se han presentado a este respecto son contundentes. La variable que tiene una evolución más cercana a la convergencia interregional durante el periodo 1970-2015 es el porcentaje de población ocupada con ingresos de hasta 2 salarios mínimos, esto es, la variable más ligada a la economía, que en los modelos de sección cruzada presenta β -convergencia de 1970 a 1990 y de 2010 a 2015 y en el de datos de panel convergencia absoluta al 90% de confianza. Este resultado es muy parecido al que advierten los autores que analizan el PIB per cápita, tanto en los signos de los coeficientes como en la temporalidad de los mismos.

Para las variables del IM que no se incluyen en su dimensión económica, los resultados apuntan más hacia la divergencia interestatal; lo cual es coherente con la divergencia municipal que encuentran Vargas y Cortés (2014) en su IM alternativo. Las dos variables de educación divergen claramente en el análisis de sección cruzada así como en los modelos de datos agrupados. Las variables de vivienda tienden hacia la divergencia absoluta al utilizar los datos de panel y sólo tres de ellas muestran algún subperiodo de convergencia significativa: las viviendas sin agua entubada (2010-2015), el hacinamiento (1980-1990) y las viviendas con

piso de tierra (2000-2010). No obstante, incluso en éstas hay más subperiodos de β -divergencia que de β -convergencia. Al contrario, el porcentaje de población en localidades con menos de 5,000 habitantes es la otra variable que ha tendido más a la convergencia que a la divergencia, especialmente a partir del año 2000 en el análisis de secciones cruzadas, así como en los modelos de datos de panel.

De todo lo anterior, se desprende que,a pesar de la preocupación por la no convergencia de las economías regionales al interior de México, el problema con el resto de indicadores parece ser aún más grave. Los estados con mayores rezagos en términos de educación y de calidad y servicios en las viviendas han reducido relativamente menos estas carencias que aquellos que disfrutaban de una mejor situación, dando lugar a divergencia. Si bien es cierto que esta dinámica no afecta a todas las variables del IM a lo largo de todo el periodo analizado, sí es la situación predominante que acompaña y refuerza la ausencia de convergencia absoluta en el PIB per cápita al tratarse, al menos en parte, de los factores estructurales que otros autores identifican como causantesde esa evolución

Referencias bibliográficas

- Aguirre, K. (2005). "Convergencia en indicadores sociales en Colombia. Una aproximación desde los enfoques tradicional y no paramétrico", *Desarrollo y Sociedad*, vol. 56, pp. 147-176.
- Aparicio, R. (2004). *Índice absoluto de marginación, 1990-2000*, México D. F.: Consejo Nacional de Población.
- Appendini, K. y D. Murayama (1972). "Desarrollo desigual en México (1900-1960)", en D. Barkin (comp.), *Los beneficiarios del desarrollo regional*, México: Secretaría de Educación Pública, pp. 61-73.
- Arroyo, F. (2001). "Dinámica del PIB de las entidades federativas de México, 1980-1999", *Comercio Exterior*, vol. 51, núm. 7, pp. 583-600.
- Barro, R. J. y X. Sala-i-Martin (1990). "Economic growth and convergence across the United States", *National Bureau of Economic Research Working Paper Series*, no. 3419.
- Becker, G. S.; T. J. Philipson y R. R. Soares (2005). "The quantity and quality of life and the evolution of world inequality", *The American Economic Review*, vol. 95, no. 1, pp. 277-291.
- Benedek, J.; M. Cristea y D. Szendi (2015). "Catching up or falling behind? Economic convergence and regional development trajectories in Romania", *Romanian Review of Regional Studies*, vol. 11, no. 1, pp. 15-34.

- Bloom, D. E. y D. Canning (2007). "Mortality traps and the dynamics of health transitions", *PNAS*, vol. 104, no. 41, pp. 16044-16049.
- Bracamontes, J. y M. Camberos (2010). "¿Concentración o convergencia en el crecimiento y desarrollo de Sonora?", *Frontera Norte*, vol. 22, núm. 44, pp. 41-78.
- Branisa, B. y A. Cardozo (2009). "Regional growth convergence in Colombia using social indicators", *Ibero-Amerika Institut für Wirtschaftsforschung Discussion Papers*, no. 195.
- Bucur, I. A. y O. A. Stangaciu (2015). "The European Union convergence in terms of economic and human development", *CES Working Papers*, vol. 7 no. 2, pp. 256-275.
- Calderón, C. y A. Tykhonenko (2006). "La liberalización económica y la convergencia regional en México", *Comercio Exterior*, vol. 56, núm. 5, pp. 374-381.
- Canning, D. (2010). "Progress in health around the world", *UNDP Human Development Research Paper*, no. 43.
- Cass, D. (1965). "Optimum growth in an aggregative model of capital accumulation", *Review of Economic Studies*, vol. 32, pp. 233-240.
- Conapo (2016). "Índice de marginación por entidad federativa 1990-2015", *Datos abiertos del índice de marginación*, México D. F.: Consejo Nacional de Población. En: http://www.conapo.gob.mx/es/CONAPO/Datos_Abiertos_del_Indice de Marginacion; consultado el 15 de julio de 2016.
- Davis, K. (1956). "The amazing decline of mortality in underdeveloped areas", *The American Economic Review*, vol. 46, no. 2, pp. 305-318.
- De la Vega, S.; R. Romo y A. L. González (2011). *Índice de marginación por entidad federativa y municipio 2010*, México D. F.: Consejo Nacional de Población.
- Díaz-Bautista, A. (2000). "Convergence and economic growth in Mexico", *Frontera Norte*, vol. 13, núm. 24, pp. 85-110.
- Díaz-Bautista, A. y M. Díaz (2003). "Capital humano y crecimiento económico en México (1970-2000)", *Comercio Exterior*, vol. 53, núm. 11, pp. 1012-1023.
- Esquivel, G. (1999). "Convergencia regional en México, 1940-1995", *El Trimestre Económico*, vol. 66, pp. 725-761.
- Esquivel, G. (2000). "Geografía y desarrollo económico en México", *Research Network WorkingPaper*, núm. R-389.
- Esquivel, G. y M.Messmacher (2002). Sources of regional (non) convergence in Mexico, Washington D. C.: Banco Mundial.
- Fuentes, N. A. (2007a). "Desigualdades de crecimiento municipal en México: un análisis mediante regresión cuantílica", *Ensayos*, vol. XXVI, núm. 2, pp. 19-42.
- Fuentes, N. A. (2007b). "Las disparidades municipales en México: un estudio desde la óptica de la desigualdad", *Problemas del Desarrollo*, vol. 38, núm. 150, pp. 213-234.

- Fuentes, N. A. y J. E. Mendoza (2003). "Infraestructura pública y convergencia regional en México, 1980-1998", *Comercio Exterior*, vol. 53, núm. 2, pp. 178-187.
- Giannias, D.; P. Liargovas y G. Manolas (1999). "Quality of life indices for analysing convergence in the European Union", *Regional Studies*, vol. 33, no. 1, pp. 27-35.
- Gidwitz, Z.; M. P.Heger, J. Pineda y F. Rodríguez (2010). "Understanding performance in human development: a cross-national study", *UNDP Human Development Research Paper*, no. 42.
- Goesling, B. y G. Firebaugh (2004). "The trend in international health inequality", *Population and Development Review*, vol. 30, no. 1, pp. 131-146.
- Gray, G. y M.Purser (2010). "Human development trends since 1970: a social convergence story", *UNDP Human Development Research Paper*, no. 2.
- Hausman, J. A. (1978). "Specification tests in econometrics", *Econometrica*, vol. 46, no. 6, pp. 1251-1271.
- Hobijn, B. y P. H.Franses (2001). "Are living standards converging?", *Structural Change and Economic Dynamics*, 12, 171-200.
- Ingram, G. (1992). "Social indicators and productivity convergence in developing countries", *The World Bank Policy Research Working Papers*, no. 894.
- Jordá, V. y J. M. Sarabia (2015). "International convergence in well-being indicators", *Social Indicators Research*, vol. 120, pp. 1-27.
- Juan, V. H. y L. A. Rivera (1996). "Regional growth in Mexico: 1970-93", *IMF Working Paper*, no. 92.
- Kenny, C. (2005). "Why are we worried about income? Nearly everything that matters is converging", *World Development*, vol. 33, no. 1, pp. 1-19.
- Kido, A. y M. T. Kido (2015). "Convergencia económica en la región sur de México: un análisis municipal durante el periodo 1990-2010", *Economía, Sociedad y Territorio*, vol. 15, núm. 49, pp. 697-722.
- Konya, L. y M. C. Guisan (2008). "What does the human development index tell us about convergence?", *Applied Econometrics and International Development*, vol. 8, no. 1, pp. 19-40.
- Koopmans, T. C. (1965). "On the concept of optimal economic growth", en R. McNally (ed.), *The econometric approach to development planning*, Amsterdam: North-Holland.
- Liargovas, P.G. y G.Fotopoulos (2009). "Socioeconomic indicators for analyzing convergence: the case of Greece: 1960-2004", *Social Indicators Research*, vol. 93, pp. 315-330.
- López, J. A. y Ó. Peláez (2012). "Análisis de convergencia económica en el interior de Chiapas: municipios, regiones e inconsistencias aparentes", *América Latina Hoy*, vol. 60, pp. 183-206.

- Marchante, A. J. y B. Ortega (2006). "Quality of life and economic convergence across Spanish regions, 1980-2001", *Regional Studies*, vol. 40, no. 5, pp. 471-483.
- Martín-Mayoral, F. y J. Yépez (2013). "Evolución de las disparidades en el desarrollo económico y humano de América Latina: análisis del IDH y sus componentes", *Economía Mexicana Nueva Época*, vol. cierre de época, núm. 1, pp. 203-246.
- Mayer-Foulkes, D. (2001). "Convergence clubs in cross-country life expectancy dynamics", *UNU-WIDER Research Paper*, no. 134.
- Mazumdar, K. (2002). "A note on cross-country divergence in standard of living", *Applied Economics Letters*, vol. 9, no. 2, pp. 87-90.
- Mazumdar, K. (2003). "Do standards of living converge? A cross-country study", *Social Indicators Research*, vol. 64, pp. 29-50.
- Messmacher, M. (2000). "Desigualdad regional en México. El efecto del TLCAN y otras reformas estructurales", *Documento de Investigación de la Dirección General de Investigación Económica, Banco de México*, núm. 4.
- Meza, E. y Z. B. Naya (2010). "Desarrollo convergente municipal entre estados contiguos a Nayarit y Sinaloa", *Economía, Sociedad y Territorio*, vol. 10, núm. 34, pp. 662-682.
- Micklewright, J. y K. Stewart (1999). "Is the well-being of children converging in the European Union?", *The Economic Journal*, vol. 109, no. 459, pp. F692-F714.
- Moser, K.; V.Shkolnikov y D. A. Leon (2005). "World mortality 1950-2000: divergence replaces convergence from the late 1980s", *Bulletin of the World Health Organization*, vol. 83, no. 3, pp. 202-209.
- Neumayer, E. (2003). "Beyond income: convergence in living standards, big time", *Structural Change and Economic Dynamics*, vol. 14, pp. 275-296.
- Noorbakhsh, F. (2006). "International convergence or higher inequality in human development? Evidence for 1975-2002", *UNU-WIDER Research Paper*, no. 15.
- O'Leary, E. (2001). "Convergence of living standards among Irish regions: the role of productivity, profit outflows and demography, 1960-1996", *Regional Studies*, vol. 35, no. 3, pp. 197-205.
- Peláez, Ó. (2012). "Evolución de la esperanza de vida de Costa Rica en el contexto global (1930-2010)", *Población y Salud en Mesoamérica*, vol. 10, núm. 1, art. 3.
- Peláez, Ó. y J. A. López (2013). "Desigualdades regionales: fuerzas determinantes", en J. Isaac, J. A. López y L. Quintana (coords.), *Desigualdad y desarrollo regional: Chiapas y el Sur Pacífico mexicano*, México D. F.: Plaza y Valdés, cap. 2, pp. 61-102.
- Peláez, Ó.; M. Guijarro y M. Arias (2010). "A state-level analysis of life expectancy in Mexico (1990-2006)", *Journal of Biosocial Science*, vol. 42, no. 6, pp. 815-826.

- Peláez, Ó.; J.A. López y B.Sovilla (2011). "Causas del crecimiento económico desigual de las fronteras norte y sur de México en la era del TLCAN", *Revista de Economía*, vol. 28, núm. 77, pp. 39-72.
- Ram, R. (2006). "State of the 'life span revolution' between 1980 and 2000", *Journal of Development Economics*, vol. 80, no. 2, pp. 518-526.
- Ramsey, F. P. (1928). "A mathematical theory of saving", *Economic Journal*, vol. 38, pp. 543-559.
- Rodríguez, A. y J. Sánchez (2005). "Economic polarization through trade: trade liberalization and regional growth in Mexico", en R. Kanbur y A. J. Venables (comps.), *Spatial inequality and development*, Nueva York: Oxford University Press, pp. 237-259.
- Rosero-Bixby, L. (1991). "Socioeconomic development, health interventions and mortality decline in Costa Rica", *Scandinavian Journal of Social Medicine*. *Supplementum*, 46, pp. 33-42.
- Royuela, V. y M.Artís (2006). "Convergence analysis in terms of quality of life in the urban systems of the Barcelona province, 1991-2000", *Regional Studies*, vol. 40, no. 5, pp. 485-492.
- Royuela, V. y G. A. García (2015). "Economic and social convergence in Colombia", *Regional Studies*, vol. 49, no. 2, pp. 219-239.
- Ruiz, C. (1997). "Desigualdades regionales en México, 1900-1993", *Estudios Demográficos y Urbanos*, vol. 11, núm. 3, pp. 572-576.
- Sab, R. y S. C. Smith (2001). "Human capital convergence: international evidence", *International Monetary Fund Working Paper*, no. WP/01/32.
- Silva, I. (2003). "Disparidades, competitividad territorial y desarrollo local y regional en América Latina", *Serie Gestión Pública*, núm. 33.
- Solow, R. M. (1956). "A contribution to the theory of economic growth", *Quarterly Journal of Economics*, vol. 70, pp. 65-94.
- Unger, K. (2005). "Regional economic development and Mexican out-migration", *National Bureau of Economic Research Working Paper Series*, no. 11432.
- Valdivia, M. (2007). "Heterogeneidad espacial, convergencia y crecimiento regional en México", *XVII Coloquio de Economía Matemática y Econometría*, 21-25 de mayo, Chetumal: Universidad de Quintana Roo.
- Vargas, D. y F. Cortés (2014). "Análisis de las trayectorias de la marginación municipal en México de 1990 a 2010", Estudios Sociológicos, vol. 32, núm. 95, pp. 261-293.
- Yang, F.; S. Pan y X. Yao (2016). "Regional convergence and sustainable development in China", *Sustainability*, vol. 8, no. 121, pp. 1-15.