

Facultad de Ingeniería

ISSN: 0121-1129

revista.ingenieria@uptc.edu.co

Universidad Pedagógica y Tecnológica

de Colombia

Colombia

Timaná-Peña, Jimena Adriana; Cobos-Lozada, Carlos Alberto; Torres-Jimenez, Jose

Metaheuristic algorithms for building Covering Arrays: A review

Facultad de Ingeniería, vol. 25, núm. 43, 2016, pp. 31-45

Universidad Pedagógica y Tecnológica de Colombia

Tunja, Colombia

Available in: http://www.redalyc.org/articulo.oa?id=413948045003

 How to cite

 Complete issue

 More information about this article

 Journal's homepage in redalyc.org

Scientific Information System

Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal

Non-profit academic project, developed under the open access initiative

http://www.redalyc.org/revista.oa?id=4139
http://www.redalyc.org/revista.oa?id=4139
http://www.redalyc.org/articulo.oa?id=413948045003
http://www.redalyc.org/comocitar.oa?id=413948045003
http://www.redalyc.org/fasciculo.oa?id=4139&numero=48045
http://www.redalyc.org/articulo.oa?id=413948045003
http://www.redalyc.org/revista.oa?id=4139
http://www.redalyc.org

31
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

ISSN Impreso 0121-1129, ISSN Online 2357-5328, DOI: http://dx.doi.org/10.19053/01211129.v25.n43.2016.5295

Metaheuristic algorithms for building Covering Arrays: A
review

Algoritmos metaheurísticos para construir Covering Arrays:
Revisión

Algoritmos metaheurísticos para construir Covering Arrays:
Revisão

Jimena Adriana Timaná-Peña*

Carlos Alberto Cobos-Lozada**

Jose Torres-Jimenez***

Abstract
Covering Arrays (CA) are mathematical objects used in the functional testing of software components. They
enable the testing of all interactions of a given size of input parameters in a procedure, function, or logical unit in
general, using the minimum number of test cases. Building CA is a complex task that involves lengthy execution
times and high computational loads. The most effective methods for building CAs are algebraic, Greedy, and
metaheuristic-based. The latter have reported the best results to date. This paper presents a description of the major
contributions made by a selection of different metaheuristics, including simulated annealing, tabu search, genetic
algorithms, ant colony algorithms, particle swarm algorithms, and harmony search algorithms. It is worth noting
that simulated annealing-based algorithms have evolved as the most competitive, and currently form the state of
the art.

Keywords: ant colony optimization; Covering Array; genetic algorithms; harmony search algorithm;
metaheuristics; particle swarm optimization; simulated annealing; tabu search.

Resumen
Los Covering Arrays (CA) son objetos matemáticos usados en pruebas funcionales de componentes software.
Los CA permiten probar todas las interacciones de un tamaño determinado, de los parámetros de entrada de un

Fecha de recepción: 19 de enero de 2016
Fecha de aprobación: 1 de junio de 2016

Jimena Adriana Timaná-Peña - Carlos Alberto Cobos-Lozada - Jose Torres-Jimenez*

, pp. 31-45.

DOI: http://dx.doi.org/10.19053/01211129.v25.n43.2016.5295

* 	 Esp. Universidad del Cauca (Popayán-Cauca, Colombia). jtimana@unicauca.edu.co.
**	 Ph.D. Universidad del Cauca (Popayán-Cauca, Colombia). ccobos@unicauca.edu.co.
***	 Ph.D. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Ciudad Victoria-Tamaulipas, México). jtj@cinvestav.mx.

32
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Metaheuristic algorithms for building Covering Arrays: A review

procedimiento, función o unidad lógica en general, usando el mínimo número de casos de prueba. La construcción
de CA es una tarea compleja que requiere largos periodos de ejecución y gran capacidad computacional. Los
métodos más efectivos para construir CA son los algebraicos, voraces y basados en metaheurísticas. Estos
últimos son los que han arrojado mejores resultados hasta la fecha. Este artículo presenta una descripción de
las contribuciones más importantes hechas por diferentes metaheurísticas, incluyendo el simulated annealing
(recocido simulado), búsqueda tabú, algoritmos genéticos, algoritmo de la colonia de hormigas, algoritmo de
enjambre de partículas y algoritmo de búsqueda armónica. Cabe anotar que los algoritmos basados en recocido
simulado se han convertido en los más competitivos y actualmente son el estado del arte.

Palabras clave: algoritmo de búsqueda armónica; algoritmos genéticos; búsqueda tabú; Covering Array;
metaheurística; optimización por colonia de hormigas; optimización por enjambre de partículas; recocido
simulado.

Resumo
Os Covering Arrays (CA) são objetos matemáticos usados em provas funcionais de componentes software. Os CA
permitem provar todas as interações de um tamanho determinado, dos parâmetros de entrada de um procedimento,
função ou unidade lógica em geral, usando o mínimo número de casos de prova. A construção de CA é uma
tarefa complexa que precisa longos períodos de execução e grande capacidade computacional. Os métodos mais
efetivos para construir CA são os algébricos, vorazes e baseados em metaheurísticas. Estes últimos são os que
têm produzido melhores resultados até esta data. Este artigo apresenta uma descrição das contribuições mais
importantes feitas por diferentes metaheurísticas, incluindo o simulated annealing (recozimento simulado), busca
tabu, algoritmos genéticos, algoritmo de colônia de formigas, algoritmo de enxame de partículas e algoritmo de
busca harmônica. Deve-se observar que os algoritmos baseados em recozimento simulado têm-se convertido nos
mais competitivos e atualmente são o estado da arte.

Palavras chave: algoritmo de busca harmônica; algoritmos genéticos; busca tabu; Covering Array; metaheurística;
otimização por colônia de formigas; otimização por enxame de partículas; recozimento simulado.

33
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Jimena Adriana Timaná-Peña - Carlos Alberto Cobos-Lozada - Jose Torres-Jimenez*

I. Introduction

Over the past few decades, software testing has been
the most widely used method for ensuring software
quality [1]. The tests may be seen as a set of processes
that are designed, developed and applied throughout
the life of software development to detect and correct
defects and faults found during and following the
implementation of the code, and thus raise the quality
and reliability of the program delivered to the end
user [2]. However, applying thorough software tests
that allow the testing of the software component in its
entirety, as well as being both an expensive and time-
consuming task, is an almost impossible one. Even
trying to test the simplest software, a large number of
test cases can be generated due to the many possible
combinations of input parameters. Creating test
cases for all these possibilities is an unfeasible and
impractical process [1, 2]. For example, if it is required
to test a software component that receives as input
parameters values from five sensors and each sensor
can take 10 different values, 105 or 100,000 different
test cases would then be required to exhaustively test
that component.

Combinatorial tests provide an alternative to
exhaustive testing, which select test cases by a
sampling mechanism that systematically covers the
combinations of​ input parameter values, defining a
smaller set of tests that is relatively easy to manage
and run [3]. This type of testing reduces costs, and
significantly increases the effectiveness of software
testing. However, the challenge for the combinatorial
tests lies precisely in finding the minimum number of
test cases that achieve maximum coverage with the
minimum cardinality [4, 5]. One of the combinatorial
objects that meets the criteria of coverage for this type
of situation is Covering Arrays (CA) [5].

Covering Arrays are mathematical objects that have
been widely used in the design of experiments in
a range of sectors and application areas such as
agriculture, medicine, biology, material design and
manufacturing. They have the necessary properties
to optimally define a series of experiments, due to

their combinatorial nature [5]. Applied most recently
to the area of software testing, CAs can be used and
applied in the functional testing of software. One of
the main applications of these objects is generating the
smallest number of sets or software test cases to cover
all interactions sets of input parameters of a procedure,
function or software logical unit [5].

A Covering Array denoted by CA(N; k, v, t) is a matrix
M of size N × k, where N (rows of the matrix) is the
number of experiments or tests, k is the number of
factors or parameters (of the method, function or unit
of the procedure being evaluated), v is the number of
symbols (possible values) for each parameter, referred
to “alphabet”, and t is the degree of interaction between
parameters, called strength [6]. Each submatrix of size
N × t contains each tuple of symbols of size t (t-tuple)
at least once [5]. A CA is optimal if it contains the
minimum possible number of rows [4] and is known
as CAN. Table 1 shows an example of a CA (5; 4,
2, 2). The strength of this CA is 2 (t = 2), with four
parameters or factors (k = 4), and an alphabet of 2 (v
= 2) values that is defined by the symbols {0,1}. Note
that in each pair of columns the combinations {0,0},
{0,1}, {1,0} and {1,1} appear at least once [5].

Table 1
Example of a CA (5; 4, 2, 2)

1
0
0
1
0

1
0
1
0
0

1
0
0
0
1

0
0
1
1
1

To illustrate the CA approach applied to the design of
software testing, an example of a Web System to be
tested using the parameters is presented in Table 2.
In this example, we have 4 factors or parameters (k =
4) corresponding to the Browser, Operating System,
Database Management System or DBMS, and the
Connection System, each with 3 possible values (v =
3).

Table 2
Parameters and values of a Web System

Browser O.S. DBMS Connection
0 IE Windows 8 MySQL ISDN
1 Chrome Ubuntu Oracle ADSL
2 Mozilla Red Hat SQL Server Cable

34
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Metaheuristic algorithms for building Covering Arrays: A review

Table 3 shows part of an exhaustive test, in which all
of the possible parameters (defining an interaction
strength t = k, which in this case is 4) combinations are
generated. The higher the degree of strength (t) and the
number of values for each parameter (v), the greater
the number of exhaustive tests to be performed. This
number of tests is equal to v t. For the given example,
to perform an exhaustive test, thereby covering 100 %
of cases, a total of 34 or 81 test cases would need to be
defined.

Table 3
Part of an exhaustive test of a Web System

Browser O.S. DBMS Connection
0 IE Windows 8 MySQL ISDN
1 IE Windows 8 MySQL ADSL
2 IE Windows 8 MySQL Cable
3 IE Windows 8 Oracle ISDN
4 IE Windows 8 Oracle ADSL
5 IE Windows 8 Oracle Cable
6 IE Windows 8 SQL Server ISDN
7 IE Windows 8 SQL Server ADSL
8 IE Windows 8 SQL Server Cable
9 IE Ubuntu MySQL ISDN
10 IE Ubuntu MySQL ADSL
11 IE Ubuntu MySQL Cable
12 IE Ubuntu Oracle ISDN
… … … … …
79 Mozilla Red Hat SQL Server ISDN
80 Mozilla Red Hat SQL Server ADSL
81 Mozilla Red Hat SQL Server Cable

However, if the interaction between these parameters
is brought down to strength 2 (t = 2), the number of
possible combinations is reduced to 32 or nine test
cases, guaranteeing ample coverage in the test with the
minimum possible effort [7]. Table 4 shows the CA (9;
4, 3, 2) resulting from the above example with strength
2 (t = 2) and alphabet 3 (v = 3). To make the mapping
between the Web system and the CA, every possible
value of each parameter in Table 2 is labeled by row
number, in this case 0, 1, and 2. The combinations that
must appear at least once in each subset of size N ×
t are: {0,0}, {0,1}, {0,2}, {1,0}, {1,1}, {1,2}, {2,0},
{2,1}, {2,2}.

Table 4
CA resulting for the Web System

0
0
0
1
1
1
2
2
2

0
1
2
0
1
2
0
1
2

0
1
2
1
2
0
2
0
1

0
1
2
2
0
1
1
2
0

Table 5 shows specifically the test cases or experiments
to be performed. Note that each of the nine experiments
is analogous to each row of the CA.

Table 5
Test Cases for the Web System

IE Windows 8 MySQL ISDN
IE Ubuntu Oracle ADSL
IE Red Hat SQL Server Cable
Chrome Windows 8 Oracle Cable
Chrome Ubuntu SQL Server ISDN
Chrome Red Hat MySQL ADSL
Mozilla Windows 8 SQL Server ADSL
Mozilla Ubuntu MySQL Cable
Mozilla Red Hat Oracle ISDN

Building optimal CAs (CAs with the smallest
possible size of rows) is a complex task that involves
a considerable computational burden. To obtain CAs
of a considerable size, the use of many processors
in parallel for several months is generally required,
but achieving its definition has a very significant
impact on the processes that go on in software testing
[7]. Because of the importance of CAs, quite a bit
of research on the development of algorithms and
effective methods to build them has been carried out
to date.

Section II of this paper outlines the most significant
methods and algorithms reported in the literature
for the construction of CAs. Section III presents
in detail the algorithms based on metaheuristics or
hybridization of these, reported as having the best
results to date. Section IV forecasts several upcoming

35
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Jimena Adriana Timaná-Peña - Carlos Alberto Cobos-Lozada - Jose Torres-Jimenez*

trends for building CAs, and finally Section V brings
together the conclusions.

II. Methods and algorithms for
building Covering Arrays

The methods that have been developed to date for
building CAs can be classified into four main groups
[6]: exact, algebraic, Greedy, and Metaheuristic-based
[7].

A. Exact methods

These are methods that enable the building of optimal
CAs, but they are only practical for building small
covering arrays [6]. In 2002, Meagher [8] presented
a proposal for generating nonisomorphic CAs using a
backtracking algorithm that builds each row of the CA
recursively and independently. The algorithm builds
all the possible CAs of a specific size but only works
with binary alphabet [8]. EXACT (EXhaustive seArch
of Combinatorial Test suites) proposed in 2006,
enables the generation of Mixed Covering Arrays
(MCA, arrays that have a different alphabet in their
columns), reducing the search space to avoid exploring
isomorphic arrays. It uses backtracking techniques to
return again to the search process when it stagnates in
the process of building the MCA [4]. In this proposal,
the computing time increases significantly when the
number of rows (N) of the CA is close to optimal.
In addition, it does not find the solution for certain
configurations. In 2009 [9], an algorithm for building
CAs was presented with a backtracking technique,
which creates the CA with a lexicographical order
of rows and columns to avoid searching symmetrical
arrays. The proposed algorithm was able to match
the best solutions found by EXACT for small binary
CAs and took less time. It also reported better CAs
than those obtained with IPOG-F. The algorithm is
limited to binary alphabet and strength 3<= t <= 5.
In 2006, a proposal for building CAs was made using
four constraint programming models such as SAT
(propositional satisfiability problem). The proposed
models are able to match existing boundaries and
find new optimal values for problems of relatively
moderate size. However, when the complexity of the
CA to be built increases, either in terms of alphabet or
strength, performance declines [10]; in the same vein,
in 2008, Lopez-Escogido et al. [11] created CAs based
on SAT. The main contribution of this proposal focuses

on an efficient solver of non-CNF (non-conjunctive
normal form) SAT that uses local search and is able
to match or even improve some results generated by
other approaches previously reported. However, the
algorithm only works with strength t = 2 [11]. Torres-
Jimenez et al. in 2015 [12] proposed a direct method
to create optimal CAs of strength 2 based on binomial
coefficients and in an algorithm based on branching
and bound that links the results of the coefficients,
making it possible to obtain CAs with large numbers
of columns. The algorithm was compared with IPOG
[13], one of the best greedy algorithms for building
CAs, and performed better for small values of k, but as
k increases, IPOG gives better results. The experiments
were limited in the sense that IPOG only works with
strength t <= 6, while the proposed algorithm works
with higher strengths of t >=7.

B. Algebraic methods

The algorithms based on algebraic methods build
CAs in polynomial time using predefined rules.
The construction of the CAs directly uses some
mathematical functions or other algebraic procedures
[7]. Algebraic methods are applicable for very specific
cases and offer efficient constructions in terms of time;
however, currently, it is difficult to generate accurate
results in a wide range of input values [14, 15]. For
example, in the case of strength 2 and alphabet 2,
in 1973 two algorithms were proposed that create
optimal CAs, the first proposal by Katona [16] and the
second by Kleitman and Spencer [17]. Chateauneuf
et al. in 1999 [18] proposed an algorithm to create
CAs of strength three using group actions on symbols/
alphabets, and then in 2005, Meagher and Stevens
[19] adapted this method to create CAs of strength
2 using starter vectors that are rotated and translated
to obtain the CA. Hartman in 2005 [20] proposed a
method of squaring the number of columns of a CA
using an orthogonal array as an intermediate tool.
Colbourn et al. in 2006 [21] proposed a method for
multiplying two CAs of strength 2 resulting in a new
CA with the product of the original columns and the
sum of the original rows. Finally, Colbourn in 2010
[22] proposed building CAs based on cyclotomic
matrices.

C. Greedy methods

Greedy algorithms-based methods methods have
been found to be relatively more efficient and faster

36
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Metaheuristic algorithms for building Covering Arrays: A review

in terms of execution time. They have also been
accurate for a wide variety of inputs. However, the
CAs generated are not always the smallest compared
to the CAs generated by other methods [14]. Greedy
proposals include Density Deterministic Algorithm
(DDA) proposed by Bryce and Colbourn in 2007 [23]
that creates CAs of strength 2 a row at a time. In 1998
[24], Lei and Tai proposed the In-Parameter-Order
(IPO) algorithm extending the array in both rows and
columns, (i.e., it starts off with a CA of a number k
columns and obtains one of k + 1 columns). This IPO
algorithm is then generalized for strengths of greater
than 2 in IPOG in 2007 [13], which is then improved
in IPOG-F in 2008 [25]. Also in 2012, Gargantini
Calvagna [26] extended the ideas of IPO to build
MCAs of any strength.

D. Metaheuristic-based methods

Metaheuristic-based algorithms are computationally
intensive and have provided the most accurate and
competitive results to date. They have managed to
generate CAs of the smallest size known (optimal) at a
significant cost in run-time [14, 27]. Among the most
important algorithms for building CAs are:

•	 Tabu Search, which has been successfully
applied to a variety of combinatorial optimization
problems [28, 29].

•	 Simulated Annealing, which has produced
the most accurate results, and has found new
and better solutions for input parameters with
multiple values [30].

•	 Genetic Algorithms that base their model on
the survival of the fittest individuals. These
algorithms usually use selection, crossover,
mutation and replacement as operators. They
receive a set of test cases candidates and provide
as output the subset of test cases with the highest
values [31].

•	 Ant Colonies, which simulates computationally
the indirect communication that ants carry out
to establish the shortest route between their
starting location and a food source. A test case
in this algorithm is represented as a route from
a start point to a target endpoint. When an ant
reaches the target node, a quantity of pheromones
is deposited in each path of those that it has

visited, proportional to the quality of the solution.
When an ant is required to choose between
different paths, it chooses the path with the most
pheromones [32].

•	 Particle Swarm Optimization, which is inspired by
the behavior or movements of certain organisms
in nature such as swarms of bees, flocks of birds
or shoals of fish. They try, after exploring in
various areas, locating those regions of space
where the food is most concentrated. Ultimately,
the whole swarm will orient the search in this
new direction [33].

•	 Harmony Search that bases its operation on the
musical improvisation process that takes place
when a musician seeks to produce a pleasant
harmony, such as happens in jazz improvisation.
For this process, there are three possible options:
one, playing a tune exactly as it is known, as
it is in his memory; two, playing something
similar to the above-mentioned melody with a
slight adjustment in tone; and three, composing
a new melody with randomly selected notes.
These three options are formalized in [34] and
correspond to the components of the algorithm:
use of harmonic memory, tone adjustment, and
randomness. Several variations of this proposal
exist, including Global-best Harmony Search that
combines the concepts of harmony search with
PSO [35].

III. Algorithms based on
metaheuristics

A. Simulated annealing

Simulated Annealing (SA) [36] is a general purpose
stochastic optimization technique based on the steps
for annealing of metals, steps employed in the industry
to obtain materials that are more resilient and possess
better qualities. The method starts with a heating
process that basically consists of melting the material
at a high temperature until it reaches its liquid state.
At this point, the atoms significantly increase their
mobility within the structure of the material. A cooling
process then begins when the temperature is gradually
lowered in steps, until the atoms are set properly
before completely losing their mobility and thus
achieving thermal equilibrium. When the process is

37
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Jimena Adriana Timaná-Peña - Carlos Alberto Cobos-Lozada - Jose Torres-Jimenez*

complete, it is possible to achieve a highly regular and
stable structure. Studies have shown that with sharp
temperature drops or not waiting long enough at each
stage, the resulting structure is not highly stable.

In 2003, Cohen et al. [37] applied the metaheuristic
SA in the building of CAs. This proposal begins by
randomly choosing an initial feasible solution S,
corresponding to an array N x k with randomly chosen
symbols of the specification of the CA desired. Using
a sequence of trials, it randomly selects a cell from
the array and the symbol is changed for a new one.
If the transformation results in a feasible solution S’,
where the cost c(S’) is less than or equal to the cost of
c(S), then it is accepted as the new and current feasible
solution. Otherwise, if the result is a more expensive
feasible solution, S’ is accepted with a probability

, where T is the control temperature
of the simulation. Having the possibility of choosing
a solution that is worse than the current one allows
the algorithm to escape from the local optima. The
temperature is decreased in small steps to achieve
system equilibrium. This is done by adjusting T in
each iteration to a value αT where α is a real number
less than one. The algorithm stops when the objective
function has a cost of zero, which means it has a CA.
The algorithm also stops when the cost of the current
solution does not change after a certain number of
tests. The results of this research indicate that the SA
makes it possible to build much smaller CAs than
the algebraic methods. It fails, however, in bigger
problems, especially when strength t is equal to or
greater than 3.

In 2008, Cohen [38] made certain modifications
to the original proposal, including a refinement to
the Simulated Annealing algorithm that made it
possible to find test cases faster, and include algebraic
constructions that made it possible to build much
smaller test cases. It also found new dimensions for
some CAs of strength three. This hybrid approach is
called Augmented Annealing.

In 2010, Torres-Jimenez and Rodriguez-Tello [39]
presented a new implementation of the SA algorithm
to build binary CAs of variable strength up to t =
5, which integrates three important characteristics
that determine its performance. First, it incorporates
an efficient heuristic to generate initial solutions
of good quality; second, the design of a composite
neighborhood function that allows the search
to reduce rapidly the total cost of the candidate

solutions, while avoiding falling into local minima;
third, a cooling schedule that effectively allows the
algorithm to converge much faster while generating
solutions of quality. The algorithm was compared
with the Deterministic Density Algorithm (DDA),
Tabu Search, and IPOG-F algorithms [25]. The results
showed that SA found new upper bounds and matched
other previously known solutions from the references
selected.

In 2012, Torres-Jimenez and Rodriguez-Tello [40]
presented an improvement in the implementation of
the SA algorithm called ISA, to build CA of strength
t ϵ {3 - 6} on a binary alphabet. The algorithm
integrates two key characteristics that determine its
performance: an efficient heuristic that generates good
quality initial solutions that contain a balanced number
of symbols in each column, and a carefully designed
neighborhood function that allows a rapid search
and reduces the cost of candidate solutions, avoiding
falling into local minima. The performance of ISA was
evaluated through extensive experimentation on a set
of known reference cases, including 127 binary CAs
of strength 3 to 6, and compared with various state of
the art algorithms, among which were SA, a Greedy
method, and TS. The computational results showed
that the ISA algorithm has the advantage of producing
smaller CAs than the other methods, at a moderate
computational cost without major fluctuations in its
average yield.

In 2012, Rodriguez-Cristerna and Torres-Jimenez
[41] presented a hybrid approach called SA-VNS
for building mixed covering arrays, (MCA, CAs
with different possible values in columns) based on
Simulated Annealing and a variable neighborhood
search function (VNS). The solutions obtained by
the hybrid algorithm SA-VNS were compared with
other algorithms, including IPOG [13], IPOG-F
and MiTS [42], managing to match 12 of the best
known solutions and improving on six of these.
The time required by SA-VNS is longer than the
time needed for the algorithms mentioned above,
but the improved results justify the extra time. In
2015, Rodriguez-Cristerna and Torres-Jimenez [43]
presented the SAVNS algorithm as an improvement
to the proposed SA-VNS. Among the main features
of this new version of the algorithm are a mechanism
for changing the size of the neighborhood in a range
according to accepted movements, a mechanism
for increasing the temperature and decreasing the
probabilities of premature convergence, and a

38
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Metaheuristic algorithms for building Covering Arrays: A review

probabilistic mixture of two neighborhood functions
that operate as a local search, thus diversifying the
search strategy. The algorithm was subjected to a
tuning process that enabled the best configuration
of the algorithm parameters to be established. The
results from performance tests between SAVNS and
other algorithms such as IPOG-F, MiTS, SA, TS
and SA-VNS indicated that, based on nine cases or
instances as benchmark, SAVNS managed to improve
five instances of the best known algorithms solutions,
mentioned above, with which it was compared.

In 2016, Torres-Jimenez [44] presented a system
based on ISA [40] algorithm that equals or improves
the size of the CAs reported by Colbourn [22] for
strength 3, alphabet 3 and 105 ≤ N ≤ 223, thanks to
two new neighborhood functions added. The proposal
also defined a benchmark for 25 MCAs, and managed
to find 579 new lower limits and match 13 previously
known solutions. The algorithm is limited to a
specified strength and alphabet.

B. Tabu search

Tabu Search (TS) is an approach to local search
optimization that confronts different combinatorial
optimization problems. This strategy, proposed in
1998 by Glover and Laguna [28], seeks to avoid falling
into cycles and local minima, prohibiting or penalizing
movements that have the solution in the next iteration,
to point in the solution space previously visited, hence
the term tabu. The basic idea of TS is to carry out a
local search avoiding falling into a local minimum by
choosing movements that do not improve the solution,
with the assumption that a chosen bad strategy can
give more information than a random good one. To
avoid returning to past solutions and become stuck
within cycles, a temporary memory is used, called
tabu list, which stores the recent search history.

In 2004, Nurmela [45] used TS to find CAs. The
algorithm starts with a randomly generated matrix
M of size N x k, where the rows correspond to the
CA alphabet. The cost of the matrix is defined by
the number of missing combinations. A missing
combination is then selected randomly. It is verified
that rows require only a single element to be changed
in order for the row to cover the selected combination.
These changes are the movements of the current
neighbor. The cost is calculated according to each
movement of the neighbor and the movement that

generates the lowest cost is selected, as long as it is
not tabu (i.e., on the tabu list). If there is more than one
movement with the same cost, one of the movements
is selected at random. The process is repeated until the
cost of the matrix M is zero or the maximum number
of movements is reached. The results showed that the
implementation improved some of the best previously
known solutions. However, a major drawback of
this algorithm is that it consumes considerably more
computation time than other algorithms. Furthermore,
in certain cases, it finished up taking several months to
resolve the different test instances.

In 2009, Walker and Colbourn [46] used the tabu search
algorithm to generate CAs from the permutation of
vectors and mathematical objects, known as Covering
Perfect Hash Families (CPHF). This representation
of a CA is able to efficiently find smaller arrays for
greater strengths t. It also enabled searches for t ≥ 5.

In 2010, González-Hernández et al. [47] presented an
approach based on tabu search referred to as TSA for
building Mixed Covering Arrays (MCA) of variable
strength. The main features of this approach lie in the
following aspects: first, the algorithm selects from
a set of predefined neighborhood functions, where
each is assigned a probability of being selected to
create a new neighbor; secondly, it has an efficient
calculation of the objective function to determine the
best probability of selection for each neighborhood
function; and thirdly, it has a new initialization function.
Since TS performance depends on the values ​​of the
assigned probabilities, a tuning process was carried
out on the configurations of these probabilities. The
configuration used by TSA enabled the generation of
MCAs of smaller size and in less time. TSA improved
the size of the MCAs compared to IPOG-F, and found
the optimal solution in 15 instances out of the 18 that
make up the complete set. These instances range from
an alphabet of 2 to 11, the number of columns from 2
to 20, and the strength from 2 to 6.

In 2013, González-Hernández [42] presented
a combinatorial optimization algorithm for the
construction of MCAs of variable strength called
Mixed Tabu Search (MiTS), which uses the strategy
metaheuristic of tabu search, and its main characteristic
is the mixture of different neighborhood functions,
each with a certain probability of being selected.
Other important features included in the design
of MiTS are the size of the tabu list used and the
initialization function for creating the initial solution.

39
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Jimena Adriana Timaná-Peña - Carlos Alberto Cobos-Lozada - Jose Torres-Jimenez*

For each of these aspects, three different alternatives
were proposed. Regarding the initialization functions,
three different alternatives were incorporated into the
algorithm: random, using the Hamming distance, and
through a subset of t columns. The experimental results
indicated that MiTS was able to establish 91 new
optimal dimensions and matched 36 of the best cases
reported in the literature, of which 31 were already
optimal, so they were not susceptible to improvement.
The algorithm showed no significant difference in
performance when using the different sizes proposed
from the tabu lists.

In 2015, González-Hernández [48] developed a
methodology that uses MiTS to build smaller MCAs
than the best known, with uniform strength for values
of t ϵ{2 - 6}. The proposed methodology employs a
tuning process that uses statistical tests to identify
the values that significantly affect the performance
of MiTS. To verify the efficiency of the proposed
methodology, the performance of MiTS was compared
and statistically analyzed against a robust set selection
that included the best dimensions or limits of MCAs
with strength t ϵ{2 - 6} that have been reported to
date for SA and DDA algorithms, among others. The
methodology based on MiTS showed that there were
significant differences between the solutions obtained
and the best limits previously reported.

C. Genetic algorithms

A Genetic Algorithm (GA) is an adaptive method
used to solve search and optimization problems. It is
based on the process of biological evolution and uses
the analogy of survival of the fittest individuals [49].
It begins with an initial population, which evolves
through generations represented by iterations. In every
generation, individuals are evaluated by a fitness
function and in each generation the best individuals
of the population survive. The next generations are
generated by applying successively genetic operators
such as selection, crossover, mutation and replacement.
If the stop condition is met and a solution has not been
found, the option is to mutate the population en masse.

In 2001, Stardom [50] presented results from
comparing the optimization algorithms SA, TS and
GA for building CAs. The three approaches were able
to find new dimensions. However, genetic algorithms
were not effective in finding CAs of quality. It took
longer not only to execute movements but also to find

a good CA. TS was the algorithm that yielded the best
results.

In 2010, Rodriguez-Tello and Torres-Jimenez [51]
presented a memetic algorithm (genetic algorithm
that includes knowledge of the problem to find
better solutions through a local optimizer) to find
optimal solutions for building binary CAs of strength
t = 3, which incorporated important features such
as including an efficient heuristic to generate an
initial population of good quality, and a local search
operator based on the tuning of the SA algorithm. The
computational results, compared with others in the
literature among which are IPOG-F and TS, showed
that the proposed algorithm improved in nine cases the
best known solutions and matched the other results.

In 2016, Sabharwal et al. [52] presented G-PWiseGen,
a general proposal of an existing open source tool
called PWiseGen, which is used for generating test
cases of strength 2. The main drawback of PWiseGen
is that it requires to know in advance the size N of
the test case as input. G-PWiseGen generates CAs for
strength t ≥ 2, and on incorporating a binary search
algorithm it is possible to set lower and upper limits
for the size of the CA, eliminating the need to know N.
G-PWiseGen was compared with other open source
tools to generate CAs, such as ACTS, Jenny, TVG
and CASA. The results showed that G-PWiseGen
takes much longer to generate CAs with respect to
the other propositions, due to the complexity in the
crossover and mutation operations when the strength
t is increased. Nevertheless, the sizes of the CAs
generated compensate for the time spent on building
them.

D. Ant colony

The Ant Colony algorithm (ACA), proposed in 1999
by Dorigo [53], is based on the structured behavior of
ant colonies when looking for food. In this approach,
each path from a starting point to an end point is
associated with a candidate solution for a given
problem. When an ant reaches the end point, the
amount of pheromone deposited on each edge (vertex)
of the path followed by the ant is proportional to the
quality of the corresponding candidate solution. When
an ant has to choose between the different edges at a
given point (node), the edge with the greatest amount
of pheromone is chosen with highest probability. As

40
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Metaheuristic algorithms for building Covering Arrays: A review

a result, the ants eventually converge to the shortest
path.

In 2004, Shiba [54] presented a test generator
algorithm based on genetic algorithms and ACA,
and compared them with other algorithms including
SA, IPO and The Automatic Efficient Test Generator
(AETG) [55] that uses greedy strategy. The results for
strength t ϵ{2 - 3} showed a good performance at a
general level with respect to the size of the test cases
(N value in a CA) and the amount of time required for
this. However, the genetic algorithm results were not
always optimal. The results obtained by this algorithm
were better than those generated by the GA.

In 2009, Chen [56] adapted the ACA algorithm to
build a test set prioritized for the interaction of pairs,
a CA and an MCA of strength t = 2. Specifically, he
proposed four algorithms for generating tests based on
ACA, looking for a more effective implementation.
Although the results were competitive, their
performance could not be generalized for instances
with different characteristics.

E. Particle swarm optimization

The Particle Swarm Optimization algorithm (PSO)
proposed in 1995 by Kennedy [33] is a popular
optimization method. PSO attempts to optimize a
problem starting with the handling of a certain number
of candidate solutions. Each solution is represented by
a particle that works in a search space to find a better
position or solution to the problem. The population
as a whole is known as a swarm. As such, each
particle has a random position and updates its position
iteratively in the hope of finding better solutions. Each
particle also maintains essential information about its
movements.

Applied to building CAs, a particle would usually
represent a test case. Each particle is associated
with a weighting factor that represents the number
of interactions covered by the test case. When the
evaluation of all particles finishes, those with the
heaviest weighting will be chosen to be in the test sets.

In 2011, Ahmed and Kamal [57] developed a new
strategy for generating test data pairs based on PSO,
called Pairwise Particle Swarm based Test Generator
(PPSTG). The study evaluated the performance of
this proposal in terms of the size of the tests generated

against other strategies and tools. In a first stage,
PPSTG was compared with the results published in the
literature for the GA, ACA, AETG and IPO algorithms
[24], a Greedy algorithm. PPSTG generated test
sets with satisfactory results in most experiments.
However, GA and ACA generated slightly better sizes
than PPSTG, which performed better than AETG. SA
generated the most optimal results.

In 2011, Ahmed and Kamal [58] presented VS Particle
Swarm Test Generator (VS-PSTG) to generate test
cases in interactions of variable strength (VS). VS-
PSTG adopts PSO to ensure the optimal size reduction
of the tests. Results in comparison with other strategies
and configurations were seen to be competitive. An
empirical case study was conducted on a non-trivial
software system to show their applicability and
determine the efficiency in generating test cases, with
promising results.

In 2012, Ahmed et al. [59] demonstrated the efficiency
of Particle Swarm-based t-way Test Generator
(PSTG), a strategy for generating uniform CAs of
variable strength, which copes with high interaction
strengths of up to t = 6. PSTG is computationally
lighter compared with other optimization methods due
to the simplicity in the structure of the PSO algorithm
on which it is based, and also outperforms other
strategies in relation to sizes generated for the CA.

In 2015, Mahmoud and Ahmed [60] presented a
strategy for building CAs using fuzzy logic to tune
the heuristic parameters used by the PSO algorithm.
The algorithm was tested with different proposals
including SA and Hill Climbing. The results showed
a significant improvement in terms of the size of the
AC generated. Nevertheless, the diffuse mechanism
called for additional computational requirements.
Consequently, the strategy is comparatively slow at
generating CAs of strength t > 4.

F. Harmony search

The Harmony Search algorithm (HS), proposed in
2001 by Zong Woo Geem and Kang Seo Lee [34],
simulates the process of musical improvisation to find
a perfect state of harmony. This harmony in music is
analogous to finding an optimal in an optimization
process. A musician will always try to produce a
musical piece with perfect harmony. An optimal
solution in an optimization problem must always be

41
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Jimena Adriana Timaná-Peña - Carlos Alberto Cobos-Lozada - Jose Torres-Jimenez*

the best available solution to the problem under given
objectives and certain restrictions. Both processes try
to generate the best, or optimal [61].

In 2012, Rahman et al. [62] proposed and evaluated a
strategy called Pairwise Harmony Search algorithm-
based Strategy (PHSS) for generating test data in
pairs. PHSS was evaluated in two parts. In the first
part, a system configuration with 10 input parameters
of v values ​was taken, where v ranged from 3 to 10.
Another system configuration with p input parameters
of 2 values was then taken, where p ranged from 3 to
15. The aim was to examine how PHSS behaved in
relation to the variation of v and p. The results showed
that its performance was not affected by the increasing
number of v and p. In addition, in most cases the
algorithm generated smaller test set sizes than other
strategies, such as PPSTG, IPOG, TConfig, Jenny, and
TVG, among others. In a second part, other system
configurations were generated in order to compare
the performance of PHSS against other representative
strategies from the literature, such as SA, GA, and
ACA. The PHSS results were competitive.

In 2012, Rahman et al. [62] designed, implemented,
and evaluated an algorithm based on HS for variable
strength called Harmony Search Strategy (HSS),
which consists of two main algorithms. The first is
an interaction generating algorithm that generates
parameters, tuples and interaction values based on a
specified strength, as well as on a list of constraints.
The second is an algorithm for generating test cases
in which harmony memory size, harmony memory
consideration rate, tone adjustment rate, and stopping
criteria are specified. The results of the algorithm were
evaluated in two parts: in an initial part, the performance
of HSS was evaluated in comparison with other
strategies of variable strength, including VS-PSTG,
ACS, SA, and IPOG. Depending on the strength,
parameters and defined values, HSS generated the
most optimal results for very high strengths because it
is able to handle interaction strengths of up to t = 15.
HSS outperformed other algorithms such as ACS and
SA that generate test cases with interaction strength
t ≤ 3 and VS-PSTG that generates test cases with
interaction strength t ≤ 6. However, SA generated the
most optimal results with low values of interaction t
≤ 3. HSS, VS-PSTG, and ACS obtained results equal
or close to those of SA. IPOG was unable to handle
strengths above t = 6. In a second part, HSS was
compared with other strategies that handle restrictions,
such as SA_SAT, PICT, TestCover, and mAETG_SAT.

However, these last two proposals despite being able
to handle restrictions, were unsuccessful generating
tests of varying strength. Therefore, they were not
considered in the variable strength experiments. PICT
reported the worst results. Finally, the results obtained
by HSS were competitive with those produced by
SA_SAT, since in most cases it was able to match the
results, and only in some configurations it managed to
surpass them.

In 2015, Bao et al. [63] presented the Improved
Harmony Search (IHS) algorithm, a proposal that
seeks to improve the speed of convergence of the
standard HS algorithm. IHS uses a Greedy algorithm
to generate an optimal set of initial solutions for
initializing the harmony memory. To prevent the
algorithm falling into local optima, the values of
HMCR and PAR were dynamically adjusted. The
results of the experiments showed that the size of
the test cases generated by IHS is smaller than those
generated by HS. It was further demonstrated that
when the strength t is small, the runtime of IHS is
very similar to that of HS. However, as t increases,
the runtime of IHS significantly decreases compared
to HS. On comparing IHS with other smart algorithms
such as GA, ACA and SA, it could be seen that in most
of the experiments the sizes of the IHS test cases were
the most optimal.

IV. Trends

Currently, reports indicate that Simulated Annealing is
one of the most successful metaheuristics in building
CAs and MCAs regardless of strength, alphabet and
number of columns. In this sense, it is considered that
in the coming years, simulated annealing will continue
to be studied and hybridized with various techniques
(metaheuristic or otherwise) to find optimal or near-
optimal CAs.

Additionally, the use of different techniques to handle
variable neighborhood or local searches with different
neighborhood schemes has reported good results.
Therefore, the authors believe that hyper-heuristic [64]
and Multiple Offspring Sampling schemes [65], which
use different local optimization schemes at the same
time may be the future in building CAs and MCAs of
variable strength and of different alphabets.

Given that day by day the complexity of the tasks that
CAs use increases, as well as the required alphabets

42
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Metaheuristic algorithms for building Covering Arrays: A review

(v), numbers of columns (k), and levels of interaction
(t), it is necessary for the academic and scientific
community in this area to work on efficient ways to
parallelize the use of metaheuristics that build CAs,
and transfer them to different application areas (e.g.,
software and hardware testing, security, cryptography,
etc.) as soon as possible, to offset the cost of building
them.

Building covering arrays for strengths greater than 6
and hundreds of variables, which can be used among
other things for the detection of Trojan horses in
hardware [66], is one of the most recent application
areas for building CAs using metaheuristics.

V. Conclusions

A method for building covering arrays is relevant
if it finds an appropriate balance between the time
for building it and the quality of array desired, the
latter measured in the number of rows (N value) of
the CA. If there is no time available for building the
covering array test cases, using a greedy method is
recommended. If time is available, the meta-heuristic
methods are more suitable.

Although algebraic methods often provide good results
for building covering arrays, they are applicable only
to very specific and generally small cases. If they
are used to find large CAs, a long run time and more
computational resources are required. Greedy methods
are more flexible than algebraic methods; however,
they rarely obtain optimal covering arrays.

Recent advances in exact methods, specifically in
the use of binomial coefficients and branching and
pruning, establish an efficient strategy for building
CAs of strength 2 and indicate a promising research
path in the use of trinomial coefficients for obtaining
CAs of strength 3.

Metaheuristic-based methods are the most recently
used and generate better results in the construction
of covering arrays. However, they require a lot of
computing time. The Harmony search metaheuristic
has been one of the least explored algorithms for
building covering arrays, opening up the possibility
for further research. The most successful metaheuristic
method reported to date for the building of CAs is
Simulated Annealing. The main reasons for this are
its ability to escape from local optima thanks to the

conditional acceptance of movements that do not
necessarily improve the current solution, and, because
it is not a population algorithm, its ability to evolve
quickly to better regions of the search space enabling
a mixture of different neighborhood functions.

References

[1]	 S. Maity, “Software Testing with Budget
Constraints,” in Information Technology: New
Generations (ITNG), 2012 Ninth International
Conference on, Apr. 2012, pp. 258-262. DOI:
http://dx.doi.org/10.1109/itng.2012.44.

[2]	 G. J. Myers, C. Sandler, and T. Badgett, The
art of software testing, 3rd edition. Hoboken,
NJ, USA: John Wiley & Sons, Jan. 2012. DOI:
http://dx.doi.org/10.1002/9781119202486.

[3]	 N. Changhai and H. Leung, “A Survey of
Combinatorial Testing,” ACM Computing
Surveys, vol. 43, pp. 1-11, 2011. DOI: http://
dx.doi.org/10.1145/1883612.1883618.

[4]	 J. Yan and J. Zhang, “Backtracking Algorithms
and Search Heuristics to Generate Test
Suites for Combinatorial Testing,” 30th
Annual International Computer Software and
Applications Conference (COMPSAC’06),
Chicago, IL, 2006, pp. 385-394. DOI: http://
dx.doi.org/10.1109/COMPSAC.2006.33.

[5]	 H. Ávila George, J. T. Jiménez, and V. H. García,
Verificación de Covering Arrays: Lambert
Academic Publishing, 2010.

[6]	 J. Torres-Jimenez and I. Izquierdo-Márquez,
“Survey of Covering Arrays,” in Symbolic and
Numeric Algorithms for Scientific Computing
(SYNASC), 2013 15th International Symposium
on, Sep. 2013, pp. 20-27. DOI: http://dx.doi.
org/10.1109/synasc.2013.10.

[7]	 H. Ávila George, “Constructing Covering
Arrays using Parallel Computing and Grid
Computing,” Ph.D. dissertation, Departamento
de Sistemas Informáticos y Computación,
Universitad Politécnica de Valencia, Valencia,
Spain, 2012. DOI: http://dx.doi.org/10.4995/
thesis/10251/17027.

[8]	 K. Meagher, “Non-Isomorphic Generation of
Covering Arrays,” University of Regina, Tech.
Rep., 2002.

[9]	 J. Bracho-Rios, J. Torres-Jimenez, and E.
Rodriguez-Tello, “A New Backtracking
Algorithm for Constructing Binary Covering
Arrays of Variable Strength,” in MICAI 2009:

43
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Jimena Adriana Timaná-Peña - Carlos Alberto Cobos-Lozada - Jose Torres-Jimenez*

Advances in Artificial Intelligence. vol. 5845,
A. Aguirre, et al., Eds., ed: Springer Berlin
Heidelberg, 2009, pp. 397-407. DOI: http://
dx.doi.org/10.1007/978-3-642-05258-3_35.

[10]	 B. Hnich, S. D. Prestwich, E. Selensky, and B.
M. Smith, “Constraint Models for the Covering
Test Problem,” Constraints, vol. 11 (2-3), pp.
199-219, Jul. 2006. DOI: http://dx.doi.org/
10.1007/s10601-006-7094-9.

[11]	 D. Lopez-Escogido, J. Torres-Jimenez, E.
Rodriguez-Tello, and N. Rangel-Valdez,
“Strength Two Covering Arrays Construction
Using a SAT Representation,” in MICAI 2008:
Advances in Artificial Intelligence. vol. 5317,
A. Gelbukh and E. Morales, Eds., ed: Springer
Berlin Heidelberg, 2008, pp. 44-53. DOI: http://
dx.doi.org/10.1007/978-3-540-88636-5_4.

[12]	 J. Torres-Jimenez, I. Izquierdo-Marquez, A.
Gonzalez-Gomez, and H. Ávila-George, “A
Branch & Bound Algorithm to Derive a Direct
Construction for Binary Covering Arrays,”
in G. Sidorov and S. Galicia-Haro (Eds.),
Advances in Artificial Intelligence and Soft
Computing. vol. 9413, pp. 158-177, Springer
International Publishing, 2015. DOI: http://
dx.doi.org/10.1007/978-3-319-27060-9_13.

[13]	 Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and
J. Lawrence, “IPOG: A General Strategy
for T-Way Software Testing,” presented at
the Proceedings of the 14th Annual IEEE
International Conference and Workshops on the
Engineering of Computer-Based Systems, 2007.
DOI: http://dx.doi.org/10.1109/ecbs.2007.47.

[14]	 R. C. Turban, “Algorithms for covering arrays,”
Ph.D. dissertation, Arizona State University,
2006.

[15]	 J. Zhang, Z. Zhang, and F. Ma, Automatic
Generation of Combinatorial Test Data:
Springer Publishing Company, Incorporated,
2014. DOI: DOI: http://dx.doi.org/10.1007/978-
3-662-43429-1.

[16]	 G. O. H. Katona, “Two applications (for search
theory and truth functions) of Sperner type
theorems,” Periodica Mathematica Hungarica,
vol. 3 (1-2), pp. 19-26, Mar. 1973. DOI: http://
dx.doi.org/10.1007/BF02018457.

[17]	 D. J. Kleitman, and J. Spencer, “Families of
k-independent sets,” Discrete Mathematics, vol.
6 (3), pp. 255-262, 1973. DOI: http://dx.doi.
org/10.1016/0012-365X(73)90098-8.

[18]	 M. A. Chateauneuf, C. J. Colbourn, and D.
L. Kreher, “Covering Arrays of Strength

Three,” Des Codes and Cryptogr, vol. 16 (3),
pp. 235-242, May. 1999. DOI: http://dx.doi.
org/10.1023/A:1008379710317.

[19]	 K. Meagher and B. Stevens, “Group construction
of covering arrays,” Journal of Combinatorial
Designs, vol. 13 (1), pp. 70-77, Jan. 2005. DOI:
http://dx.doi.org/10.1002/jcd.20035.

[20]	 A. Hartman, “Software and Hardware Testing
Using Combinatorial Covering Suites,” in M.
Golumbic and I.-A. Hartman (Eds.), Graph
Theory, Combinatorics and Algorithms. vol.
34, pp. 237-266, ed: Springer US, 2005. DOI:
http://dx.doi.org/10.1007/0-387-25036-0_10.

[21]	 C. J. Colbourn et al., “Products of mixed
covering arrays of strength two,” Journal of
Combinatorial Designs, vol. 14 (2), pp. 124-
138, Mar. 2006. DOI: http://dx.doi.org/10.1002/
jcd.20065.

[22]	 C. Colbourn, “Covering arrays from cyclotomy,”
Des Codes and Cryptogr, vol. 55 (2-3), pp. 201-
219, May. 2010. DOI: http://dx.doi.org/10.1007/
s10623-009-9333-8.

[23]	 R. C. Bryce and C. J. Colbourn, “The density
algorithm for pairwise interaction testing,”
Softw Test Verif Reliab, vol. 17 (3), pp. 159-
182, Sep. 2007. DOI: http://dx.doi.org/10.1002/
stvr.365.

[24]	 Y. Lei and K.-C. Tai, “In-Parameter-Order: A
Test Generation Strategy for Pairwise Testing,”
presented at the The 3rd IEEE International
Symposium on High-Assurance Systems
Engineering, 1998. DOI: http://dx.doi.org/
10.1109/HASE.1998.731623.

[25]	 M. Forbes et al., “Refining the in-parameter-
order strategy for constructing covering arrays,”
Journal of Research of the National Institute of
Standards and Technology, vol. 113 (5), pp. 287-
297, Sep. 2008. DOI: http://dx.doi.org/10.6028/
jres.113.022.

[26]	 A. Calvagna and A. Gargantini, “T-wise
combinatorial interaction test suites construction
based on coverage inheritance,” Softw Test Verif
Reliab, vol. 22 (7), pp. 507-526, Nov. 2012.
DOI: http://dx.doi.org/10.1002/stvr.466.

[27]	 R. N. Kacker et al., “Combinatorial testing
for software: An adaptation of design of
experiments,” Measurement, vol. 46 (9), pp.
3745-3752, Nov. 2013. DOI: http://dx.doi.
org/10.1016/j.measurement.2013.02.021.

[28]	 F. Glover and M. Laguna, Tabu Search: Kluwer
Academic Publishers, 1997. DOI: http://dx.doi.
org/10.1007/978-1-4615-6089-0.

44
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Metaheuristic algorithms for building Covering Arrays: A review

[29]	 M. Gendreau, “Recent Advances in Tabu
Search,” in Essays and Surveys in Metaheuristics.
vol. 15, ed: Springer US, 2002, pp. 369-377.
DOI: http://dx.doi.org/10.1007/978-1-4615-
1507-4_16.

[30]	 M. Gendreau and J. Y. Potvin, Handbook of
Metaheuristics: Springer US, 2010. DOI: http://
dx.doi.org/10.1007/978-1-4419-1665-5.

[31]	 S. Luke. Essentials of Metaheuristics, 2nd ed.
Lulu, 2013.

[32]	 M. Dorigo and T. Stützle, Ant Colony
Optimization: Bradford Company, 2004.

[33]	 J. Kennedy and R. Eberhart, “Particle swarm
optimization,” in Neural Networks, 1995.
Proc. IEEE Int. Conf. Neural Netw. on, Nov.
1995, pp. 1942-1948 vol.4. DOI: http://dx.doi.
org/10.1109/icnn.1995.488968.

[34]	 Z. Geem et al., “A New Heuristic Optimization
Algorithm: Harmony Search,” SIMULATION,
vol. 76, pp. 60-68, 2001. DOI: http://dx.doi.
org/10.1177/003754970107600201.

[35]	 M. G. H. Omran and M. Mahdavi, “Global-
best harmony search,” Applied Mathematics
and Computation, vol. 198 (2), pp. 643-656,
May. 2008. DOI: http://dx.doi.org/10.1016/j.
amc.2007.09.004.

[36]	 S. Kirkpatrick and M. Vecchi, “Optimization by
simmulated annealing,” science, vol. 220, pp.
671-680, 1983. DOI: http://dx.doi.org/10.1126/
science.220.4598.671.

[37]	 M. B. Cohen et al., “Constructing test suites for
interaction testing,” presented at the Proceedings
of the 25th International Conference on Software
Engineering, Portland, Oregon, 2003. DOI:
http://dx.doi.org/10.1109/icse.2003.1201186.

[38]	 M. B. Cohen et al., “Constructing strength three
covering arrays with augmented annealing,”
Discrete Mathematics, vol. 308 (13), pp.
2709-2722, Jul. 2008. DOI: http://dx.doi.
org/10.1016/j.disc.2006.06.036.

[39]	 J. Torres-Jimenez and E. Rodriguez-Tello,
“Simulated Annealing for constructing binary
covering arrays of variable strength,” in
Evolutionary Computation (CEC), 2010 IEEE
Congress on, 2010, pp. 1-8. DOI: http://dx.doi.
org/10.1109/cec.2010.5586148.

[40]	 J. Torres-Jimenez and E. Rodriguez-Tello,
“New bounds for binary covering arrays using
simulated annealing,” Information Sciences,
vol. 185 (1), pp. 137-152, Feb. 2012. DOI:
http://dx.doi.org/10.1016/j.ins.2011.09.020.

[41]	 A. Rodriguez-Cristerna and J. Torres-Jimenez,
“A Simulated Annealing with Variable
Neighborhood Search Approach to Construct
Mixed Covering Arrays,” Electronic Notes in
Discrete Mathematics, vol. 39, pp. 249-256,
Dec. 2012. DOI: http://dx.doi.org/10.1016/j.
endm.2012.10.033.

[42]	 A. L. González Hernández, “Un Algoritmo
de Optimizacion Combinatoria para la
Construccion de Covering Arrays Mixtos de
Fuerza Variable,” PhD. dissertation, Laboratorio
de Tecnologías de la Información, Centro de
Investigación y de Estudios Avanzados del
Instituto Politécnico Nacional, 2013.

[43]	 A. Rodriguez-Cristerna et al., “Construction of
Mixed Covering Arrays Using a Combination
of Simulated Annealing and Variable
Neighborhood Search,” Electronic Notes in
Discrete Mathematics, vol. 47, pp. 109-116,
Feb. 2015. DOI: http://dx.doi.org/10.1016/j.
endm.2014.11.015.

[44]	 J. Torres-Jimenez et al., “A two-stage algorithm
for combinatorial testing,” Optimization Letters,
pp. 1-13, 2016. DOI: http://dx.doi.org/10.1007/
s11590-016-1012-x.

[45]	 K. J. Nurmela, “Upper bounds for covering
arrays by tabu search,” Discrete Applied
Mathematics, vol. 138 (1-2), pp. 143-152, Mar.
2004. DOI: http://dx.doi.org/10.1016/S0166-
218X(03)00291-9.

[46]	 R. A. Walker Ii and C. J. Colbourn, “Tabu search
for covering arrays using permutation vectors,”
Journal of Statistical Planning and Inference,
vol. 139 (1), pp. 69-80, Jan. 2009. DOI: http://
dx.doi.org/10.1016/j.jspi.2008.05.020.

[47]	 L. Gonzalez-Hernandez et al., “Construction
of Mixed Covering Arrays of Variable
Strength Using a Tabu Search Approach,” in
Combinatorial Optimization and Applications.
vol. 6508, W. Wu and O. Daescu, Eds., ed:
Springer Berlin Heidelberg, 2010, pp. 51-64.
DOI: http://dx.doi.org/10.1007/978-3-642-
17458-2_6.

[48]	 L. Gonzalez-Hernandez, “New bounds for
mixed covering arrays in t-way testing with
uniform strength,” Information and Software
Technology, vol. 59, pp. 17-32, Mar. 2015. DOI:
http://dx.doi.org/10.1016/j.infsof.2014.10.009.

[49]	 X. Yu and M. Gen. Introduction to Evolutionary
Algorithms. Springer London, 2010. DOI:
http://dx.doi.org/10.1007/978-1-84996-129-5.

45
Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 25 (43), pp. 31-45. Septiembre-Diciembre, 2016. Tunja-Boyacá, Colombia.

Jimena Adriana Timaná-Peña - Carlos Alberto Cobos-Lozada - Jose Torres-Jimenez*

[50]	 J. Stardom, “Metaheuristics and the Search for
Covering and Packing Arrays,” M.S. thesis,
Simon Fraser University, 2001.

[51]	 E. Rodriguez-Tello and J. Torres-Jimenez,
“Memetic Algorithms for Constructing Binary
Covering Arrays of Strength Three,” in Artifical
Evolution. vol. 5975, P. Collet, et al., Eds., ed:
Springer Berlin Heidelberg, 2010, pp. 86-97.
DOI: http://dx.doi.org/10.1007/978-3-642-
14156-0_8.

[52]	 S. Sabharwal et al., “Construction of t-way
covering arrays using genetic algorithm,”
International Journal of System Assurance
Engineering and Management, pp. 1-11, 2016.
DOI: http://dx.doi.org/10.1007/s13198-016-
0430-6.

[53]	 M. Dorigo et al., “Ant system: optimization
by a colony of cooperating agents,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 26
(1), pp. 29-41, Feb. 1996. DOI: http://dx.doi.
org/10.1109/3477.484436.

[54]	 T. Shiba et al., “Using artificial life techniques
to generate test cases for combinatorial testing,”
in Computer Software and Applications
Conference, 2004. COMPSAC 2004.
Proceedings of the 28th Annual International,
2004, pp. 72-77 vol.1. DOI: http://dx.doi.
org/10.1109/CMPSAC.2004.1342808.

[55]	 D. M. Cohen et al., “The Automatic Efficient
Test Generator (AETG) system,” in Software
Reliability Engineering, 1994. Proceedings.,
5th International Symposium on, 1994, pp.
303-309. DOI: http://dx.doi.org/10.1109/
issre.1994.341392.

[56]	 X. Chen et al., “Building Prioritized Pairwise
Interaction Test Suites with Ant Colony
Optimization,” in 9th International Conference
on Quality Software, Jeju, 2009, pp. 347-352.
DOI: http://dx.doi.org/10.1109/QSIC.2009.52.

[57]	 B. S. Ahmed et al., “The development of a particle
swarm based optimization strategy for pairwise
testing,” Journal of Artificial Intelligence, vol. 4
(2), pp. 156-165, Feb. 2011. DOI: http://dx.doi.
org/10.3923/jai.2011.156.165.

[58]	 B. S. Ahmed and K. Z. Zamli, “A variable
strength interaction test suites generation
strategy using Particle Swarm Optimization,”
Journal of Systems and Software, vol. 84 (12),
pp. 2171-2185, Dec. 2011. DOI: http://dx.doi.
org/10.1016/j.jss.2011.06.004.

[59]	 B. S. Ahmed et al., “Application of Particle
Swarm Optimization to uniform and variable

strength covering array construction,” Applied
Soft Computing, vol. 12 (4), pp. 1330-1347,
Apr. 2012. DOI: http://dx.doi.org/10.1016/j.
asoc.2011.11.029.

[60]	 T. Mahmoud and B. S. Ahmed, “An efficient
strategy for covering array construction with
fuzzy logic-based adaptive swarm optimization
for software testing use,” Expert Systems with
Applications, vol. 42 (22), pp. 8753-8765,
Dec. 2015. DOI: http://dx.doi.org/10.1016/j.
eswa.2015.07.029.

[61]	 X.-S. Yang, “Harmony Search as a Metaheuristic
Algorithm,” in Music-Inspired Harmony
Search Algorithm. vol. 191, ed: Springer Berlin
Heidelberg, 2009, pp. 1-14. DOI: http://dx.doi.
org/10.1007/978-3-642-00185-7_1.

[62]	 A. R. A. Alsewari and K. Z. Zamli, “A harmony
search based pairwise sampling strategy for
combinatorial testing,” International Journal
of the Physical Sciences, vol. 7, pp. 1062-
1072, 2012. DOI: http://dx.doi.org/10.5897/
IJPS11.1633.

[63]	 X. Bao et al., “Combinatorial Test Generation
Using Improved Harmony Search Algorithm,”
International Journal of Hybrid Information
Technology, vol. 8 (9), pp. 121-130, Sep.
2015. DOI: http://dx.doi.org/10.14257/
ijhit.2015.8.9.13.

[64]	 E. K. Burke et al., “Hyper-heuristics: A survey of
the state of the art,” Journal of the Operational
Research Society, vol. 64 (12), pp. 1695-1724,
Dec. 2013. DOI: http://dx.doi.org/10.1057/
jors.2013.71.

[65]	 A. LaTorre et al., “Multiple Offspring Sampling
in Large Scale Global Optimization,” in 2012
IEEE Congress on Evolutionary Computation,
2012, pp. 1-8. DOI: http://dx.doi.org/10.1109/
CEC.2012.6256611.

[66]	 P. Kitsos et al., “Exciting FPGA cryptographic
Trojans using combinatorial testing,” in
2015 IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE), Nov.
2015, pp. 69-76. DOI: http://dx.doi.org/10.1109/
issre.2015.7381800.

