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Abstract
Covering Arrays (CA) are mathematical objects used in the functional testing of software components. They 
enable the testing of all interactions of a given size of input parameters in a procedure, function, or logical unit in 
general, using the minimum number of test cases. Building CA is a complex task that involves lengthy execution 
times and high computational loads. The most effective methods for building CAs are algebraic, Greedy, and 
metaheuristic-based. The latter have reported the best results to date. This paper presents a description of the major 
contributions made by a selection of different metaheuristics, including simulated annealing, tabu search, genetic 
algorithms, ant colony algorithms, particle swarm algorithms, and harmony search algorithms. It is worth noting 
that simulated annealing-based algorithms have evolved as the most competitive, and currently form the state of 
the art.

Keywords: ant colony optimization; Covering Array; genetic algorithms; harmony search algorithm; 
metaheuristics; particle swarm optimization; simulated annealing; tabu search.

Resumen
Los Covering Arrays (CA) son objetos matemáticos usados en pruebas funcionales de componentes software. 
Los CA permiten probar todas las interacciones de un tamaño determinado, de los parámetros de entrada de un 
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procedimiento, función o unidad lógica en general, usando el mínimo número de casos de prueba. La construcción 
de CA es una tarea compleja que requiere largos periodos de ejecución y gran capacidad computacional. Los 
métodos más efectivos para construir CA son los algebraicos, voraces y basados en metaheurísticas. Estos 
últimos son los que han arrojado mejores resultados hasta la fecha. Este artículo presenta una descripción de 
las contribuciones más importantes hechas por diferentes metaheurísticas, incluyendo el simulated annealing 
(recocido simulado), búsqueda tabú, algoritmos genéticos, algoritmo de la colonia de hormigas, algoritmo de 
enjambre de partículas y algoritmo de búsqueda armónica. Cabe anotar que los algoritmos basados en recocido 
simulado se han convertido en los más competitivos y actualmente son el estado del arte.

Palabras clave: algoritmo de búsqueda armónica; algoritmos genéticos; búsqueda tabú; Covering Array; 
metaheurística; optimización por colonia de hormigas; optimización por enjambre de partículas; recocido 
simulado.

Resumo
Os Covering Arrays (CA) são objetos matemáticos usados em provas funcionais de componentes software. Os CA 
permitem provar todas as interações de um tamanho determinado, dos parâmetros de entrada de um procedimento, 
função ou unidade lógica em geral, usando o mínimo número de casos de prova. A construção de CA é uma 
tarefa complexa que precisa longos períodos de execução e grande capacidade computacional. Os métodos mais 
efetivos para construir CA são os algébricos, vorazes e baseados em metaheurísticas. Estes últimos são os que 
têm produzido melhores resultados até esta data. Este artigo apresenta uma descrição das contribuições mais 
importantes feitas por diferentes metaheurísticas, incluindo o simulated annealing (recozimento simulado), busca 
tabu, algoritmos genéticos, algoritmo de colônia de formigas, algoritmo de enxame de partículas e algoritmo de 
busca harmônica. Deve-se observar que os algoritmos baseados em recozimento simulado têm-se convertido nos 
mais competitivos e atualmente são o estado da arte.

Palavras chave: algoritmo de busca harmônica; algoritmos genéticos; busca tabu; Covering Array; metaheurística; 
otimização por colônia de formigas; otimização por enxame de partículas; recozimento simulado.
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I. Introduction

Over the past few decades, software testing has been 
the most widely used method for ensuring software 
quality [1]. The tests may be seen as a set of processes 
that are designed, developed and applied throughout 
the life of software development to detect and correct 
defects and faults found during and following the 
implementation of the code, and thus raise the quality 
and reliability of the program delivered to the end 
user [2]. However, applying thorough software tests 
that allow the testing of the software component in its 
entirety, as well as being both an expensive and time-
consuming task, is an almost impossible one. Even 
trying to test the simplest software, a large number of 
test cases can be generated due to the many possible 
combinations of input parameters. Creating test 
cases for all these possibilities is an unfeasible and 
impractical process [1, 2]. For example, if it is required 
to test a software component that receives as input 
parameters values from five sensors and each sensor 
can take 10 different values, 105 or 100,000 different 
test cases would then be required to exhaustively test 
that component.

Combinatorial tests provide an alternative to 
exhaustive testing, which select test cases by a 
sampling mechanism that systematically covers the 
combinations of​ input parameter values, defining a 
smaller set of tests that is relatively easy to manage 
and run [3]. This type of testing reduces costs, and 
significantly increases the effectiveness of software 
testing. However, the challenge for the combinatorial 
tests lies precisely in finding the minimum number of 
test cases that achieve maximum coverage with the 
minimum cardinality [4, 5]. One of the combinatorial 
objects that meets the criteria of coverage for this type 
of situation is Covering Arrays (CA) [5].

Covering Arrays are mathematical objects that have 
been widely used in the design of experiments in 
a range of sectors and application areas such as 
agriculture, medicine, biology, material design and 
manufacturing. They have the necessary properties 
to optimally define a series of experiments, due to 

their combinatorial nature [5]. Applied most recently 
to the area of software testing, CAs can be used and 
applied in the functional testing of software. One of 
the main applications of these objects is generating the 
smallest number of sets or software test cases to cover 
all interactions sets of input parameters of a procedure, 
function or software logical unit [5].

A Covering Array denoted by CA(N; k, v, t) is a matrix 
M of size N × k, where N (rows of the matrix) is the 
number of experiments or tests, k is the number of 
factors or parameters (of the method, function or unit 
of the procedure being evaluated), v is the number of 
symbols (possible values) for each parameter, referred 
to “alphabet”, and t is the degree of interaction between 
parameters, called strength [6]. Each submatrix of size 
N × t contains each tuple of symbols of size t (t-tuple) 
at least once [5]. A CA is optimal if it contains the 
minimum possible number of rows [4] and is known 
as CAN. Table 1 shows an example of a CA (5; 4, 
2, 2). The strength of this CA is 2 (t = 2), with four 
parameters or factors (k = 4), and an alphabet of 2 (v 
= 2) values that is defined by the symbols {0,1}. Note 
that in each pair of columns the combinations {0,0}, 
{0,1}, {1,0} and {1,1} appear at least once [5].

Table 1
Example of a CA (5; 4, 2, 2)

1
0
0
1
0

1
0
1
0
0

1
0
0
0
1

0
0
1
1
1

To illustrate the CA approach applied to the design of 
software testing, an example of a Web System to be 
tested using the parameters is presented in Table 2. 
In this example, we have 4 factors or parameters (k = 
4) corresponding to the Browser, Operating System, 
Database Management System or DBMS, and the 
Connection System, each with 3 possible values (v = 
3).

Table 2
Parameters and values of a Web System

Browser O.S. DBMS Connection
0 IE Windows 8 MySQL ISDN
1 Chrome Ubuntu Oracle ADSL
2 Mozilla Red Hat SQL Server Cable
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Table 3 shows part of an exhaustive test, in which all 
of the possible parameters (defining an interaction 
strength t = k, which in this case is 4) combinations are 
generated. The higher the degree of strength (t) and the 
number of values for each parameter (v), the greater 
the number of exhaustive tests to be performed. This 
number of tests is equal to v t. For the given example, 
to perform an exhaustive test, thereby covering 100 % 
of cases, a total of 34 or 81 test cases would need to be 
defined.

Table 3
Part of an exhaustive test of a Web System

Browser O.S. DBMS Connection
0 IE Windows 8 MySQL ISDN
1 IE Windows 8 MySQL ADSL
2 IE Windows 8 MySQL Cable
3 IE Windows 8 Oracle ISDN
4 IE Windows 8 Oracle ADSL
5 IE Windows 8 Oracle Cable
6 IE Windows 8 SQL Server ISDN
7 IE Windows 8 SQL Server ADSL
8 IE Windows 8 SQL Server Cable
9 IE Ubuntu MySQL ISDN
10 IE Ubuntu MySQL ADSL
11 IE Ubuntu MySQL Cable
12 IE Ubuntu Oracle ISDN
… … … … …
79 Mozilla Red Hat SQL Server ISDN
80 Mozilla Red Hat SQL Server ADSL
81 Mozilla Red Hat SQL Server Cable

However, if the interaction between these parameters 
is brought down to strength 2 (t = 2), the number of 
possible combinations is reduced to 32 or nine test 
cases, guaranteeing ample coverage in the test with the 
minimum possible effort [7]. Table 4 shows the CA (9; 
4, 3, 2) resulting from the above example with strength 
2 (t = 2) and alphabet 3 (v = 3). To make the mapping 
between the Web system and the CA, every possible 
value of each parameter in Table 2 is labeled by row 
number, in this case 0, 1, and 2. The combinations that 
must appear at least once in each subset of size N × 
t are: {0,0}, {0,1}, {0,2}, {1,0}, {1,1}, {1,2}, {2,0}, 
{2,1}, {2,2}.

Table 4
CA resulting for the Web System

0
0
0
1
1
1
2
2
2

0
1
2
0
1
2
0
1
2

0
1
2
1
2
0
2
0
1

0
1
2
2
0
1
1
2
0

Table 5 shows specifically the test cases or experiments 
to be performed. Note that each of the nine experiments 
is analogous to each row of the CA.

Table 5
Test Cases for the Web System

IE Windows 8 MySQL ISDN
IE Ubuntu Oracle ADSL
IE Red Hat SQL Server Cable
Chrome Windows 8 Oracle Cable
Chrome Ubuntu SQL Server ISDN
Chrome Red Hat MySQL ADSL
Mozilla Windows 8 SQL Server ADSL
Mozilla Ubuntu MySQL Cable
Mozilla Red Hat Oracle ISDN

Building optimal CAs (CAs with the smallest 
possible size of rows) is a complex task that involves 
a considerable computational burden. To obtain CAs 
of a considerable size, the use of many processors 
in parallel for several months is generally required, 
but achieving its definition has a very significant 
impact on the processes that go on in software testing 
[7]. Because of the importance of CAs, quite a bit 
of research on the development of algorithms and 
effective methods to build them has been carried out 
to date.

Section II of this paper outlines the most significant 
methods and algorithms reported in the literature 
for the construction of CAs. Section III presents 
in detail the algorithms based on metaheuristics or 
hybridization of these, reported as having the best 
results to date. Section IV forecasts several upcoming 
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trends for building CAs, and finally Section V brings 
together the conclusions.

II. Methods and algorithms for 
building Covering Arrays

The methods that have been developed to date for 
building CAs can be classified into four main groups 
[6]: exact, algebraic, Greedy, and Metaheuristic-based 
[7].

A. Exact methods

These are methods that enable the building of optimal 
CAs, but they are only practical for building small 
covering arrays [6]. In 2002, Meagher [8] presented 
a proposal for generating nonisomorphic CAs using a 
backtracking algorithm that builds each row of the CA 
recursively and independently. The algorithm builds 
all the possible CAs of a specific size but only works 
with binary alphabet [8]. EXACT (EXhaustive seArch 
of Combinatorial Test suites) proposed in 2006, 
enables the generation of Mixed Covering Arrays 
(MCA, arrays that have a different alphabet in their 
columns), reducing the search space to avoid exploring 
isomorphic arrays. It uses backtracking techniques to 
return again to the search process when it stagnates in 
the process of building the MCA [4]. In this proposal, 
the computing time increases significantly when the 
number of rows (N) of the CA is close to optimal. 
In addition, it does not find the solution for certain 
configurations. In 2009 [9], an algorithm for building 
CAs was presented with a backtracking technique, 
which creates the CA with a lexicographical order 
of rows and columns to avoid searching symmetrical 
arrays. The proposed algorithm was able to match 
the best solutions found by EXACT for small binary 
CAs and took less time. It also reported better CAs 
than those obtained with IPOG-F. The algorithm is 
limited to binary alphabet and strength 3<= t <= 5. 
In 2006, a proposal for building CAs was made using 
four constraint programming models such as SAT 
(propositional satisfiability problem). The proposed 
models are able to match existing boundaries and 
find new optimal values for problems of relatively 
moderate size. However, when the complexity of the 
CA to be built increases, either in terms of alphabet or 
strength, performance declines [10]; in the same vein, 
in 2008, Lopez-Escogido et al. [11] created CAs based 
on SAT. The main contribution of this proposal focuses 

on an efficient solver of non-CNF (non-conjunctive 
normal form) SAT that uses local search and is able 
to match or even improve some results generated by 
other approaches previously reported. However, the 
algorithm only works with strength t = 2 [11]. Torres-
Jimenez et al. in 2015 [12] proposed a direct method 
to create optimal CAs of strength 2 based on binomial 
coefficients and in an algorithm based on branching 
and bound that links the results of the coefficients, 
making it possible to obtain CAs with large numbers 
of columns. The algorithm was compared with IPOG 
[13], one of the best greedy algorithms for building 
CAs, and performed better for small values of k, but as 
k increases, IPOG gives better results. The experiments 
were limited in the sense that IPOG only works with 
strength t <= 6, while the proposed algorithm works 
with higher strengths of t >=7.

B. Algebraic methods

The algorithms based on algebraic methods build 
CAs in polynomial time using predefined rules. 
The construction of the CAs directly uses some 
mathematical functions or other algebraic procedures 
[7]. Algebraic methods are applicable for very specific 
cases and offer efficient constructions in terms of time; 
however, currently, it is difficult to generate accurate 
results in a wide range of input values [14, 15]. For 
example, in the case of strength 2 and alphabet 2, 
in 1973 two algorithms were proposed that create 
optimal CAs, the first proposal by Katona [16] and the 
second by Kleitman and Spencer [17]. Chateauneuf 
et al. in 1999 [18] proposed an algorithm to create 
CAs of strength three using group actions on symbols/
alphabets, and then in 2005, Meagher and Stevens 
[19] adapted this method to create CAs of strength 
2 using starter vectors that are rotated and translated 
to obtain the CA. Hartman in 2005 [20] proposed a 
method of squaring the number of columns of a CA 
using an orthogonal array as an intermediate tool. 
Colbourn et al. in 2006 [21] proposed a method for 
multiplying two CAs of strength 2 resulting in a new 
CA with the product of the original columns and the 
sum of the original rows. Finally, Colbourn in 2010 
[22] proposed building CAs based on cyclotomic 
matrices.

C. Greedy methods

Greedy algorithms-based methods methods have 
been found to be relatively more efficient and faster 
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in terms of execution time. They have also been 
accurate for a wide variety of inputs. However, the 
CAs generated are not always the smallest compared 
to the CAs generated by other methods [14]. Greedy 
proposals include Density Deterministic Algorithm 
(DDA) proposed by Bryce and Colbourn in 2007 [23] 
that creates CAs of strength 2 a row at a time. In 1998 
[24], Lei and Tai proposed the In-Parameter-Order 
(IPO) algorithm extending the array in both rows and 
columns, (i.e., it starts off with a CA of a number k 
columns and obtains one of k + 1 columns). This IPO 
algorithm is then generalized for strengths of greater 
than 2 in IPOG in 2007 [13], which is then improved 
in IPOG-F in 2008 [25]. Also in 2012, Gargantini 
Calvagna [26] extended the ideas of IPO to build 
MCAs of any strength.

D. Metaheuristic-based methods

Metaheuristic-based algorithms are computationally 
intensive and have provided the most accurate and 
competitive results to date. They have managed to 
generate CAs of the smallest size known (optimal) at a 
significant cost in run-time [14, 27]. Among the most 
important algorithms for building CAs are:

•	 Tabu Search, which has been successfully 
applied to a variety of combinatorial optimization 
problems [28, 29].

•	 Simulated Annealing, which has produced 
the most accurate results, and has found new 
and better solutions for input parameters with 
multiple values [30].

•	 Genetic Algorithms that base their model on 
the survival of the fittest individuals. These 
algorithms usually use selection, crossover, 
mutation and replacement as operators. They 
receive a set of test cases candidates and provide 
as output the subset of test cases with the highest 
values [31].

•	 Ant Colonies, which simulates computationally 
the indirect communication that ants carry out 
to establish the shortest route between their 
starting location and a food source. A test case 
in this algorithm is represented as a route from 
a start point to a target endpoint. When an ant 
reaches the target node, a quantity of pheromones 
is deposited in each path of those that it has 

visited, proportional to the quality of the solution. 
When an ant is required to choose between 
different paths, it chooses the path with the most 
pheromones [32].

•	 Particle Swarm Optimization, which is inspired by 
the behavior or movements of certain organisms 
in nature such as swarms of bees, flocks of birds 
or shoals of fish. They try, after exploring in 
various areas, locating those regions of space 
where the food is most concentrated. Ultimately, 
the whole swarm will orient the search in this 
new direction [33].

•	 Harmony Search that bases its operation on the 
musical improvisation process that takes place 
when a musician seeks to produce a pleasant 
harmony, such as happens in jazz improvisation. 
For this process, there are three possible options: 
one, playing a tune exactly as it is known, as 
it is in his memory; two, playing something 
similar to the above-mentioned melody with a 
slight adjustment in tone; and three, composing 
a new melody with randomly selected notes. 
These three options are formalized in [34] and 
correspond to the components of the algorithm: 
use of harmonic memory, tone adjustment, and 
randomness. Several variations of this proposal 
exist, including Global-best Harmony Search that 
combines the concepts of harmony search with 
PSO [35].

III. Algorithms based on 
metaheuristics

A. Simulated annealing

Simulated Annealing (SA) [36] is a general purpose 
stochastic optimization technique based on the steps 
for annealing of metals, steps employed in the industry 
to obtain materials that are more resilient and possess 
better qualities. The method starts with a heating 
process that basically consists of melting the material 
at a high temperature until it reaches its liquid state. 
At this point, the atoms significantly increase their 
mobility within the structure of the material. A cooling 
process then begins when the temperature is gradually 
lowered in steps, until the atoms are set properly 
before completely losing their mobility and thus 
achieving thermal equilibrium. When the process is 
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complete, it is possible to achieve a highly regular and 
stable structure. Studies have shown that with sharp 
temperature drops or not waiting long enough at each 
stage, the resulting structure is not highly stable.

In 2003, Cohen et al. [37] applied the metaheuristic 
SA in the building of CAs. This proposal begins by 
randomly choosing an initial feasible solution S, 
corresponding to an array N x k with randomly chosen 
symbols of the specification of the CA desired. Using 
a sequence of trials, it randomly selects a cell from 
the array and the symbol is changed for a new one. 
If the transformation results in a feasible solution S’, 
where the cost c(S’) is less than or equal to the cost of 
c(S), then it is accepted as the new and current feasible 
solution. Otherwise, if the result is a more expensive 
feasible solution, S’ is accepted with a probability 

, where T is the control temperature 
of the simulation. Having the possibility of choosing 
a solution that is worse than the current one allows 
the algorithm to escape from the local optima. The 
temperature is decreased in small steps to achieve 
system equilibrium. This is done by adjusting T in 
each iteration to a value αT where α is a real number 
less than one. The algorithm stops when the objective 
function has a cost of zero, which means it has a CA. 
The algorithm also stops when the cost of the current 
solution does not change after a certain number of 
tests. The results of this research indicate that the SA 
makes it possible to build much smaller CAs than 
the algebraic methods. It fails, however, in bigger 
problems, especially when strength t is equal to or 
greater than 3.

In 2008, Cohen [38] made certain modifications 
to the original proposal, including a refinement to 
the Simulated Annealing algorithm that made it 
possible to find test cases faster, and include algebraic 
constructions that made it possible to build much 
smaller test cases. It also found new dimensions for 
some CAs of strength three. This hybrid approach is 
called Augmented Annealing.

In 2010, Torres-Jimenez and Rodriguez-Tello [39] 
presented a new implementation of the SA algorithm 
to build binary CAs of variable strength up to t = 
5, which integrates three important characteristics 
that determine its performance. First, it incorporates 
an efficient heuristic to generate initial solutions 
of good quality; second, the design of a composite 
neighborhood function that allows the search 
to reduce rapidly the total cost of the candidate 

solutions, while avoiding falling into local minima; 
third, a cooling schedule that effectively allows the 
algorithm to converge much faster while generating 
solutions of quality. The algorithm was compared 
with the Deterministic Density Algorithm (DDA), 
Tabu Search, and IPOG-F algorithms [25]. The results 
showed that SA found new upper bounds and matched 
other previously known solutions from the references 
selected.

In 2012, Torres-Jimenez and Rodriguez-Tello [40] 
presented an improvement in the implementation of 
the SA algorithm called ISA, to build CA of strength 
t ϵ {3 - 6} on a binary alphabet. The algorithm 
integrates two key characteristics that determine its 
performance: an efficient heuristic that generates good 
quality initial solutions that contain a balanced number 
of symbols in each column, and a carefully designed 
neighborhood function that allows a rapid search 
and reduces the cost of candidate solutions, avoiding 
falling into local minima. The performance of ISA was 
evaluated through extensive experimentation on a set 
of known reference cases, including 127 binary CAs 
of strength 3 to 6, and compared with various state of 
the art algorithms, among which were SA, a Greedy 
method, and TS. The computational results showed 
that the ISA algorithm has the advantage of producing 
smaller CAs than the other methods, at a moderate 
computational cost without major fluctuations in its 
average yield.

In 2012, Rodriguez-Cristerna and Torres-Jimenez 
[41] presented a hybrid approach called SA-VNS 
for building mixed covering arrays, (MCA, CAs 
with different possible values in columns) based on 
Simulated Annealing and a variable neighborhood 
search function (VNS). The solutions obtained by 
the hybrid algorithm SA-VNS were compared with 
other algorithms, including IPOG [13], IPOG-F 
and MiTS [42], managing to match 12 of the best 
known solutions and improving on six of these. 
The time required by SA-VNS is longer than the 
time needed for the algorithms mentioned above, 
but the improved results justify the extra time. In 
2015, Rodriguez-Cristerna and Torres-Jimenez [43] 
presented the SAVNS algorithm as an improvement 
to the proposed SA-VNS. Among the main features 
of this new version of the algorithm are a mechanism 
for changing the size of the neighborhood in a range 
according to accepted movements, a mechanism 
for increasing the temperature and decreasing the 
probabilities of premature convergence, and a 
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probabilistic mixture of two neighborhood functions 
that operate as a local search, thus diversifying the 
search strategy. The algorithm was subjected to a 
tuning process that enabled the best configuration 
of the algorithm parameters to be established. The 
results from performance tests between SAVNS and 
other algorithms such as IPOG-F, MiTS, SA, TS 
and SA-VNS indicated that, based on nine cases or 
instances as benchmark, SAVNS managed to improve 
five instances of the best known algorithms solutions, 
mentioned above, with which it was compared.

In 2016, Torres-Jimenez [44] presented a system 
based on ISA [40] algorithm that equals or improves 
the size of the CAs reported by Colbourn [22] for 
strength 3, alphabet 3 and 105 ≤ N ≤ 223, thanks to 
two new neighborhood functions added. The proposal 
also defined a benchmark for 25 MCAs, and managed 
to find 579 new lower limits and match 13 previously 
known solutions. The algorithm is limited to a 
specified strength and alphabet.

B. Tabu search

Tabu Search (TS) is an approach to local search 
optimization that confronts different combinatorial 
optimization problems. This strategy, proposed in 
1998 by Glover and Laguna [28], seeks to avoid falling 
into cycles and local minima, prohibiting or penalizing 
movements that have the solution in the next iteration, 
to point in the solution space previously visited, hence 
the term tabu. The basic idea of TS is to carry out a 
local search avoiding falling into a local minimum by 
choosing movements that do not improve the solution, 
with the assumption that a chosen bad strategy can 
give more information than a random good one. To 
avoid returning to past solutions and become stuck 
within cycles, a temporary memory is used, called 
tabu list, which stores the recent search history.

In 2004, Nurmela [45] used TS to find CAs. The 
algorithm starts with a randomly generated matrix 
M of size N x k, where the rows correspond to the 
CA alphabet. The cost of the matrix is defined by 
the number of missing combinations. A missing 
combination is then selected randomly. It is verified 
that rows require only a single element to be changed 
in order for the row to cover the selected combination. 
These changes are the movements of the current 
neighbor. The cost is calculated according to each 
movement of the neighbor and the movement that 

generates the lowest cost is selected, as long as it is 
not tabu (i.e., on the tabu list). If there is more than one 
movement with the same cost, one of the movements 
is selected at random. The process is repeated until the 
cost of the matrix M is zero or the maximum number 
of movements is reached. The results showed that the 
implementation improved some of the best previously 
known solutions. However, a major drawback of 
this algorithm is that it consumes considerably more 
computation time than other algorithms. Furthermore, 
in certain cases, it finished up taking several months to 
resolve the different test instances.

In 2009, Walker and Colbourn [46] used the tabu search 
algorithm to generate CAs from the permutation of 
vectors and mathematical objects, known as Covering 
Perfect Hash Families (CPHF). This representation 
of a CA is able to efficiently find smaller arrays for 
greater strengths t. It also enabled searches for t ≥ 5.

In 2010, González-Hernández et al. [47] presented an 
approach based on tabu search referred to as TSA for 
building Mixed Covering Arrays (MCA) of variable 
strength. The main features of this approach lie in the 
following aspects: first, the algorithm selects from 
a set of predefined neighborhood functions, where 
each is assigned a probability of being selected to 
create a new neighbor; secondly, it has an efficient 
calculation of the objective function to determine the 
best probability of selection for each neighborhood 
function; and thirdly, it has a new initialization function. 
Since TS performance depends on the values ​​of the 
assigned probabilities, a tuning process was carried 
out on the configurations of these probabilities. The 
configuration used by TSA enabled the generation of 
MCAs of smaller size and in less time. TSA improved 
the size of the MCAs compared to IPOG-F, and found 
the optimal solution in 15 instances out of the 18 that 
make up the complete set. These instances range from 
an alphabet of 2 to 11, the number of columns from 2 
to 20, and the strength from 2 to 6.

In 2013, González-Hernández [42] presented 
a combinatorial optimization algorithm for the 
construction of MCAs of variable strength called 
Mixed Tabu Search (MiTS), which uses the strategy 
metaheuristic of tabu search, and its main characteristic 
is the mixture of different neighborhood functions, 
each with a certain probability of being selected. 
Other important features included in the design 
of MiTS are the size of the tabu list used and the 
initialization function for creating the initial solution. 
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For each of these aspects, three different alternatives 
were proposed. Regarding the initialization functions, 
three different alternatives were incorporated into the 
algorithm: random, using the Hamming distance, and 
through a subset of t columns. The experimental results 
indicated that MiTS was able to establish 91 new 
optimal dimensions and matched 36 of the best cases 
reported in the literature, of which 31 were already 
optimal, so they were not susceptible to improvement. 
The algorithm showed no significant difference in 
performance when using the different sizes proposed 
from the tabu lists.

In 2015, González-Hernández [48] developed a 
methodology that uses MiTS to build smaller MCAs 
than the best known, with uniform strength for values 
of t ϵ{2 - 6}. The proposed methodology employs a 
tuning process that uses statistical tests to identify 
the values that significantly affect the performance 
of MiTS. To verify the efficiency of the proposed 
methodology, the performance of MiTS was compared 
and statistically analyzed against a robust set selection 
that included the best dimensions or limits of MCAs 
with strength t ϵ{2 - 6} that have been reported to 
date for SA and DDA algorithms, among others. The 
methodology based on MiTS showed that there were 
significant differences between the solutions obtained 
and the best limits previously reported.

C. Genetic algorithms

A Genetic Algorithm (GA) is an adaptive method 
used to solve search and optimization problems. It is 
based on the process of biological evolution and uses 
the analogy of survival of the fittest individuals [49]. 
It begins with an initial population, which evolves 
through generations represented by iterations. In every 
generation, individuals are evaluated by a fitness 
function and in each generation the best individuals 
of the population survive. The next generations are 
generated by applying successively genetic operators 
such as selection, crossover, mutation and replacement. 
If the stop condition is met and a solution has not been 
found, the option is to mutate the population en masse.

In 2001, Stardom [50] presented results from 
comparing the optimization algorithms SA, TS and 
GA for building CAs. The three approaches were able 
to find new dimensions. However, genetic algorithms 
were not effective in finding CAs of quality. It took 
longer not only to execute movements but also to find 

a good CA. TS was the algorithm that yielded the best 
results.

In 2010, Rodriguez-Tello and Torres-Jimenez [51] 
presented a memetic algorithm (genetic algorithm 
that includes knowledge of the problem to find 
better solutions through a local optimizer) to find 
optimal solutions for building binary CAs of strength 
t = 3, which incorporated important features such 
as including an efficient heuristic to generate an 
initial population of good quality, and a local search 
operator based on the tuning of the SA algorithm. The 
computational results, compared with others in the 
literature among which are IPOG-F and TS, showed 
that the proposed algorithm improved in nine cases the 
best known solutions and matched the other results.

In 2016, Sabharwal et al. [52] presented G-PWiseGen, 
a general proposal of an existing open source tool 
called PWiseGen, which is used for generating test 
cases of strength 2. The main drawback of PWiseGen 
is that it requires to know in advance the size N of 
the test case as input. G-PWiseGen generates CAs for 
strength t ≥ 2, and on incorporating a binary search 
algorithm it is possible to set lower and upper limits 
for the size of the CA, eliminating the need to know N. 
G-PWiseGen was compared with other open source 
tools to generate CAs, such as ACTS, Jenny, TVG 
and CASA. The results showed that G-PWiseGen 
takes much longer to generate CAs with respect to 
the other propositions, due to the complexity in the 
crossover and mutation operations when the strength 
t is increased. Nevertheless, the sizes of the CAs 
generated compensate for the time spent on building 
them.

D. Ant colony

The Ant Colony algorithm (ACA), proposed in 1999 
by Dorigo [53], is based on the structured behavior of 
ant colonies when looking for food. In this approach, 
each path from a starting point to an end point is 
associated with a candidate solution for a given 
problem. When an ant reaches the end point, the 
amount of pheromone deposited on each edge (vertex) 
of the path followed by the ant is proportional to the 
quality of the corresponding candidate solution. When 
an ant has to choose between the different edges at a 
given point (node), the edge with the greatest amount 
of pheromone is chosen with highest probability. As 
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a result, the ants eventually converge to the shortest 
path.

In 2004, Shiba [54] presented a test generator 
algorithm based on genetic algorithms and ACA, 
and compared them with other algorithms including 
SA, IPO and The Automatic Efficient Test Generator 
(AETG) [55] that uses greedy strategy. The results for 
strength t ϵ{2 - 3} showed a good performance at a 
general level with respect to the size of the test cases 
(N value in a CA) and the amount of time required for 
this. However, the genetic algorithm results were not 
always optimal. The results obtained by this algorithm 
were better than those generated by the GA.

In 2009, Chen [56] adapted the ACA algorithm to 
build a test set prioritized for the interaction of pairs, 
a CA and an MCA of strength t = 2. Specifically, he 
proposed four algorithms for generating tests based on 
ACA, looking for a more effective implementation. 
Although the results were competitive, their 
performance could not be generalized for instances 
with different characteristics.

E. Particle swarm optimization

The Particle Swarm Optimization algorithm (PSO) 
proposed in 1995 by Kennedy [33] is a popular 
optimization method. PSO attempts to optimize a 
problem starting with the handling of a certain number 
of candidate solutions. Each solution is represented by 
a particle that works in a search space to find a better 
position or solution to the problem. The population 
as a whole is known as a swarm. As such, each 
particle has a random position and updates its position 
iteratively in the hope of finding better solutions. Each 
particle also maintains essential information about its 
movements.

Applied to building CAs, a particle would usually 
represent a test case. Each particle is associated 
with a weighting factor that represents the number 
of interactions covered by the test case. When the 
evaluation of all particles finishes, those with the 
heaviest weighting will be chosen to be in the test sets.

In 2011, Ahmed and Kamal [57] developed a new 
strategy for generating test data pairs based on PSO, 
called Pairwise Particle Swarm based Test Generator 
(PPSTG). The study evaluated the performance of 
this proposal in terms of the size of the tests generated 

against other strategies and tools. In a first stage, 
PPSTG was compared with the results published in the 
literature for the GA, ACA, AETG and IPO algorithms 
[24], a Greedy algorithm. PPSTG generated test 
sets with satisfactory results in most experiments. 
However, GA and ACA generated slightly better sizes 
than PPSTG, which performed better than AETG. SA 
generated the most optimal results.

In 2011, Ahmed and Kamal [58] presented VS Particle 
Swarm Test Generator (VS-PSTG) to generate test 
cases in interactions of variable strength (VS). VS-
PSTG adopts PSO to ensure the optimal size reduction 
of the tests. Results in comparison with other strategies 
and configurations were seen to be competitive. An 
empirical case study was conducted on a non-trivial 
software system to show their applicability and 
determine the efficiency in generating test cases, with 
promising results.

In 2012, Ahmed et al. [59] demonstrated the efficiency 
of Particle Swarm-based t-way Test Generator 
(PSTG), a strategy for generating uniform CAs of 
variable strength, which copes with high interaction 
strengths of up to t = 6. PSTG is computationally 
lighter compared with other optimization methods due 
to the simplicity in the structure of the PSO algorithm 
on which it is based, and also outperforms other 
strategies in relation to sizes generated for the CA.

In 2015, Mahmoud and Ahmed [60] presented a 
strategy for building CAs using fuzzy logic to tune 
the heuristic parameters used by the PSO algorithm. 
The algorithm was tested with different proposals 
including SA and Hill Climbing. The results showed 
a significant improvement in terms of the size of the 
AC generated. Nevertheless, the diffuse mechanism 
called for additional computational requirements. 
Consequently, the strategy is comparatively slow at 
generating CAs of strength t > 4.

F. Harmony search

The Harmony Search algorithm (HS), proposed in 
2001 by Zong Woo Geem and Kang Seo Lee [34], 
simulates the process of musical improvisation to find 
a perfect state of harmony. This harmony in music is 
analogous to finding an optimal in an optimization 
process. A musician will always try to produce a 
musical piece with perfect harmony. An optimal 
solution in an optimization problem must always be 
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the best available solution to the problem under given 
objectives and certain restrictions. Both processes try 
to generate the best, or optimal [61].

In 2012, Rahman et al. [62] proposed and evaluated a 
strategy called Pairwise Harmony Search algorithm-
based Strategy (PHSS) for generating test data in 
pairs. PHSS was evaluated in two parts. In the first 
part, a system configuration with 10 input parameters 
of v values ​was taken, where v ranged from 3 to 10. 
Another system configuration with p input parameters 
of 2 values was then taken, where p ranged from 3 to 
15. The aim was to examine how PHSS behaved in 
relation to the variation of v and p. The results showed 
that its performance was not affected by the increasing 
number of v and p. In addition, in most cases the 
algorithm generated smaller test set sizes than other 
strategies, such as PPSTG, IPOG, TConfig, Jenny, and 
TVG, among others. In a second part, other system 
configurations were generated in order to compare 
the performance of PHSS against other representative 
strategies from the literature, such as SA, GA, and 
ACA. The PHSS results were competitive.

In 2012, Rahman et al. [62] designed, implemented, 
and evaluated an algorithm based on HS for variable 
strength called Harmony Search Strategy (HSS), 
which consists of two main algorithms. The first is 
an interaction generating algorithm that generates 
parameters, tuples and interaction values based on a 
specified strength, as well as on a list of constraints. 
The second is an algorithm for generating test cases 
in which harmony memory size, harmony memory 
consideration rate, tone adjustment rate, and stopping 
criteria are specified. The results of the algorithm were 
evaluated in two parts: in an initial part, the performance 
of HSS was evaluated in comparison with other 
strategies of variable strength, including VS-PSTG, 
ACS, SA, and IPOG. Depending on the strength, 
parameters and defined values, HSS generated the 
most optimal results for very high strengths because it 
is able to handle interaction strengths of up to t = 15. 
HSS outperformed other algorithms such as ACS and 
SA that generate test cases with interaction strength 
t ≤ 3 and VS-PSTG that generates test cases with 
interaction strength t ≤ 6. However, SA generated the 
most optimal results with low values of interaction t 
≤ 3. HSS, VS-PSTG, and ACS obtained results equal 
or close to those of SA. IPOG was unable to handle 
strengths above t = 6. In a second part, HSS was 
compared with other strategies that handle restrictions, 
such as SA_SAT, PICT, TestCover, and mAETG_SAT. 

However, these last two proposals despite being able 
to handle restrictions, were unsuccessful generating 
tests of varying strength. Therefore, they were not 
considered in the variable strength experiments. PICT 
reported the worst results. Finally, the results obtained 
by HSS were competitive with those produced by 
SA_SAT, since in most cases it was able to match the 
results, and only in some configurations it managed to 
surpass them.

In 2015, Bao et al. [63] presented the Improved 
Harmony Search (IHS) algorithm, a proposal that 
seeks to improve the speed of convergence of the 
standard HS algorithm. IHS uses a Greedy algorithm 
to generate an optimal set of initial solutions for 
initializing the harmony memory. To prevent the 
algorithm falling into local optima, the values of 
HMCR and PAR were dynamically adjusted. The 
results of the experiments showed that the size of 
the test cases generated by IHS is smaller than those 
generated by HS. It was further demonstrated that 
when the strength t is small, the runtime of IHS is 
very similar to that of HS. However, as t increases, 
the runtime of IHS significantly decreases compared 
to HS. On comparing IHS with other smart algorithms 
such as GA, ACA and SA, it could be seen that in most 
of the experiments the sizes of the IHS test cases were 
the most optimal.

IV. Trends

Currently, reports indicate that Simulated Annealing is 
one of the most successful metaheuristics in building 
CAs and MCAs regardless of strength, alphabet and 
number of columns. In this sense, it is considered that 
in the coming years, simulated annealing will continue 
to be studied and hybridized with various techniques 
(metaheuristic or otherwise) to find optimal or near-
optimal CAs.

Additionally, the use of different techniques to handle 
variable neighborhood or local searches with different 
neighborhood schemes has reported good results. 
Therefore, the authors believe that hyper-heuristic [64] 
and Multiple Offspring Sampling schemes [65], which 
use different local optimization schemes at the same 
time may be the future in building CAs and MCAs of 
variable strength and of different alphabets.

Given that day by day the complexity of the tasks that 
CAs use increases, as well as the required alphabets 
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(v), numbers of columns (k), and levels of interaction 
(t), it is necessary for the academic and scientific 
community in this area to work on efficient ways to 
parallelize the use of metaheuristics that build CAs, 
and transfer them to different application areas (e.g., 
software and hardware testing, security, cryptography, 
etc.) as soon as possible, to offset the cost of building 
them.

Building covering arrays for strengths greater than 6 
and hundreds of variables, which can be used among 
other things for the detection of Trojan horses in 
hardware [66], is one of the most recent application 
areas for building CAs using metaheuristics.

V. Conclusions

A method for building covering arrays is relevant 
if it finds an appropriate balance between the time 
for building it and the quality of array desired, the 
latter measured in the number of rows (N value) of 
the CA. If there is no time available for building the 
covering array test cases, using a greedy method is 
recommended. If time is available, the meta-heuristic 
methods are more suitable.

Although algebraic methods often provide good results 
for building covering arrays, they are applicable only 
to very specific and generally small cases. If they 
are used to find large CAs, a long run time and more 
computational resources are required. Greedy methods 
are more flexible than algebraic methods; however, 
they rarely obtain optimal covering arrays.

Recent advances in exact methods, specifically in 
the use of binomial coefficients and branching and 
pruning, establish an efficient strategy for building 
CAs of strength 2 and indicate a promising research 
path in the use of trinomial coefficients for obtaining 
CAs of strength 3.

Metaheuristic-based methods are the most recently 
used and generate better results in the construction 
of covering arrays. However, they require a lot of 
computing time. The Harmony search metaheuristic 
has been one of the least explored algorithms for 
building covering arrays, opening up the possibility 
for further research. The most successful metaheuristic 
method reported to date for the building of CAs is 
Simulated Annealing. The main reasons for this are 
its ability to escape from local optima thanks to the 

conditional acceptance of movements that do not 
necessarily improve the current solution, and, because 
it is not a population algorithm, its ability to evolve 
quickly to better regions of the search space enabling 
a mixture of different neighborhood functions.
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