

Hallazgos

ISSN: 1794-3841

revistahallazgos@usantotomas.edu.co

Universidad Santo Tomás Colombia

Méndez M., Yaneth; Calderón M., Fabián
Evaluación de las aguas subterráneas contaminadas con putrescina y cadaverina en las zonas
aledañas a los cementerios del norte de Bogotá y el campus de la Universidad Santo Tomás
Hallazgos, vol. 7, núm. 13, enero-junio, 2010, pp. 151-163
Universidad Santo Tomás
Bogotá, Colombia

Disponible en: http://www.redalyc.org/articulo.oa?id=413835201008

Número completo

Más información del artículo

Página de la revista en redalyc.org

Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

Evaluación de las aguas subterráneas contaminadas con putrescina y cadaverina en las zonas aledañas a los cementerios del norte de Bogotá y el campus de la Universidad Santo Tomás

Yaneth Méndez M.*, Fabián Calderón M.**

RESUMEN

Recibido: 3 de diciembre de 2010 Revisado: 12 de marzo de 2010 Aprobado: 26 de marzo de 2010

El campus San Alberto Magno de la Universidad Santo Tomás esaledaño a un cementerio en el norte de la ciudad de Bogotá, y su abastecimiento de agua proviene de la parte subterránea de la zona. A lo largo de este estudio se realizó una caracterización microbiológica de muestras de aguas superficiales tomadas de diferentes puntos provenientes del campus y del cementerio en estudio, a los cuales se les realizó un preenriquecimiento, enriquecimiento y aislamiento en medios selectivos. La identificación bioquímica se realizó mediante las pruebas TSI, Lactosa, SIM, urea para colonias sospechosas de Salmonella spp., ayudada de una confirmación rápida por el sistema de identificación API E 20. Para la determinación de Clostridium spp., también se realizó un aislamiento selectivo acompañado de pruebas bioquímicas, como catalasa, nitratos, motilidad, licuefacción de gelatina. Por último, se utilizó la técnica NMP en caldo LMX en la identificación de grupos de coliformes. Se pudo determinar que las muestras de agua cercanas a las sepulturas albergan una gran cantidad de microorganismos indicadores de contaminación orgánica y específicamente de putrescina y cadaverina, exigiendo un tratamiento importante para poder consumirse. Se estableció igualmente que el campus cumple dicha condición a través de una planta de tratamiento de aguas que asegura su consumo, dado que los mismos análisis practicados arrojaron ausencia total de dichos microorganismos.

Palabras clave

Aguas superficiales, tratamiento de aguas, cementerios, contaminación por microorganismos, microorganismos indicadores

^{*} Decana de la Facultad de Ingeniería Ambiental de la Universidad Santo Tomás (vanethmendez@ usantotomas.edu.co).

^{**} Docente investigador del área de Microbiología, Facultad de Ingeniería Ambiental de la Universidad Santo Tomás (rodrigocalderon@ usantotomas.edu.co).

Assessment of groundwater contaminated with putrescine and cadaverine in the areas surrounding the cemeteries in northern Bogota and the campus of the University of Santo Tomas

Yaneth Méndez M., Fabián Calderón M.

ABSTRACT

The campus of the Universidad Santo Tomás is located next to a cemetery in the northern city of Bogotá, and its water supply comes from the underground in the area. Throughout this study the microbiological characterization of surface water samples taken from different points from the San Alberto Magno Campus and the cemetery in the studio, which underwent one for enrichment, enrichment and isolation on selective media was carried out. The biochemical Identification testing was performed by TSI, Lactose, SIM, urea for suspect colonies of Salmonella spp, aided by a quick confirmation by the API E identification system 20. For the determination of Clostridium spp was also carried out a selective isolation accompanied by biochemical tests such as catalase, nitrate, motility, gelatin liquefaction. Finally MPN technique was used in LMX broth in identification of coliform groups. It was determined that water samples near the graves hold a large amount of organic pollution indicator microorganisms and specifically putrescine and cadaverine, demanding an important treatment in order to be consumed. It was also established that the campus meets this requirement through a water treatment plant that ensures the consumer, since the same analysis performed yielded complete absence of these microorganisms.

Key words

Surface water, water treatment, cemeteries, contamination by microorganisms, microorganisms indicators.

Recibido: 3 de diciembre de 2010 Revisado: 12 de marzo de 2010 Aprobado: 26 de marzo de 2010

Introducción

En las últimas décadas la preocupación de toda sociedad es la disponibilidad y calidad del agua, ya que constituye un elemento esencial para el mantenimiento de la vida en el planeta. Ocupa tres cuartos de la superficie de la Tierra y, por más abundante que parezca este recurso, ha disminuido debido a la presencia de largos periodos de sequía, llegando a estar solo en un 0,8% disponible para el consumo humano. Adicionalmente, existen otros factores, como: el gran aumento poblacional que demanda un incremento del agua y genera diferentes fuentes contaminantes por intervención humana, lo que altera su calidad (puesto que las aguas superficiales son más susceptibles de contaminarse que las subterráneas); la construcción, localización y operación inadecuada de infraestructuras, como en el caso de los cementerios en medios urbanos, lo que puede provocar la contaminación de manantiales hídricos por microorganismos que proliferan en el proceso de descomposición de los cuerpos y de elementos radioactivos de personas cuya causa mortis fue una enfermedad contagiosa o epidemia, teniendo en cuenta que uno de estos elementos puede tener una vida relativamente prolongada; estos elementos exponen los suelos y las aguas a una contaminación radioactiva de difícil previsión y tratamiento. También en lo que respecta a la ubicación geotopográfica de los cementerios, a la falta de terrenos disponibles, suelos inadecuados, topografía irregular, proyectos deficientes de localización e implementación de estos, poca profundidad en la superficie freática; estos problemas colocan dichas construcciones como un factor de riesgo potencial para las aguas superficiales y por consiguiente para la salud pública, ya que estas se convierten en un vehículo importante para la diseminación de diversas enfermedades, lo que hace necesario proteger y controlar su calidad mediante la aplicación de beneficios eficaces.

El análisis rutinario de aguas pone en manifiesto la búsqueda de un amplio rango de microorganismos patógenos, que en algunos casos puede ser impracticable por algunos laboratorios; por ello, el presente estudio convierte esta técnica en práctica rutinaria investigando la presencia de bacterias que indican la posibilidad de la existencia de otras, productoras de toxoinfecciones, las cuales se estudian frecuentemente para establecer la seguridad y calidad microbiológica, ya sea de aguas o de alimentos.

Materiales y métodos

Para la realización de este estudio se recolectaron muestras de aguas superficiales compuestas, provenientes del cementerio en estudio y del campus San Alberto Magno, ubicados en el norte de Bogotá. La primera visita al sector fue con el fin de reconocer el área y poder hacer una descripción de las características más relevantes de los lugares, y la segunda y tercera con el objeto de muestrear y medir la densidad poblacional microbiana del sector.

Durante los muestreos se tomaron por triplicado cuatro muestras compuestas de cada punto que iba a evaluarse. En el caso del cementerio, estas constaron de una mezcla de varias de ellas a diferentes horas: 8 a. m., 12 m., 4 p. m. Respecto al campus, se tomaron cuatro muestras sin importar la hora, ya que nos referimos a aguas estandarizadas al poseer previo tratamiento para su uso. Las muestras se recogieron en frascos

de vidrio de 250 mL, las cuales se almacenaron y transportaron en neveras de Icopor a 4°C hasta su procesamiento en el laboratorio.

La ubicación de los puntos de muestreo corresponde a:

Cementerio: La etapa I sector 6 (muestra cañería), etapa I sección A4 (muestra estanque), etapa II sector 7 (muestra pozo), etapa III sección 2B (muestra alcantarillado), los cuales se escogieron teniendo en cuenta su ubicación dentro del cementerio así como la cercanía a posibles fuentes de contaminación y el acceso a la toma de muestras.

Campus: las cuatro muestras se tomaron de los baños más concurridos por los estudiantes, cercanos al área de cafetería y de salones de clase.

A partir de las muestras tomadas en el cementerio y en el campus, se realizó la recuperación y el aislamiento de cepas sospechosas.

Cultivo, aislamiento e identificación de *Salmonella spp*.

En el preenriquecimiento se utilizaron frascos de 90 mL de caldo BHI, inoculados con 10 mL de muestra de agua, los cuales se incubaron a 37° C durante 24 horas. En la etapa de enriquecimiento se sembró 1 mL de la muestra anterior en 10 mL de caldo Rappaport y en 10 mL de tetrationato. Para el aislamiento selectivo se utilizó la técnica de siembra por agotamiento en medios de cultivo diferentes, tales como ENDO-S, EMB, Hektoen y MacConkey, estos se incubaron a 35° C de 24 a 48 horas; a las colonias sos-

pechosas de *Salmonella spp.* se les realizaron pruebas bioquímicas como TSI, lactosa, SIM y urea, y finalmente se usó un sistema de identificación rápida API E20 (enterobacterias) para lograr así una correcta identificación taxonómica.

Cultivo, aislamiento e identificación de *Shigella spp*.

Para este enriquecimiento se utilizó medio líquido nutritivo y para el crecimiento selectivo agar SS y XLD, los cuales se incubaron de 6 a 18 horas a 35° C. También se le realizaron pruebas bioquímicas y el test rápido API E20.

Cultivo, aislamiento e identificación de *Clostridium spp*.

Para el aislamiento de cepas de *Clostridium* se empleó agar SPS sembrándose en cajas y en tubos las muestras por duplicado y profundidad, teniendo en cuenta una temperatura de 35°C, de 48 a 72 horas, en campana de anaerobiosis. Las colonias sospechosas se sembraron en caldo tioglicolato de 4 a 6 horas a 35°C; a partir de este medio se realizó la prueba de licuefacción, motilidad y catalasa (a partir de agar BHI).

Determinación e identificación de coliformes totales, fecales y *Escherichia coli* mediante el uso de técnicas colorimétricas (caldo LMX-Fluorocult).

Se utilizaron cinco tubos de fermentación por proporción de 10 mL; cada uno se inoculó con las respectivas diluciones (-1, -2, -3) de cada muestra, mezclándose e incubándose a 35° C durante 24 horas, de lo que se obtuvieronresultados presuntivos. Posteriormente, se dobló la concentración del caldo, el tiempo de incubación, y se aumentó 10° C la temperatura para evidenciar la prueba confirmativa a los tubos positivos de la anterior. Esta técnica es diagnosticada por la aparición de un color verde-azulado que bajo luz U.V. observa fluorescencia.

Análisis estadístico

Se realizó un análisis estadístico de tipo descriptivo para la mayoría de los datos, teniendo en cuenta que el número de valores hallados en las muestras de agua del campus (objetivo de interés) es muy pequeño (valor *n*), por lo cual no es recomendable aplicar un modelo estadístico más complejo ya que la exactitud de este disminuiría considerablemente.

Con los datos obtenidos a partir de la evaluación de la persistencia de contaminación en el tiempo se llevó a cabo un análisis estadístico mediante el uso de una regresión lineal con una estimación de mínimos cuadrados ordinarios para demostrar matemáticamente que existe diferencia significativa entre los tres microorganismos, ya que se comportan de manera diferente frente a este tipo de agua. Así se halló un valor denominado índice de persistencia en el agua.

RESULTADOS Y DISCUSIÓN

Confirmación de Salmonella spp.

Al comparar los dos caldos de enriquecimiento selectivo se observó que el caldo tetrationato proporcionó una mejor recuperación del microorganismo en estudio, lo cual se reflejó en el aislamiento por la presencia de una gran cantidad de colonias sospechosas y una menor proporción de colonias no sospechosas.

De los medios selectivos utilizados, fue en el agar Hektoen donde se obtuvo el mayor número de cepas con características similares a *Salmonella spp* en relación con los demás medios selectivos utilizados, correspondiendo el total de colonias aisladas en un 57% (80 colonias). Un 29% (40 colonias) del agar Endo-S, un 14% (20 colonias) del agar MacConkey y un 0% (0 colonias) del agar EMB. Este es el resultado de las muestras del cementerio. En cuanto a las del campus se obtuvo un 0% en todos los agares (figura 1).

Características de Salmonella spp. en medios selectivos

Las colonias que crecieron en el medio EMB no se tomaron en cuenta ni se seleccionaron en este estudio, ya que no presentaron características similares a *Salmonella spp.* A partir del aislamiento en los medios selectivos, se realizó un recuento de las colonias encontradas en cada medio (tabla 1), al igual que una caracterización macroscópica (tabla 2).

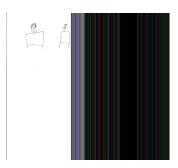


Figura 1. Recuento de colonias.

Tabla 1. Reporte de UFC/mL medios selectivos

Muestra	EMB	Endo	Hektoen	Mconkey
Estanque	23 x 10 ² UFC/mL	20 x 10 ² UFC/mL	29 x 10 ² UFC/mL	18 x 10 ² UFC/mL
Pozo	20 x 10 ² UFC/mL	15 x 10 ² UFC/mL	24 x 10 ² UFC/mL	14 x 10 ² UFC/mL
Alcanta	20 x 10 ² UFC/mL	30 x 101 UFC/mL	50 x 101 UFC/mL	15 x 10 ² UFC/mL
Cañería	25 x 10 ² UFC/mL	26 x 10 ² UFC/mL	25 x 10 ² UFC/mL	17 x 10 ² UFC/mL
1 campus	< 10 UFC/mL	< 10 UFC/mL	< 10 UFC/mL	< 10 UFC/mL
2 campus	< 10 UFC/mL	< 10 UFC/mL	< 10 UFC/mL	< 10 UFC/mL
3 campus	< 10 UFC/mL	< 10 UFC/mL	< 10 UFC/mL	< 10 UFC/mL
4 campus	< 10 UFC/mL	< 10 UFC/mL	< 10 UFC/mL	< 10 UFC/mL

De acuerdo con las características morfológicas de las colonias en los medios de cultivo selectivos (EMB, Endo-S, Hektoen, Mac-

Conkey), se realizó una breve descripción macroscópica de cada una de las colonias presentes.

Tabla 2. Caracterización macróscopica de colonias

Morfología	EMB	Endo	Hektoen	Mconkey
Tamaño	grandes	medianas	pequeñas	grandes
Forma	circulares	circulares	circulares	rizoides
Elevación	convexas	convexas	umbonada	planas
Borde	regulares	regulares	regulares	rizadas
Color	moradas	blancas	amarillas	ámbar
Apariencia	cremosas	cremosas	cremosas	secas
Aspecto	brillantes	brillantes	opacas	opacas
Viraje medio	negativo	negativo	positivo	positivo

La identificación de los microorganismos por las características de las colonias en los medios sólidos selectivos conlleva limitaciones inherentes a las variaciones biológicas de determinados organismos y no puede ser fiable ni siquiera para una identificación provisional. Por esta razón se realizaron pruebas bioquímicas obteniéndose los siguientes resultados para la muestra de tanque y pozo, TSI (Ak/Ac), lactosa (nega-

tivo), urea (negativo), SIM (indol negativo) y motilidad (positivo), y para la muestra de alcantarillado y cañería, TSI (Ac/Ac), lactosa (positivo), urea (negativo), SIM (indol negativo) y motilidad (positivo). Además, se realizó coloración de Gram, observándose bacilos Gram negativos. Las cepas que coincidieron en dos o más pruebas se llevaron a una identificación bioquímica adicional por medio del sistema de identificación API

E20, con el objeto de lograr una correcta identificación y permitir una clasificación taxonómica de los microorganismos encontrados de manera más confiable y eficaz (figura 2).

Figura 2. Pruebas Bioquímicas API E20.

Por medio del método API E20 se identificó *Salmonella choleraesuis* a partir del punto de muestreo cañería y alcantarillado (tabla 3) con un índice de confiabilidad del 96%, mientras que en las muestras de pozo y tanque se identificó *Enterobacter cloacae* (tabla 4) con un índice de confiabilidad del 96,5%.

Tabla 3. Reacciones API E20 Salmonella

ONPG	-	Gel	-
ADH	+	Glu	+
LDC	+	Man	+
ODC	+	Ino	-
CIT	+	Sor	+
H ₂ S	+	Rha	+
URE	-	Sac	-
TDA	-	Mel	+
IND	-	Amy	+
VP	-	Ara	+

Salmonella choleraesuis es una de las serovariedades aisladas del hombre y de los animales de sangre caliente, presentes algunas veces en ambientes acuáticos contaminados, indicadores también de presencia de cadaverina y putrescina, los cuales pueden desembocar de forma directa e indirecta a

fuentes de aguas aledañas utilizadas por la población cercana, lo que las convierte en un gran riesgo para la salud de quienes la consumen, ya que *Salmonella spp.* causa un grupo variado de enfermedades infecciosas denominadas salmonelosis o enfermedades gastrointestinales, que como problema endémico de salud pública y socioeconómica ocasiona grandes pérdidas. La sobrevivencia de *Salmonella spp*, como de otros patógenos entéricos, se debe a que es capaz de entrar en un estado "viable pero no cultivable" al encontrarse bajo condiciones ambientales acuáticas, lo que hace difícil su recuperación de estos ambientes.

Tabla 4. Reacciones API E20 Enterobacter

ONPG	+	Gel	-
ADH	+	Glu	+
LDC	-	Man	+
ODC	+	Ino	+
CIT	+	Sor	+
H ₂ S	-	Rha	+
URE	-	Sac	+
TDA	+	Mel	+
IND	-	Amy	+
VP	-	Ara	+

Enterobacter cloacae pertenece al género Enterobacter, forma parte de la flora entérica comensal y ha tomado importancia como un patógeno nosocolmial, con valores por encima de un 5% en casos de septicemias adquiridas en hospitales, 5% de neumonía nosocomial, 4% de infecciones urinarias, 10% en casos de peritonitis post-quirúrgica, 1% en vías respiratorias y heridas cutáneas, en ocasiones puede causar meningitis. Además de esta significancia clínica, Enterobacter cloacae desempeña un rol importante como patógeno en plantas e insectos, y es

ubicuo en ambientes terrestres y acuáticos. También se asocia con una gran variedad de infecciones oportunistas que afectan las vías urinarias.

Aislamiento de Shigella spp.

Para la recuperación del microorganismo proveniente de aguas superficiales, se utilizó medio líquido nutritivo; a partir de este se realizaron siembras por agotamiento en agares específicos, como SS y XLD. Sin embargo, después de 24 a 48 horas de incubación no se observó crecimiento del microorganismo en ninguno de los medios de cultivo, lo cual se debe principalmente a la falta de técnicas de enriquecimiento disponible para *Shigella spp.*, a partir de muestras ambientales donde el número de microorganismos se encuentra en bajas concentraciones, esto lo corroboran estudios anteriores a este.

Aislamiento de Clostridium spp.

Se sembró en profundidad 1 mL de cada muestra de agua superficial en tubos estériles, los cuales se llevaron a agua en ebullición durante 15 minutos, luego se colocaron en hielo, y finalmente se adicionó agar SPS y parafina. Estos se incubaron a 35° C de 48 a 72 horas. Las muestras también se sembraron en profundidad en cajas de petri. En las dos técnicas de siembra utilizadas se observaron colonias negras en el punto 4 de muestreo (cañería) y se hizo el respectivo recuento. Lo que reporta que en el resto

de puntos para el cementerio no hay presencia de *Clostridium spp.*, y mucho menos para las aguas muestreadas en el campus (tabla 5). La coloración negra de las colonias se debió a que el microorganismo redujo el sulfito del medio a sulfuro que a su vez reaccionó con el citrato de hierro, dando esta coloración característica del *Clostridium spp.* Posteriormente, se realizaron las pruebas bioquímicas de catalasa, nitratos, motilidad y licuefacción de gelatina, que dieron un resultado negativo.

Tabla 5. Reporte de UFC/mL agar SPS. Aislamiento de coliformes totales y fecales

Muestra	SPS	
Estanque	< 10 UFC/mL	
Pozo	< 10 UFC/mL	
Alcanta	< 10 UFC/mL	
Cañería	50 x 10° UFC/mL	
1 campus	< 10 UFC/mL	
2 campus	< 10 UFC/mL	
3 campus	< 10 UFC/mL	
4 campus	< 10 UFC/mL	

Para el aislamiento del grupo de coliformes se realizó la técnica de fermentación en tubos múltiples (NMP), utilizando cinco tubos de caldo LMX por dilución, según recomendaciones del Standard Methods for the examination of water and wastewater 1998, para muestras de agua. Los resultados tomados de las 16 muestras del cementerio y del campus, obtenidas en los ocho puntos de muestreo (estanque, pozo, alcantarillado, cañería y baños), se encuentran registrados en las tablas 6 y 7, respectivamente.

Tabla 6. Resultados NMP coliformes totales

Muestra	1 mL	0,1 mL	0,01 mL	Resultado	Índice NMP/100 mL
Estanque	4/5	4/5	0/5	440	3.400
Pozo	0/5	0/5	0/5	000	<20
Alcanta	2/5	2/5	0/5	220	90
Cañería	4/5	3/5	1/5	431	3.300
1 campus	0/5	0/5	0/5	000	< 20
2 campus	0/5	0/5	0/5	000	< 20
3 campus	0/5	0/5	0/5	000	< 20
4 campus	0/5	0/5	0/5	000	< 20

Tabla 7. Resultados NMP coliformes fecales

Muestra	1 mL	0,1 mL	0,01 mL	Resultado	Índice NMP/100 mL
Estanque	2/5	1/5	0/5	210	70
Pozo	0/5	0/5	0/5	000	< 20
Alcanta	1/5	0/5	0/5	100	20
Cañería	2/5	0/5	0/5	200	40
1 campus	0/5	0/5	0/5	000	< 20
2 campus	0/5	0/5	0/5	000	< 20
3 campus	0/5	0/5	0/5	000	< 20
4 campus	0/5	0/5	0/5	000	< 20

Según los resultados obtenidos de NMP/100 mL para coliformes totales y fecales, se determinó que los puntos de muestreo cañería y alcantarillado presentaron una mayor contaminación, con un valor de 3.400 y 3.300 respectivamente para el primer grupo, y con un valor de 70 y 40 para el segundo. La presencia de estos microorganismos se utiliza mucho porque se constituyen como buenos indicadores de contaminación humana y animal, puesto que su densidad en agua disminuye en la misma proporción que las bacterias patógenas intestinales. Los valores obtenidos en las muestras de agua de cañería y alcantarillado (a partir de aguas lluvia

y agua potable) pueden deberse a que inicialmente pasan al subsuelo, entran en contacto con los cuerpos en descomposición y con los microorganismos presentes en ellos, produciendo su migración-difusión a través del suelo. Estos resultados no son muy favorables ya que tal situación puede causar riesgos para la salud, como infecciones de las vías urinarias, neumonía en enfermos con inmunosupresión y meningitis en recién nacidos.

La presencia de coliformes en las muestras provenientes del pozo se debe, posiblemente, a que este se encuentra rodeado de una gran cantidad de bóvedas en las que se albergan cuerpos que producen sustancias en los primeros años de descomposición, lo que ayuda a la migración de los microorganismos y su filtración a través de los espacios presentes en estas estructuras, y permite su paso al agua del pozo. Dentro de este grupo se encontró *Escherichia coli*, la cual se relaciona con la amenaza de la presencia de enfermedades entéricas, que son causantes de serios daños en la salud humana.

Por último, en la muestra de agua de estanque se obtuvieron los valores más bajos para coliformes totales y fecales, debido a que no se encuentra en contacto con sepulturas, por lo que se pudo determinar que estas son reservorio de coliformes. La ausencia de estos microorganismos en la muestra de agua indica que no representa un posible riesgo de producir enfermedades gastrointestinales. En cuanto a las muestras del campus San Alberto Magno no se evidencia ningún tipo de microorganismo, puesto que existe en este lugar una planta de tratamiento de aguas, y según estos resultados es óptima para evitar la contaminación con coliformes u otros microorganismos de riesgo para la salud.

Evaluación de persistencia de los microorganismos encontrados en el tiempo en ausencia de cadaverina y putrescina

Se utilizó una suspensión de cada uno de los microorganismos, tomando tiempos de prevalencia de cuatro horas para evaluar el efecto que presentaba al no proporcionar las condiciones nativas del sector frente a cada microorganismo, hasta evidenciar un porcentaje de inhibición del 100% al no poder degradar putrescina y cadaverína.

De los microorganismos encontrados, *Clostridiuma* es el primero que se inhibe totalmente presentando un porcentaje de 100% de inhibición pasadas 24 horas en ausencia de su sector nativo. Mientras que *Salmonella choleraesuis* es el microorganismo que presenta un mayor nivel de resistencia ya que la inhibición del 100% se consigue en la hora 108, razón por la que se considera el más resistente y es importante tener una mayor serie de precauciones y procedimientos para contrarrestarlo en el momento de hacer un tratamiento previo al agua afectada (figura 3).

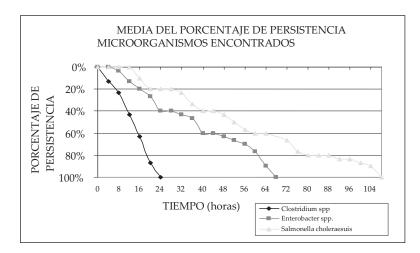


Figura 3. Microorganismos persistentes en ambientes aislados de putrescina y cadaverina.

Análisis estadístico

Se llevó a cabo un análisis estadístico utilizando una regresión lineal con una estimación de mínimos cuadrados ordinarios para reafirmar que los tres microorganismos evaluados presentan comportamientos diferentes frente al cambio de ambiente sin tener cadaverina y putrescina como fuente de degradación.

La ecuación por estimar:

Porcentaje bioindicador = (a)*(número de horas que han pasado) + (b) * (término interactivo del número de horas por la variable *Clostridium spp.*) + (d) * (término interactivo del número de horas por la variable *Enterobacter spp.*).

Con lo que adicionalmente se puede concluir:

a = El cambio en la concentración que presenta la *Salmonella* por cada hora que pasa (0,91%)

a + b = El cambio en la concentración que presenta el *Clostridium spp.* por cada hora que pasa (4,03%)

a + d = El cambio en la concentración que presentan las *Enterobacter spp.* por cada hora que pasa (1,35%)

Los datos anteriormente mencionados pueden entenderse como el porcentaje de letalidad microbiana por cada hora que pasa, con lo que se demuestra que el género *Clostridium spp.* presenta un valor mayor de letalidad por hora (4,03%), mientras que *Salmonella choleraesuis* tiene un porcentaje de letalidad por hora menor (0,91%); con esto se esperaría estadísticamente que el microorganismo que más prevalencia presente en el tiempo sea Salmonella choleraesuis, tal como se muestra en los resultados encontrados.

Conclusiones y RECOMENDACIONES

Se aislaron tres cepas de microorganismos nativos provenientes de la muestra de agua como indicadores de contaminación de putrescina y cadaverina: *Salmonella choleraesuis, Enterobacter spp.* y presuntivamente *Clostridium spp.*

Se evidenció que en el campus San Alberto Magno no existe algún peligro de contaminación microbiológica en agua, pues este lugar posee una planta de tratamiento así su abastecimiento provenga de aguas subterráneas del sector (es apta para el uso humano).

La presencia de Salmonella choleraesuis, Enterobacter spp. y presuntivamente Clostridium spp., se determina por las condiciones biológicas y fisicoquímicas del ambiente acuático que permiten su supervivencia, por medio de mecanismos de adaptación tales como cambios metabólicos o alteraciones genómicas en respuesta a condiciones ambientales adversas.

Debido a la importancia que tienen estos microorganismos en la incidencia de enfermedades y del riesgo que pueden causar a la salud pública se hace necesaria su vigilancia en el ambiente acuático, para lo cual es preciso desarrollar estudios que faciliten el aislamiento, identificación y diferenciación de especies patógenas en ambientes naturales que posean el mismo problema frente a la degradación cadavérica o tafonomía.

De acuerdo con los resultados obtenidos para coliformes en las aguas superficiales provenientes del cementerio y basándonos en el Decreto 1594 de 1984 sobre las disposiciones sanitarias de las aguas, algunas de ellas requieren tratamientos para mejorar su calidad y disminuir el impacto ambiental que puedan causar, así como lo ha venido haciendo la Universidad Santo Tomás.

De este estudio se reconoce la necesidad de implementar acciones para prevenir, mitigar, controlar, compensar y corregir los posibles efectos o impactos ambientales, causados en el desarrollo o construcción de cementerios, incluyendo planes de seguimiento, evaluación y monitoreos periódicos que incluyan análisis fisicoquímicos (aminas, fenoles, sulfuros, DBO, DQO, sólidos, materia orgánica, aceites) y microbiológicos (recuento de mesófilos, coliformes totales, coliformes fecales, presencia de *Escherichia coli*, *Pseudomonas*).

Referencias bibliográficas

- Adcock, P. & Saint, C. (2001). Rapid confirmation of clostridium perfringens by using chromogenic substrates. Applied and Environmental Microbiology, 67. (9): 4382-4384.
- Apha & Awwa. (1998). Standard Methods for the examination of water and wastewater. (20^a ed.), 9-41. Madrid, España: Ed. Díaz de Santos.
- Barrantes, K., Pardo, V. & Achí, R. (2004). Brote de diarrea asociado a *Shigella* sonnei debido a contaminación hídrica. Revista costarricense de ciencias médicas, 25. No. 1. 2053-2057. San José de Costa Rica.
- Biomerieux. (2007). Sistema de identificación de Enterobacteriaceae y otros bacilos gram negativos no exigentes.
- Brock, T. & Madigan, M. (1991). *Microbiolo-gía*. (6ª ed.). México: Editorial Prentice Hall.
- Bunge, M. (1997). *La ciencia, su método y su filosofia*. Bogotá: Emfasar Editores.

- Calderón, R.F. (2004). Caracterización y tratamiento de microorganismos bioindicadores de contaminación y deterioro en restos óseos humanos custodiados por el Laboratorio de Antropología Física de la Universidad Nacional.
- Cooke V., Miles, R., & Richardson, C. (1999). A novel chromogenic ester agar medium of detection of Salmonella. Applied and Environmental Microbiology, 65. No. 2. 807-812.
- DAMA. (1996). Términos de referencia para elaborar estudios de impacto ambiental para construcción de obras y desarrollo de cementerios, 23-24. Bogotá, D.C.
- Dusch, H. & Altwegg, M. (1995). Evaluation of five new plating media for isolation of Salmonella species. J. Clin. Microbiology, 33. No. 4. 802-804.
- Elliott, S. (2004, january). The posible influence of mico-organism and putrefaction in the production of GHB in post-mortem biological fluid. Forensic Science International, 139. (2-3): 183-190.

- Faruque, S. & Khan, R. (2002). *Isolation Shigella dysinteriae Type I and S. flexneri strains from surface waters in Bangladesh. Applied and Environmental Microbiology,*68. No. 8. 3908-3913.
- Fernández, S. (2000). *Temas de tafonomía*. 85-100. Madrid, España: Departamento de Paleontología. Facultad de Ciencias Geológicas. Universidad Complutense.
- Foye, W. (1984). *Principios de química farma-céutica*. Bogotá: Editorial Reverte.
- Gavín, R. (2003). Caracterización genética y fenotípica del flagelo de Aeromonas. Tesis. Barcelona: Universidad de Barcelona. Facultad de Biología. Departamento de Microbiología.
- Koburger, J. (1982, december). Isolation of Chromobacterium spp. From foods, soil and water. Appl Environ Microbiol, 44. (6): 1463-1465.
- Martindale. (1993). *The extra Pharmacopoeia*. (30^a ed.). London: The Pharmaceutical Press.
- Mateos, P., González, F. & Coll, P. (2004). Prácticas Bioquímica y Microbiología industriales.
- Merck, E. (2000). *Microbiology Manual. Merck Kga A*. Berlín, Alemania.
- Ministerio de Salud. (1984). Disposiciones sanitarias sobre aguas. 82-111. Bogotá, Colombia.

- Pelczar, M. et al. (1994). *Microbiología*. (2ª ed.) México: Editorial Mc. Graw Hill.
- Palacios, M. & Cupiola, P. (1999). Primeros resultados del estudio de la persistencia de Salmonella en la zona no saturada del suelo agrícola. 12-13.
- Pineda, Y. (2005). La salmonelosis porcina. Revista Digital del Centro Nacional de Investigaciones Agropecuarias de Venezuela Laboratorio de Bacteriología. Maracay: Sanidad Animal, INIA-CENIAP.
- San Martín, N. (1996). Revista de Extensión TecnoVet. Universidad de Chile. Facultad de Ciencias Veterinarias y Pecuarias.
- SIGAM. (2004). *Agenda Ambiental de San Andrés Isla*. Sistema de Gestión Ambiental Municipal.
- Silva, J. (1994). Degradación ambiental causada por cementerios. *Revista de Saúde Pública*, 25. No. 1. 47-52.
- Spencer, C. (1997). *Bioarchaeology intrepreting behavior from the human skeleton*. Cambridge University Press.
- Talavera, M. (2004). Análisis epidemiológico molecular de Salmonella spp. y su relación con la resistencia antibiótica en cerdos de abasto en rastros del Valle de Toluca, México. Tesis Postgrado Interinstitucional en Ciencias Pecuarias. Universidad de Colima.