

Revista Colombiana de Filosofía de la Ciencia

ISSN: 0124-4620

revistafilosofiaciencia@unbosque.edu.co

Universidad El Bosque Colombia

Guirado, Matías Alejandro
Realismo científico y nominalismo. Respuesta a Stathis Psillos
Revista Colombiana de Filosofía de la Ciencia, vol. 16, núm. 33, julio-diciembre, 2016, pp.
47-81
Universidad El Bosque
Bogotá, Colombia

Disponible en: http://www.redalyc.org/articulo.oa?id=41449298004

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica

Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

REALISMO CIENTÍFICO Y NOMINALISMO. RESPUESTA A STATHIS PSILLOS^{1,2}

CIENTIFIC REALISM AND NOMINALISM.

REPLY TO STATHIS PSILLOS

Matías Alejandro Guirado^{3,4}

RESUMEN

En este trabajo rechazo los alegatos de Psillos (2012) contra el nominalismo moderado (NM). El NM es una variante del realismo que recomienda restringir la creencia racional a los contenidos puramente nominalistas de las teorías científicas. Psillos cuestiona esta pretensión, aduciendo que los contenidos platónicos desempeñan un papel insoslayable en la explicación del éxito de la ciencia. Para refutar esta postura, hago tres cosas: sostengo que las teorías científicas tienen contenidos puramente nominalistas, defiendo la plausibilidad metacientífica del concepto de adecuación nominalista y descarto la existencia de hechos físico-matemáticos básicos.

Palabras clave: antiplatonismo, matemática aplicada, nominalismo, realismo científico, Stathis Psillos.

ABSTRACT

In this paper I reject Psillos' (2012) pleas against moderate nominalism (NM). NM is a brand of realism which proposes to restrict the rational belief to the purely nominalistic contents of scientific theories. Psillos disputes this pretension by arguing that Platonic contents play an indispensable role in explaining the success of science. In order to refute this stance, I do three things: I argue that scientific theories have purely nominalistic contents, defend the metascientific plausibility of the concept of nominalistic adequacy and rule out the existence of basic, physico-mathematical facts.

Keywords: antiplatonism, applied mathematics, nominalism, scientific realism, Stathis Psillos.

¹ Recibido: 15 de abril de 2016. Aceptado: 24 de junio de 2016.

² Este artículo se debe citar: Guirado, Matías A. "Realismo científico y nominalismo. Respuesta a Stathis Psillos". *Rev. Colomb. Filos. Cienc.* 16.33 (2016): 47-81.

³ Universidad de Buenos Aires. Correo electrónico: matias.ag@outlook.com

⁴ Buenos Aires (Argentina).

1. Introducción

El denominado 'argumento de la indispensabilidad' (AI) o 'argumento Ouine-Putnam' es quizá el mejor alegato en favor del platonismo matemático.5 En pocas palabras, el argumento es que debemos creer en la existencia de entidades matemáticas, dado que nuestras mejores teorías científicas nos comprometen esencialmente con entidades matemáticas y hay buenas razones para considerar que esas teorías son (literalmente) verdaderas o verosímiles. Este desarrollo del AI envuelve tres componentes: (i) la lectura quineana (lógico-semántica) de la ontología de las teorías, (ii) la tesis de la indispensabilidad de la matemática aplicada y (iii) la tesis del realismo científico. El enfoque quineano exige parafrasear las oraciones de las teorías en la notación de la lógica cuantificacional de primer orden para develar sus compromisos ontológicos. Si W es una de las entidades que ofician de rango de valuación de las variables ligadas surgidas de la formalización de una teoría T, decimos que T nos compromete ontológicamente con W (Quine 14). Este compromiso es indispensable si W reaparece en el universo de interpretación de cualquier alternativa empíricamente equivalente a T que conserve sus virtudes epistémicas (Colyvan 2010 10 -11).

La indispensabilidad de la matemática es una vía para legitimar la creencia en entidades abstractas en el marco de la explicación realista del éxito de la ciencia. La idea realista tradicional es que el éxito de la ciencia sería un milagro o una coincidencia cósmica (es decir, un hecho completamente incomprensible) si los postulados de nuestras (actualmente) mejores teorías fueran (literalmente) falsos o inverosímiles (Putnam 73). "La tesis realista de que las teorías científicas son aproximadamente verdaderas es la mejor explicación del éxito empírico de tales teorías" (Psillos 1999 78).

Pero los postulados de la ciencia (al menos en el terreno de la física) son, por regla general, enunciados físico-matemáticos, es decir, enunciados que adquieren significado al precio de comprometernos ontológicamente con objetos físicos y objetos matemáticos.⁶

⁵ El lector encontrará una exposición y defensa sistemáticas del argumento en Colyvan (2001).

⁶ Veamos un ejemplo. Bajo la óptica de Putnam, la Ley de la Gravitación Universal enuncia que "los cuerpos se comportan de tal manera que el cociente de dos números asociados con los cuerpos es igual a un tercer número" (74). Leída de este modo, la ley tiene implicancias tanto acerca de hechos matemáticos (la igualdad entre un número y el cociente del producto de otros dos números y un tercero) cuanto acerca de hechos mixtos ("asociaciones" entre números y cuerpos). Así, la ley de Newton es (literalmente) verdadera o verosímil solo si hay números reales, cocientes, etc.

Así pues, una vez convenido que la matemática es indispensable para la ciencia y que la verdad (aproximada) de nuestras mejores teorías es la mejor explicación del éxito de la ciencia, las entidades matemáticas pasan a estar ontológicamente a la par de las "entidades teóricas".

Hay dos respuesta posibles al AI: una respuesta radical (negar que la matemática sea indispensable para la ciencia) y una respuesta moderada (argumentar que la indispensabilidad de la matemática es consistente con el antiplatonismo o, alternativamente, que la explicación de la indispensabilidad no es patrimonio del platonismo).

Atacar la tesis de la indispensabilidad es un asunto complejo, porque exige nominalizar nuestras mejores teorías científicas (es decir, reformularlas sin asumir compromisos ontológicos con objetos matemáticos) o, en su defecto, dar cuenta de la plausibilidad metodológica de esta pretensión. Esta es la estrategia seguida por Hartry Field en Science without numbers (cf. Field). Allí, Field elaboró un método para eliminar la matemática de la ciencia bajo condiciones metateóricas que garanticen que los sustitutos nominalistas de las teorías existentes sean relativamente simples y atractivos (Field viii). Supongamos que T es una teoría científica y M la (única) teoría matemática aplicada en T. La tesis de Field es que hay una teoría N empíricamente equivalente a T tal que T = N+M y N preserva a grandes rasgos la pintura del mundo físico pintada por T, tanto en sus aspectos observables como inobservables. Técnicamente, decimos que N+M es una extensión nominalísticamente conservativa de N, es decir, que toda consecuencia deductiva nominalista de N+M será también una consecuencia deductiva de N (Field 11).⁷

El de Field es a todas luces, un nominalismo revolucionario (NR): su propuesta importa reelaborar los cánones metodológicos de la ciencia a la luz de modulaciones metafísicas ligadas al rechazo de las entidades abstractas.

Para el común de los filósofos, la inviabilidad del proyecto de Field es cosa juzgada.⁸ De aquí que muchos autores apostaran por un nominalismo mode-

⁷ Para ilustrar su estrategia, Field procedió a nominalizar la teoría de la gravitación universal de Newton (G), proporcionando en el interín algunos indicios rudimentarios acerca de cómo extender su propuesta a otras áreas de la física. Dicho de manera breve y esquemática, la receta de Field envuelve tres pasos: (1) restringir el dominio de G a una ontología de puntos y regiones espaciotemporales; (2) sustituir los predicados para propiedades cuantitativas (propiedades como la temperatura o el potencial gravitacional) por predicados comparativos para relaciones entre puntos y regiones espaciotemporales (relaciones como ser más frío que o ser más pesado que); (3) probar teoremas de representación y unicidad a los efectos de que las relaciones básicas de la teoría nominalista de la gravitación preservan los rasgos estructurales de las operaciones matemáticas dispensadas.

⁸ El lector encontrará un resumen esquemático de las objeciones al proyecto de Field en Colyvan (2001 75).

rado (NM), compatible con el (pretendido) factum de la indispensabilidad. En lugar de exigir que la ciencia madura sea nominalizada, los partidarios del NM se proponen elaborar y motivar un criterio metodológico que justifique aceptar los contenidos platónicos de las teorías científicas (es decir, sus compromisos relativos a entidades matemáticas, modelos, etc.) y, simultáneamente, restringir la creencia a sus contenidos nominalistas.

La réplica moderada al AI es que la adecuación nominalista de nuestras mejores teorías científicas es una buena explicación de su adecuación empírica (Balaguer, Leng, Vineberg), donde una teoría T es nominalísticamente adecuada "si es correcta en aquellas de sus consecuencias que no cuantifican sobre objetos matemáticos" (Leng 77). Además de buena, se pretende que la mentada explicación es suficiente, esto es, que no puede ser mejorada aduciendo además la verdad de los contenidos platónicos correspondientes. Pero, si la explicación nominalista del éxito de la ciencia es buena y suficiente, entonces es razonable embarcarse en aguas realistas sin hacer lugar a la creencia en entidades matemáticas. Para sostener esta implicación importa renunciar a la vieja idea realista de que la verdad (aproximada) es una propiedad global de las teorías maduras.

Para restar dramatismo a esta variante del realismo, conviene quizá reformularla diciendo que los partidarios del NM preservan el concepto usual de aproximación a la verdad como clave de bóveda para la explicación del éxito de la ciencia, pero restringen su aplicación a las consecuencias nominalistas de las teorías. Es decir, consideran que las realizaciones de la ciencia madura son verdaderas o aproximadamente verdaderas exclusivamente en el nivel de sus contenidos nominalistas.

Homologar los conceptos de verdad y adecuación nominalista (postular su coextensionalidad en el terreno de la ciencia madura) sería legítimo porque las entidades matemáticas -a diferencia de las denominadas 'entidades teóricas', en las que tanto los nominalistas cuanto los realistas tradicionales creenexisten fuera del espaciotiempo y, como consecuencia de esto, carecen de toda capacidad o poder de modificar o condicionar los hechos de la realidad espaciotemporal. Por ejemplo, no tiene sentido suponer que el mundo físico -ya sea en sus aspectos observables o inobservables- sería distinto si -ceteris paribus- no existiera el número ⁹. Esta suerte de alegato metafísico-modal determina que el expediente a las entidades abstractas pueda juzgarse irrelevante a los efectos de explicar las virtudes epistémicas de teorías fundamentalmente empíricas.

Psillos (2012)⁹ rechaza los lineamientos del NM, aduciendo que el realismo científico y el nominalismo son filosofías incompatibles. Esquemáticamente, sus réplicas son: (i) que la ineficacia causal de una entidad no es motivo suficiente para desmerecer su postulación; (ii) que no es factible delimitar los contenidos nominalistas de las teorías (en consecuencia, tampoco es factible dar a esos contenidos estatus de candidato independiente para la creencia); (iii) que el concepto de adecuación nominalista no es un buen sucedáneo del concepto tradicional de verdad (o verosimilitud). Estos cuestionamientos son importantes, porque sugieren -respectivamente- que los partidarios del NM no podrán legitimar su actitud hacia las teorías, explicar sus éxitos empíricos o caracterizar el objetivo epistemológico de la ciencia.

En este trabajo reconstruyo las objeciones antinominalistas de Psillos y doy respuesta a cada una de ellas. En la segunda sección descarto que la relevancia explicativa de las entidades abstractas les devuelva alguna relevancia metafísica. Para esto apelaré al PAC o principio de aislamiento causal de las entidades abstractas. En la tercera sección defiendo la existencia de contenidos científicos puramente nominalistas y la plausibilidad de convertirlos en candidato independiente para la creencia sin distorsionar la explicación realista del éxito de las teorías. Luego apelo a la noción de n-adecuación o adecuación nominalista para caracterizar el objetivo epistemológico de la ciencia y doy cuenta de la solvencia metacientífica de esa apelación. En la cuarta sección argumento que la existencia de contenidos puramente nominalistas es un prerrequisito para fijar las condiciones veritativas de los enunciados mixtos (físico-matemáticos) y que, como consecuencia de esto, es racional aceptar teorías científicas altamente matematizadas y, simultáneamente, rehusar la creencia en entidades matemáticas.

2. EFICACIA CAUSAL Y CONTRIBUCIÓN EXPLICATIVA

Los partidarios del NM admiten que la matemática juega un papel indispensable en la ciencia, pero niegan que el platonismo pueda arrogarse la explicación de ese hecho o sacar provecho de él. A su juicio, el que nuestras mejores teorías se resistan a ser nominalizadas no implica que debamos creer en la existencia de entidades matemáticas. La pregunta que los platonistas debieran responder es: ¿qué relevancia puede tener el hacer referencia a entidades causalmente

⁹ Algunas de las críticas antinominalistas de Psillos (2012) aparecen desarrolladas en trabajos previos (Psillos 2010, 2011), aunque de forma algo rudimentaria. Es por esto que mi exposición de sus argumentos se ceñirá al primero de los artículos mencionados.

inertes existentes fuera del espaciotiempo, cuando lidiamos con la pretensión de explicar fenómenos o regularidades espaciotemporales? La sospecha que se plantea aquí es que, dada su naturaleza, los números y el resto de los objetos matemáticos -a diferencia de entidades extraempíricas como los electrones- no pueden constituirse en antecedente causal de hechos o procesos espaciotemporales; es decir, no pueden *hacer que algo ocurra* en el mundo físico. Claro que la respuesta a la pregunta planteada en este párrafo no puede ceñirse a la pretensión de que, puesto que la matemática es indispensable para la ciencia y las teorías científicas vigentes son (aproximadamente) verdaderas, la aplicabilidad de la matemática es inconsistente con el antiplatonismo, dado que la cuestión pasa, precisamente, por determinar p*or qué* es indispensable y cómo es posible que lo sea. Si el platonismo no resuelve estos interrogantes, entonces no podrá arrogarse la explicación de la aplicabilidad.

Pero me parece que, una vez que postulamos que las entidades matemáticas son entidades platónicas (es decir, no-espaciales, no-temporales, no-causales, etc.), no solo perdemos de vista la posibilidad de explicar la aplicabilidad (y, por derivación, el fenómeno de la indispensabilidad), sino que, además, nos topamos con la intuición bruta de que las teorías científicas podrían ser nominalísticamente adecuadas pero falsas. Esta intuición es bruta porque remite a una faceta relativamente indisputable del mundo platónico: su independencia ontológica y su aislamiento metafísico respecto del mundo físico. Esa faceta ontológico-metafísica apunta a que la existencia o inexistencia de entidades matemáticas será totalmemente irrelevante en conexión con los hechos y las operaciones estudiadas por la ciencia. Como consecuencia de esto, es perfectamente razonable suponer que la realidad espaciotemporal tiene la naturaleza que la ciencia le atribuye y, simultáneamente, negar la existencia de entidades matemáticas. Pero entonces sería también razonable asumir que los contenidos puramente nominalistas de la ciencia son literalmente verdaderos (o verosímiles) y que los contenidos platónicos de la ciencia son literalmente falsos (o vacuamente verdaderos).

Psillos pone el acento crítico en la faceta metacientífica del NM, es decir, en el proyecto de elaborar un realismo científico consistente con el antiplatonismo.

Se trata de introducir un concepto de adecuación nominalista y argumentar que incluso si las teorías científicas no pueden ser nominalizadas, incluso si la matemática es teoréticamente indispensable para la ciencia, hay una manera de evitar el compromiso con el realismo matemático. Es suficiente, se argumenta, para la aplicabilidad de las teorías científicas y la explicación de sus éxitos empíricos que sean nominalísticamente adecuadas. (Psillos 2012 56).

Mark Balaguer defiende una variante del NM denominada 'realismo científico nominalista'. Esta variante aparece estructurada en torno a dos tesis:

(NC) la ciencia empírica tiene un contenido puramente nominalista que captura una "pintura completa" del mundo físico y (COH) es coherente y tiene sentido mantener que el contenido nominalista de la ciencia empírica es verdadero y que el contenido platónico de la misma es ficticio (Balaguer 131).

(COH) se sigue de (NC) en conjunción con el *principio del aislamiento causal* (PAC), "que dice que no hay interacciones causales entre objetos matemáticos y objetos físicos" (Balaguer 110; énfasis removido).

Un corolario del NM es que las teorías científicas (particularmente en el campo de la física) son literalmente falsas, porque (casi) todas ellas tienen implicancias físico-matemáticas (por ejemplo, implicancias relativas al valor numérico de magnitudes escalares) y esas implicancias son literalmente falsas si no hay objetos matemáticos. En este sentido, Psillos se pregunta cómo es posible que "esta falsedad sistemática y sintomática de las teorías explique su adecuación empírica" (2012 57). La respuesta obvia a esta pregunta es que (NC) y el PAC son independientemente plausibles. Si los contenidos nominalistas de la ciencia ofrecen una pintura acabada del mundo físico y no hay objetos matemáticos causalmente poderosos, entonces la adecuación nominalista será una buena clave para explicar las realizaciones de la ciencia madura.

Mary Leng llega a la misma conclusión, partiendo de premisas más cercanas al debate realismo vs. antirrealismo científico (cf. Leng). A su juicio, dado que las entidades matemáticas carecen de toda relevancia causal en conexión con lo observable, la verdad o falsedad de la matemática aplicada no podrá dirimirse a la luz de consideraciones relativas al éxito de la ciencia madura y, como consecuencia de esto, el argumento del no-milagro debiera ceñirse a los contenidos nominalistas de las teorías.

En resumen: los partidarios del NM se amparan en el PAC para replicar que es imposible la existencia de entidades matemáticas causalmente relevantes para los hechos que conciernen a la ciencia (los hechos físicos, biológicos, psicológicos, etc.) y que, como consecuencia de esto, el estatus ontológico de esas entidades tendrá nula repercusión sobre las leyes naturales y las condiciones iniciales del mundo espaciotemporal. Así, es perfectamente razonable ceñir la actitud realista a los compromisos puramente nominalistas de la ciencia madura, esto es, considerar que sus teorías -en tanto y en cuanto guardan compromisos matemáticos- son nominalísticamente adecuadas pero falsas.

A juicio de Psillos, el punto débil del NM es que el PAC no es un buen criterio de realidad. Veamos cuáles son sus argumentos al respecto.

Por empezar, dice que "hay una entera categoría de objetos abstractos cuya existencia es contingente (...) e inclusive contingente a partir de la existencia y el comportamiento de los objetos concretos" (Psillos 2012 59). Algunos objetos abstractos contingentes serían, a juicio de Psillos: el Ecuador, el centro de masa del sistema solar, los pensamientos (suponiendo un enfoque cartesiano de la relación mente-cuerpo) y, en general, los modelos teóricos de la ciencia: el oscilador armónico lineal, el sistema newtoniano de dos cuerpos, el plano inclinado sin fricción, etc.

Psillos no aclara por qué o en qué sentido la existencia de tales entidades ha de ser sensible a la existencia de particulares concretos, pero, en el caso de los modelos teóricos, se encarga de agregar que "no son entidades abstractas puras, dado que se les adscribe propiedades físicas" (2012 59; bastardilla en el original). Sean o no "puras", lo cierto es que todas las entidades abstractas (entre las cuales, valga aclararlo, no se cuenta la mente humana entendida al modo de una sustancia inmaterial; en caso contrario, difícilmente podría ser postulada para explicar fenómenos como el movimiento voluntario de las personas) son, por definición, entidades causalmente inertes existentes (si acaso) fuera del espaciotiempo, de modo que las propiedades físicas que eventualmente se les atribuya serán (si acaso) propiedades en abstracto, es decir, Formas platónicas. Decir que la existencia objetiva de estructuras o propiedades abstractas depende de la existencia y naturaleza de sus instancias espaciotemporales implica abandonar el platonismo y embarcarse -como mucho- en un realismo de universales inmanentes como el de David Malet Armstrong (cf. Armstrong).

En la medida en que pretenda permanecer del lado platonista de la disputa metafísica, habrá que convenir que la existencia (o inexistencia) de modelos teóricos, números, etc. no podrá depender de la existencia (o inexistencia) de particulares concretos o, alternativamente, de sus propiedades físicas. Pero esta concesión importa, en principio, suscribir al PAC, es decir, al principio que da sustento metafísico a la lectura nominalista de las teorías.

Desde la óptica tradicional, el que una entidad abstracta tenga realizaciones espaciotemporales no implica que su existencia dependa en algún sentido de la existencia o las propiedades de sus instancias. Por el contrario, se supone que el reino platónico es plenamente independiente del mundo físico. De aquí que se lo suela pensar como atemporal, inmutable, etc. Pero, entonces, la referencia a cosas tales como el oscilador armónico o el plano inclinado sin fricción será un recurso para aislar en la consideración y proceder a explicar en abstracto ciertos rasgos de los osciladores o planos concretos. Ahora bien,

que de veras haya algo así como un oscilador armónico o un plano inclinado sin fricción en el reino platónico no es algo que guarde relación alguna con lo que suceda en el espaciotiempo.

Dicho de manera general: que ciertas entidades abstractas sean presupuestas con el propósito de explicar o describir el comportamiento de entidades físicas no implica que el estatus ontológico de las primeras esté condicionado por el estatus ontológico de las segundas. Y cabe tener en cuenta que el precio que pagaría Psillos por cuestionar esta punto sería incurrir en una reconceptualización (por lo menos) controversial de la naturaleza de las entidades platónicas; una según la cual lo que suceda en el reino platónico será de alguna manera funcional a lo que suceda en el espaciotiempo, como si los objetos ordinarios pudieran transmitir información o energía hacia algo existente *fuera* del espacio tiempo.

En suma, que algunas entidades tengan instanciaciones espaciotemporales no dice nada en contra de PAC. Por el contrario, cabe pensar que PAC expresa algo válido para toda entidad abstracta, tenga o no instanciaciones espaciotemporales. Pues, en caso contrario, habría que atribuir a las entidades abstractas un grado de susceptibilidad metafísica impropia del realismo platónico. Por tanto, sigue vigente la posibilidad de mantenerse realista en lo que respecta a los compromisos teóricos de la ciencia y, simultáneamente, suscribir al anti-realismo en lo que respecta a sus compromisos formales.

Pasemos a considerar un segundo alegato contra el PAC.

Psillos traza una distinción entre objetos abstractos matemáticos (OAMs) y objetos abstractos no-matemáticos (OANMs) y separa las actitudes que cabe adoptar hacia cada una de estas categorías. Entre los OANMs comprometidos en la ontología de la ciencia, se encuentran, fundamentalmente, los modelos teóricos. Estos modelos guardan una innegable relevancia epistémica: sin ir más lejos, juega un papel fundamental en la explicación de los fenómenos y en la intelección de las condiciones de contrastación de hipótesis fundamentales. Sería "absurdo –acota Psillos– decir que estos OANMs no son explicativamente relevantes para el éxito de las teorías", o que "no contribuyen en nada a la explicación de los objetos físicos concretos y su comportamiento" (Psillos 2012 59). Pero estas son, precisamente, las virtudes epistémica tradicionalmente asociadas a la postulación de las denominadas 'entidades teóricas' (por ejemplo, los electrones). Entonces, la idea de Psillos parece ser que, si

¹⁰ Por ejemplo, uno puede explicar, acudiendo al modelo del oscilador armónico lineal, por qué el período de un péndulo concreto es proporcional a la raíz cuadrada de su longitud. Esta explicación reúne una serie de virtudes: soporta contrafácticos (es decir, sigue siendo válida frente a cambios plausibles de condiciones iniciales) y unifica la intelección de una amplia gama de fenómenos cinemáticos.

-como recomienda el NM- hemos de ser realistas con respecto a los compromisos nominalistas de la ciencia (por ejemplo, los compromisos relativos a los electrones y su carga negativa), también hemos de serlo con respecto a los compromisos platónicos (por ejemplo, los compromisos asumidos en la caracterización de un electrón atrapado en un oscilador armónico). Así, el PAC no parece ser un buen criterio de realidad (al menos para los realistas científicos), dado que conduce a rechazar la existencia de entidades cuya contribución epistémica las ubica a la par de las entidades teóricas.

La apuesta de Psillos es sustituir el PAC por lo que podemos denominar 'principio de relevancia explicativa' (PRE). En lugar de la eficacia causal, lo que decide ahora el estatus de una entidad es su contribución (en rigor, la de su postulación o referencia) a la explicación de un hecho o una regularidad. Tomado como criterio de realidad, el PRE parece devolver a los modelos teóricos y al resto de los OANMs la dignidad ontológica que les arrebatara el PAC.

Pero aquí hay que ser cuidadoso, porque el PRE responde a un factor epistémico (la relevancia explicativa del acto de introducir o postular entidades), mientras que el PAC responde a un criterio metafísico (la eficacia causal de las entidades). Ahora bien, los partidarios del NM reconocen abiertamente los beneficios epistémicos derivados de la presentación de modelos teóricos y otros OANMs. De hecho, algunos de ellos estarían dispuestos a conceder que, en ocasiones, la ciencia proporciona explicaciones matemáticas de hechos físicos (cf. Baker & Colyvan). Todo el punto es que la contribución explicativa de los componentes platónicos no podrá depender del estatus de las respectivas entidades, dado que, por definición, no puede haber relaciones de transferencia de información entre objetos físicos y objetos abstractos. En consecuencia, mientras el PRE sea visto como una alternativa al PAC sin que surjan razones de peso para rechazar el PAC, será explicativamente inocuo sostener que los contenidos platónicos de la ciencia son verdaderos.

Así, volvemos al punto de partida: Psillos acude al PRE para sustituir al PAC, cuando, en rigor, las intuiciones *conducen al PAC* y señalan que, en el caso de las entidades abstractas, el PRE *no* puede funcionar como un criterio de realidad y, como consecuencia de esto, el PAC no es legítimamente sustituible por este.

Por añadidura, cabe tener en cuenta que el PAC expresa una necesidad conceptual (derivada de la definición de 'entidad abstracta') presupuesta por la mayor parte de los partícipes del debate platonismo vs. antiplatonismo. Son muy pocos las filósofas o los filósofos que, apartándose de los consensos impe-

rantes, se atreven a defender o sugerir la posibilidad de relaciones causales entre objetos físicos y objetos abstractos.

Pero, en lugar de anticipar y rebatir las contrarréplicas que los nominalistas podrían esgrimir en conexión con estos tópicos, Psillos procede a refutar una contraestrategia nominalista que, a todas luces, sería impugnada por los partidarios del NM. La estrategia en cuestión reside en abandonar el NM tradicional y promover en su lugar lo que Psillos denomina 'nominalismo indulgente' o 'NI' (literalmente, 'lenient nominalism'). A diferencia del NM, el NI hace lugar a la creencia en OANMs y restringe expresamente el rechazo (o el agnosticismo) a los OAMs. En este sentido, una ventaja presunta del NI en comparación con el NM es que el primero puede dar cuenta de la utilidad de los modelos y el resto de los OANMs.

Más allá de los esfuerzos retóricos por disfrazar la cuestión de fondo (en particular, el hecho de que el NI no se aparta del NM al reivindicar el papel explicativo de los OANMs), el precio que se paga en nombre de toda esta especulación es abandonar el nominalismo. El NI es *demasiado* indulgente. La actitud que promueve va flagrantemente a contramano de la idea de que la ciencia tiene compromisos *puramente* nominalistas cuya adecuación al mundo explica todas las realizaciones epistémicas de las teorías maduras. En otras palabras: el NI es inconsistente con la premisa (NC) de Balaguer. El único aspecto genuinamente nominalista que cabe tributarle es su *nomb*re.

Claro que esa concesión al nominalismo que es el NI cumple un papel: se busca rebatir el realismo científico nominalista mostrando que el NM se hunde en el mismo bote que el NI.

Para completar su estrategia retórica y desembarasarse al fin de NI, Psillos observa (correctamente) que algunos OAMs (por ejemplo, los espacios vectoriales y los grupos) intervienen en la constitución de algunos modelos teóricos. Sin embargo, infiere (erróneamente) que, si estos "OANM son explicativos, también lo son aquellas entidades matemáticas que son parte de su constitución" (2012 60). En principio, esta consideración promueve una *reductio* del NI: este recomienda rehusar la creencia en OAMs y restringir la creencia a los OANMs; pero, al parecer, la existencia y relevancia explicativa de los primeros es, en ocasiones, una condición para la existencia y relevancia explicativa de los segundos. Y, dado que, a juicio de Psillos, el NI es una superación del NM, la mentada *reductio* afecta también a este último.

Además de prevalerse imprudentemente de la índole nominalista del NI, Psillos incurre en un caso de falacia de división: que una entidad A intervenga en la constitución de otra entidad B, no quiere decir que la existencia y relevancia explicativa de A sea una condición para la existencia y relevancia explicativa de B. Por poner un ejemplo, el que el agua juegue un papel en la explicación de la disolución del azúcar no quiere decir que el oxígeno también lo haga.

De cualquier manera, cabe insistir en que, en rigor, el *switch* hacia el NI implica apartarse del nominalismo, con lo cual, si se comprobara que la admisión de modelos importa cierta relegitimación ontológica de las entidades matemáticas, esto ya no contaría como una crítica atendible a nada parecido al NM o alguna variante plausible en su género. (De hecho, vimos que el NM reconoce *abiertamente* la contribución explicativa de los OANMs y que la existencia de explicaciones matemáticas de fenómenos físicos es *consistente* con el NI. Además, cabe recordar que estas concesiones están detrás de la decisión de moderar los ímpetus que dieron impulso al NR (es decir, al nominalismo revolucionario de Hartry Field).

Para refrescar su alegato inicial (el alegato relativo al valor epistémico de los modelos) y dejar atrás el tópico del NI y su vinculación con el NM, Psillos cita y comenta un trabajo de Christopher Pincock (cf. Pincock), donde se defiende una postura cercana en espíritu al NM. Pincock reconoce abiertamente que la indispensabilidad de la matemática no basta para inferir la realidad de sus objetos. Pero, a la vez, niega que el nominalismo pueda sacar provecho de esta constatación. El motivo es que —a su juicio— "nuestras teorías (...) no determinan una colección de enunciados físicos que pudiéramos considerar como el contenido nominalista de esas teorías" (Pincock 267).

Pero, a diferencia de los partidarios del NR, los partidarios del NM no se comprometen con la existencia de enunciados de esa índole; lo que dicen es que, debajo de la fachada físico-matemática de las teorías científicas, palpitan unos contenidos nominalistas cuya explicitación sea quizá imposible. Comprometerse con la *existencia* de esos contenidos y detener en ellos el ascenso realista hacia lo extraempírico es un rasgo característico del NM. Comprometerse con la posibilidad de *separarlos* respecto de los contenidos platónicos de la ciencia es un rasgo privativo del NR. Al no distinguir claramente estos lineamientos metodológicas, Pincock comete el error de presuponer (implícitamente) que la única estrategia nominalista plausible es la de Hartry Field.

Hay que lamentar que, en lugar de reconocer y despejar esta confusión, Psillos intente sacar provecho de ella. Por una parte, insiste en la inseparabilidad de los contenidos nominalistas de las teorías e infiere -en la línea de Pincock- la consecuente imposibilidad de volcar en favor del nominalismo la irrelevancia metafísica de las entidades matemáticas (es decir, la vigencia de PAC). Por otra parte, le reprocha a Pincock el ceñir su análisis a un plano netamente epistémico, ligado a la consideración de los *contenidos* matemáticos de la ciencia,

más que a las respectivas *entidades*. Pero, lejos de aliviar el entuerto y pasar a un plano de análisis metafísico, Psillos insiste en el PRE como criterio de realidad; sin embargo –como ya vimos– el PRE no es otra cosa que un criterio metodológico para dar estatus epistémico a ciertos compromisos ontológicos.

A juicio de Psillos, "hay una posición más fuerte para ocupar [más fuerte que la de Pincock], viz, la propia idea de un contenido (...) libre de entidades abstractas es hueca". El motivo es que "muy poco interesante (general y explicativo) puede ser dicho acerca del mundo físico sin estar comprometido con ellas" (2012 61). Claramente, la "idea" en cuestión permanece ceñida al plano de lo conceptual o epistémico; al papel desempeñado por los compromisos platónicos en la ciencia más que al estatuto de sus objetos. Claro que ese papel representa el caballo de batalla del platonismo; sin embargo, vimos que esta pretensión es infundada, que —en el caso de las entidades abstractas—la contribución explicativa *no* puede funcionar como criterio de realidad ni constituirse en factor para motivar uno que sea funcional al platonismo.

Cabe además insistir en lo siguiente (me permito hacerlo en vista de la recurrencia del dislate de Psillos en este punto): el NM admite expresamente que las teorías científicas nos comprometen con entidades abstractas de diversa índole y que la referencia a estas entidades desempeña un importante papel explicativo, quizá indispensable. (De hecho, el propio Field suscribiría a esta idea, siempre y cuando tuviéramos en cuenta que, a su juicio, es factible dilucidar la contribución de la matemática aplicada y otros recursos platónicos sin abandonar el antiplatonismo; para esto bastaría con reformular las explicaciones físico-matemáticas en un lenguaje puramente nominalista o, alternativamente, vislumbrar bajo qué paraguas ontológico podría ponerse en marcha un proyecto de nominalización. Muchos especialistas olvidan que, en el fondo, el proyecto de Field persigue explicar -más que subestimar- la utilidad de la matemática para la ciencia). Lo que el NM rechaza tajantemente es que la relevancia explicativa de la matemática aplicada y los modelos teóricos constituya un alegato en favor del platonismo. Y hay un buen motivo para rechazarlo: el motivo es que, hasta el momento, no disponemos de elementos que conduzcan a suponer que PAC podría ser falso. Pero, si no cabe siguiera sospechar que los objetos abstractos interactúan de algún modo con nosotros o los sistemas físicos, entonces no están dadas las condiciones para adjudicarles un rol en el desarrollo de la empresa científica.

En contraste, Psillos no brinda razones para adjudicar un rol de esa índole a las entidades abstractas *a pesar* de la vigencia del PAC. Solo ha insistido en el truismo de que los compromisos platónicos de la ciencia tienen un impacto

epistemológico y metodológico que no puede ser soslayado; un truismo al que, como vimos, el NM no es ajeno ni hostil.

En suma, los argumentos antinominalistas basados en el PRE, lo mismo que las precauciones antinominalistas asociadas a la propuesta de Pincock, son —si acaso— alegatos embozados contra propuestas como el NR (el nominalismo de Field). El motivo, en pocas palabras, es que los partidarios de NM no ponen en cuestión ni subestiman la utilidad de la matemática para la ciencia. Por tanto, las dudas y las críticas forjadas al calor del NI o el problema de la inseparabilidad de los contenidos nominalistas solo afectan a una subfamilia de posiciones nominalistas: la de aquellas posiciones que abogan por una ciencia sin números y, en vista de esto, proponen revisar los cánones metodológicos vigentes.

3. Contenido y adecuación nominalistas

Vimos en la sección precedente que tiene sentido rechazar la existencia de las entidades abstractas comprometidas en la ontología científica porque, a diferencia de lo que sucede con las denominadas 'entidades teóricas' (en las que los nominalistas sí creen), la existencia de las entidades abstractas está sujeta al PAC. También vimos que el PAC es un principio inmune a la crítica racional, por dos razones: (a) se limita a desplegar aspectos elementales de la definición de 'entidad abstracta'; (b) el cuestionamiento de esos aspectos es fuertemente contraintuitivo, pues importa de alguna u otra forma concebir que el estatus de las entidades abstractas puede condicionar -o venir condicionado por- lo que suceda en el mundo físico.

Pero hay otro frente de ataque antinominalista que ya fue sugerido por Psillos en el transcurso de su comentario al texto de Pincock. Consiste en cuestionar que la noción de adecuación nominalista (o n-adecuación) sea un buen sustituto del concepto tradicional de verdad (aproximada) y, con esto, que la actitud del NM tenga plausibilidad metacientífica. Psillos escribe al respecto:

Hay un primer problema con la idea misma de caracterizar la n-adecuación. La caracterización de Leng, formulada como lo está respecto de la verdad de las consecuencias nominalísticamente estables de una teoría es problemática. Como Jeff Ketland ha señalado (comunicación privada), la requerida noción de n-adecuación debe ser modelo-teórica. (2012 59).

La teoría de modelos tiene sus componentes platónicos, lo que justifica la advertencia de que la predicación de adecuación nominalista demandará compromisos con entidades nominalísticamente inadmisibles. La tesis de

Ketland a la que alude Psillos es que una teoría T es nominalísticamente adecuada si y solo si –dicho de manera escueta– hay algún modelo de T con alguna subestructura isomorfa a la estructura espaciotemporal del mundo. 11 Esta manera de entender la adecuación nominalista -huelga decirlo- nos compromete con entidades abstractas de diversa índole: modelos, subestructuras, isomorfismos, etc. Claro que los nominalistas niegan la existencia de entidades de esa naturaleza, con lo cual la afirmación de que una teoría dada es n-adecuada no podrá significar lo que de veras significa (supuesto que la intelección modelo-teórica de la n-adecuación sea un aspecto esencial de su análisis, al menos en ciertos contextos relevantes) toda vez que sea proferida por ellos.

Psillos reconoce que esta objeción no es crucial (presumiblemente, porque –como veremos en breve– el entuerto no es imputable a la noción de n-adecuación, sino a un modo de desplegarla). Con todo, pretende llamar la atención sobre la problematicidad de sus consecuencias metacientíficas en conexión con el realismo científico antiplatonista.

Incluso si esta objeción no es fatal para el uso del concepto de n-adecuación por parte del defensor del RCN [por 'realismo científico nominalista'], seguramente le quitaría una gran parte de atractivo al RCN. Sus partidarios tendrían que tener una postura ficcionalista hacia un bloque central de su propia explicación de cómo las teorías capturan [latch onto] el mundo. (2012 62).

Es cuestionable que la reputación filosófica de una noción deba *dirimirse* en aguas modelo-teóricas. Cuando modelizamos un concepto, como puede ser el de verdad o adecuación empírica, buscamos desentrañar las condiciones formales para su empleo de hecho más que dilucidar su contenido o naturaleza. Esto no quita que los avances en la materia arrojen nueva luz sobre aspectos informales de un concepto. El punto es que ese avance se estará realizando sobre un suelo que ya viene sembrado de intuiciones materiales. De hecho, la relativa eficacia con que se logre resguardar ese núcleo preteórico

¹¹ La caracterización que ofrece Ketland se lleva a cabo en un lenguaje L que reúne tres características fundamentales: (i) es un lenguaje de primer orden con una interpretación estándar IM; (ii) contiene dos clases de variables: las c-variables, que recorren el dominio C de los objetos concretos, y las m-variables, que recorren el demonio M de los objetos matemáticos (C y M son dominios mutuamente excluyentes); (iii) contiene tres predicados primitivos: los c-predicados comparativos para relaciones nominalísticamente kosher entre elementos de C, los m-predicados para relaciones platónicas entre elementos de M y los r-predicados para relaciones mixtas (físico-matemáticas) entre objetos de M y objetos de C. Por otra parte, hay un sublenguaje LN que se desprende de L al suprimir el uso de m-variables, m-predicados y r-predicados. Este sublenguaje tiene su reducto en C, el núcleo puramente nominalista de IM. Entonces, una oración de L es verdadera si y solo si IM la satisface, mientras que una oración de LN es verdadera si y solo si IN la satisface, donde IN = <C, RN> y RN es el conjunto de las relaciones nominalísticamente kosher entre elementos de C. Así, un modelo es nominalísticamente correcto si y solo si tiene un reducto nominalista isomorfo al dominio de IN y una teoría T es nominalísticamente adecuada si y solo si tiene un modelo nominalísticamente correcto.

oficiará de piedra de toque para comparar intelecciones alternativas del correspondiente concepto.

Ahora bien, ya se trate del concepto de verdad o el de n-adecuación, aceptar contenidos preteóricos no condiciona la actitud que uno deba adoptar hacia los recursos metateóricos involucrados en su análisis. Más al punto, juzgar que las teorías científicas son mayormente correctas en lo que respecta a sus compromisos nominalistas (sus compromisos relativos a determinaciones espaciotemporales de entidades espaciotemporales y a ninguna otra cosa) no exige hacer una lectura platonista de las herramientas de teoría de modelos empleadas para dar precisión a esa idea.

Hay tres buenas razones para sustentar esta conclusión.

En primer lugar, cualquiera que sepa un poco de epistemológica sabe que una teoría literalmente *falsa* puede tener aplicaciones *exitosas*. Que una teoría sea aceptada por la utilidad de sus aplicaciones no es motivo suficiente para creer en ella. Y, si esto vale para teorías con un alto grado de adecuación a lo empírico (por ejemplo, la dinámica newtoniana), entonces cabe esperar que valga (quizá con más razón) para teorías que solo envuelven compromisos con entidades metafísicamente aisladas de nosotros y del mundo físico (por ejemplo, la teoría de modelos).

En segundo lugar, es bastante razonable suponer que el hecho de que nuestras mejores teorías capturen la estructura del mundo físico nada tiene que ver con la existencia (o inexistencia) de entidades extrafísicas. Sería simplemente descabellado razonar que un sistema físico (o biológico o químico) dado tiene la naturaleza que tiene *en virtud* de que existe fuera del espaciotiempo un objeto que tiene tal o cual propiedad.

En tercer lugar, promover una lectura platonista de la metamatemática como condición para formular una explicación de la aplicabilidad de la matemática equivale esencialmente a tomar partido antes de dejar madurar el debate que nos convoca. Pues esto es, precisamente, lo que está en discusión: que pueda y deba inferirse la verdad de las teorías matemáticas en general como mejor explicación de sus (posibles) aplicaciones empíricas. Pero es esta discusión la que —desde época de Frege— ha sido señalada como proporcionando los primeros elementos racionales para decidir el estatus del platonismo en filosofía de la matemática. Favorecer la lectura platonista de la verdad matemática en general, antes de zanjar la cuestión de la sublectura de la matemática aplicada en particular, es colocar el carro delante del caballo. Si cabe poner en cuestión la fuerza lógica del argumento de indispensabilidad empírica, con más razón cabe poner en cuestión un argumento de indispensabilidad no-empír

rica (metamatemática, por ejemplo). ¿Por qué? Bueno, porque las inferencias basadas en aplicaciones empíricas son las únicas que parecen respaldar la idea de que la matemática es un cuerpo de verdades *sin* incurrir en *petitio*. De no mediar la intervención de un factor externo a la *teoría* matemática, la decisión de adoptar el platonismo tendrá un carácter compulsivo. (De hecho, hay un muy buen motivo para *descartar* la lectura platonista de la verdad matemática: el motivo es que resulta bastante problemático explicar cómo es posible que criatura espaciotemporales como nosotros procedan a cotejar la correspondencia de sus oraciones matemáticas con los hechos platónicos). 12

En suma, es razonable utilizar recursos matemáticos con algún propósito (en nuestro caso, delimitar los contenidos nominalistas de las teoría y caracterizar sus condiciones de adecuación al mundo) antes de dar el debate acerca de los fundamentos ontológicos de la verdad matemática.

Pasemos ahora a evaluar las críticas de Pillos al concepto de adecuación nominalista o n-adecuación. Recordemos al respecto que la batalla se libra en el plano metacientífico: los partidarios del NM esgrimen ese concepto como sucedáneo del concepto de verdad o verosimilitud de uso corriente entre los realistas. Así pues, la suerte del NM dependerá en buena medida de su capacidad para explicar los éxitos de nuestras (actuales) mejores teorías científicas y caracterizar el objetivo epistemológico de la ciencia sin echar a perder ninguna de las virtudes propias de la pintura realista tradicional.

Psillos acota al respecto que el contenido nominalista de una teoría "subdetermina su contenido total", dado que podemos "imaginar fácilmente una situación en la que dos (o más) teorías T1 y T2 tienen exactamente las mismas consecuencias nominalísticamente establecidas, pero difieren en sus formulaciones matemáticas" (2012 62-63). La objeción aquí es que la subdeterminación de los contenidos nominalistas conmina la actitud del NM al agnosticismo: el rechazo de las entidades matemáticas deja de ser una actitud plausible. Veamos cuál es el argumento de Psillos al respecto.

Sean T1 y T2 dos teorías tales que T1 = N+M y T2 = N+(-M), donde N es una teoría puramente nominalista y M una teoría puramente matemática. Psillos da por sentado que T1 y T2 son nominalísticamente equivalentes (es decir, que tienen las mismas consecuencias "nominalísticamente establecidas") a pesar de ser matemáticamente incompatibles (la primera tiene compromisos matemáticos, mientras que la segunda es incompatible con cualquier compromiso de esa índole).

¹² Este es el núcleo de la célebre objeción epistemológica contra el platonismo matemático contemporáneo, planteada originariamente por Paul Benacerraf.

Ahora bien, dado que -como el propio Psillos admite- la existencia de objetos matemáticos es lógicamente contingente, hay dos mundos posibles (nomológicamente equivalentes) W1 y W2 tales que T1 es verdadera en W1 y T2 es verdadera en W2. Así, T2 es nominalísticamente adecuada pero falsa en W1 (porque, según T2, no hay objetos matemáticos, pero los hay en W1) y T1 es nominalísticamente adecuada pero falsa en W2 (porque, según T1, hay objetos matemáticos, pero no los hay en W2).

Supongamos ahora -por mor de la argumentación- que ambas teorías son nominalísticamente adecuadas en el mundo actual @. La pregunta es: ¿T2 es verdadera o falsa en @? En otras palabras: ¿@ es idéntico a W1 o a W2? La objeción de Psillos es que el NM carece de criterios sustantivos para dar respuesta a estas preguntas y otras de similar tenor metafísico-modal. Es por esto que —a su juicio— los partidarios del NM solo pueden mostrarse agnósticos hacia las entidades matemáticas.

Aquí cabe hacer tres aclaraciones.

En primer lugar, el NM no puede (ni debe) aceptar una teoría como T2 = N+(-M), dado que T2 es *nominalisticamente* incompatible con T1, y, a diferencia de esta, ni siquiera puede ser vista como una *extensión nominalisticamente conservativa* de N. Pero, si una teoría (pretendidamente) físico-matemática como T2 no puede ser vista como una extensión nominalisticamente conservativa de un cuerpo de enunciados puramente nominalistas como N, entonces no es de incumbencia del NM (o del nominalismo en general) compararla con otra que (como T1) *sí* puede ser vista de ese modo.

Lo que determina que T2 sea nominalísticamente incompatible con T1 es que T2 *niega* expresamente la existencia de objetos matemáticos y, como consecuencia de esto, tiene implicancias *nominalistas* (implicancias relativas a la *inexistencia* de entidades platónicas) que, claramente, van a contramano de T1. Pero esto quiere decir que, al adicionar ~M a N, podemos derivar una serie de consecuencias nominalistas (por ejemplo, consecuencias relativas a la inexistencia de números reales o ecuaciones diferenciales) que no eran originariamente derivables a partir de N+M o N. Por lo tanto, T2 ni siquiera constituye (como pretende Psillos) una extensión nominalísticamente conservativa de N: hay consecuencias nominalistas de T2 que exceden el poder deductivo de N. (En rigor, N no puede implicar nada acerca de la existencia o inexistencia de objetos matemáticos, dado que ni siquiera tiene un vocabulario matemático. N *solo* enuncia qué propiedades espaciotemporales tienen los objetos no-platónicos del mundo; por tanto, T2 no puede ser vista al modo de una extensión nominalísticamente conservativa de N).

Ahora bien, si T2 es nominalísticamente incompatible con T1 y, además, no es una extensión nominalísticamente conservativa de N, entonces no es responsabilidad de los nominalistas responder a la pregunta que interroga si @ es W1 o W2. Esa pregunta carece de todo nexo sustantivo con la trama de supuestos asociados al NM en particular y al nominalismo en general.

En segundo lugar, el máximo exponente del nominalismo en filosofía de la matemática –Hartry Field– advirtió expresamente que su postura está metodológicamente confinada al agnosticismo en materia de entidades abstractas (cf. Field 11). Si T es la teoría de la gravitación universal de Newton, N qua sustituto nominalista de T no puede expresar que no hay objetos matemáticos; solo puede expresar que todos los objetos no-matemáticos del mundo obedecen las leyes de la dinámica newtoniana. Pues, si N implicara que no hay objetos matemáticos, entonces sería incompatible con cualquier teoría matemática y, como consecuencia de esto, T sería internamente incoherente (lo cual, hasta donde sabemos, no es el caso), dado que –según la visión de Field– T es, precisamente, el resultado de aplicar M a N (es decir, T = N+M).

Por último, cabe aclarar que el NM (y lo mismo vale para el nominalismo en general, en sus variantes estandarizadas) no persigue refutar la existencia de objetos matemáticos, sino desandar lo que se supone es el mejor alegato para comprometerse seriamente con su existencia: el denominado 'argumento Quine-Putnam'.

De cualquier manera, aun suponiendo que las teorías científicas estén subdeterminadas por sus contenidos nominalistas en algún sentido relevante, están igualmente subdeterminadas por sus contenidos matemáticos, o quizá más. Dado que -como el propio Psillos admite- es lógicamente posible que no haya objetos matemáticos, puede que *solo* los contenidos nominalistas de la ciencia sean de hecho (aproximadamente) verdaderos. Pero de esto se sigue que no hay ninguna constancia que permita decidir si T2 es verdadera o solo nominalísticamente adecuada, dado que no hay ninguna constancia que permita decidir si se obtienen o no las condiciones veritativas de la matemática. El motivo es que los seres humanos no podemos salir del espaciotiempo y proceder a cotejar si hay o no hay objetos abstractos.

En cambio, sí hay constancias que hacen razonable suponer que se obtienen las condiciones de verdad (o verosimilitud) de los contenidos puramente nominalistas de la ciencia. Por ejemplo, es razonable suponer que, si no existieran electrones, entonces el comportamiento de los galvanómetros sería diferente al que actualmente tienen. Pero nada análogo a esto vale cuando uno se plantea la posibilidad de que no existan números reales o ecuaciones diferenciales. Por

añadidura, este modo de referirse a los contenidos nominalistas de la ciencia –este modo de referirse a las entidades teóricas, en términos de sus efectos espaciotemporales– está en la base del realismo científico tradicional. Leemos al respecto: "No es sorprendente que los galvanómetros (...) se comporten de la manera en que lo hacen, porque, si realmente hay electrones, (...) esa es la manera en la que nosotros tenemos que esperar que se comporten" (Smart 39). La apuesta del NM es que nada análogo a esto puede decirse con sentido respecto de las entidades matemáticas involucradas en la ontología científica. Por ejemplo, no tiene mucho sentido decir algo como: "no es sorprendente que los galvanómetros se comporten de la manera en que lo hacen, porque, si realmente hay números, esa es la manera en la que nosotros tenemos que esperar que se comporten".

Más que una objeción, Psillos ha hecho *concesiones* al NM al formular la acusación de subdeterminación. Le concede, fundamentalmente, dos cosas: (i) que las teorías científicas tienen contenidos puramente nominalistas (en caso contrario, no tendría sentido decir que esos contenidos tienen un efecto subdeterminante); (ii) que esos contenidos admiten diversas formulaciones matemáticas; y (iii) que los contenidos nominalistas configuran un sustrato independiente para la creencia. Esto último se desprende trivialmente de la idea de que la inexistencia de objetos matemáticos es una posibilidad lógica, junto con el supuesto de que T1 es nominalísticamente adecuada en @ (es decir, en un mundo posible rige el PAC).

Claro que puede que T1 sea verdadera o verosímil, esto es, que refleje fielmente el mundo, tanto en sus aspectos físicos como extrafísicos. Pero nada obsta para que N –la subteoría puramente nominalista incrustada en T1–sea verdadera. A tal efecto, bastaría con que existan las "entidades teóricas" postuladas por T1 y que no haya entidades platónicas. No sería necesario un cambio de leyes o condiciones iniciales.

Por otra parte, vimos que la intuición realista tradicional es que la captación de la naturaleza de las entidades teóricas explica la adecuación empírica de una teoría. Estas entidades —a diferencia de sus parientes platónicos— tienen efecto en los hechos y las regularidades observables. Pero esto quiere decir que el platonismo matemático no puede hacer ningún aporte a la explicación del éxito de la ciencia, con lo cual, si nos atenemos a los presupuestos que dan marco al alegato de Psillos, tiene pleno sentido asumir que nuestras (actuales) mejores teorías científicas tienen contenidos puramente nominalistas y que solo ellos son verdaderos o aproximadamente verdaderos.

Psillos utiliza un alegato similar al precedente para objetar –de manera igualmente infructuosa– que el NM "no puede discriminar las teorías matemáticas

falsas de aquellas que son usadas de manera estándar por los matemáticos y los físicos" (2012 64).

Sean T1 y T2 dos teorías tales que T1 = N+M y T2 = N+(M'), donde N es una teoría puramente nominalista, M una teoría puramente matemática correcta (por poner un ejemplo, la teoría de que, entre otras cosas, 3 es primo) y M' una teoría matemática incorrecta (la teoría de que, entre otras cosas, 3 es compuesto). (Los ficcionalistas proponen usar el predicado 'verdadero-según-la-matemática' como sustituto antirrealista del concepto platónico de verdad. Esto les permite diferenciar la actitud a adoptar respecto de M y M', sin necesidad de recaer en el platonismo. Pero Psillos pone en duda la pertinencia del ficcionalismo en este contexto; a su juicio, ese predicado remite a un factor externo a (e independiente de) los contenidos nominalistas de las teorías, pues aparece originariamente vinculado con una actitud hacia *la matemática pura en general*. Este cuestionamiento es fundado: en todo caso, el ficcionalismo tendrá alguna chance una vez que se logre rebatir el argumento Quine-Putnam, es decir, el principal argumento en favor de la idea de que la matemática es un cuerpo de verdades sustantivas y no de ficciones).

El éxito de esta línea argumental depende fundamentalmente de T1 y T2 sean nominalísticamente equivalentes. Solo en ese caso, vale la acusación de que el NM no puede proporcionar una pauta para quedarse con la primera (la teoría matemáticamente correcta) y deshacerse de la segunda (la teoría matemáticamente incorrecta). Pero el punto es que, si T1 y T2 son matemáticamente incompatibles (en el sentido de que, presumiblemente, M' es una reformulación incorrecta de M y tanto M' como M están aplicadas a un mismo cuerpo de enunciados puramente nominalistas), entonces T1 y T2 han de ser también nominalisticamente incompatibles, dado que -vale la pena recordarlo- se supone que la matemática aplicada en ellas se utiliza para representar (o facilitar la representación de) hechos puramente nominalistas. Por ejemplo, T1 implica -nominalísticamente hablando- que no podemos dividir en grupos no-unitarios a la clase de los satélites naturales de Platón (porque, según M, 3 es primo), mientras que T2 implica que sí podemos hacerlo (porque, según M', 3 es compuesto). Por lo tanto, la incompatibilidad nominalista es un criterio válido para discriminar entre teorías matemáticas correctas e incorrectas y juzgar que las primeras, a diferencia de las segundas, preservan las implicancias de las teorías puramente nominalistas a las que se aplican.

Otra réplica natural al argumento de Psillos es que puede replantearse con respecto a la matemática aplicada: un mismo aparato matemático puede ser aplicado a teorías nominalistas correctas lo mismo que a teorías nominalistas incorrectas. Por ejemplo, podemos usar la aritmética elemental para elaborar

una nueva teoría astronómica que implique que Marte y Júpiter son satélites naturales de la Tierra. El punto es que los contenidos nominalistas y los contenidos platónicos de las teorías son lógicamente independientes entre sí: está en nosotros elegir la matemática correcta para desplegar teorías nominalísticamente plausibles (es decir, teorías que reflejen con tolerable precisión los aspectos observables e inobservables del mundo físico).

Supongamos ahora, siguiendo a Psillos, que "la formulación matemática M de T1 provee a T1 de un número de virtudes teóricas por sobre la formulación matemática M' de T2" (2012 64), donde M' es ahora una teoría matemática distinta de M pero no necesariamente incorrecta o incompatible con ella. Las virtudes fundamentales a tener en cuenta aquí son la simplicidad y el poder de unificación explicativa. Ahora bien, dado que, bajo la óptica realista, estas virtudes son indicios de verdad o verosimilitud y T1 y T2 tienen los mismos contenidos nominalistas, pareciera ser que la superioridad de T1 sobre T2 dependerá exclusivamente de la simplicidad y el poder unificatorio de sus contenidos platónicos. Pero –acota Psillos– el aporte de esos contenidos no podrá ser apreciado si rechazamos la existencia de las respectivas entidades abstractas (o permanecemos agnósticos al respecto), con lo cual habrá aspectos del éxito de la ciencia que, *prima facie*, no podrán ser esclarecidos apelando al concepto de n-adecuación.

Vimos que esta objeción es inviable si suponemos que M' es una teoría matemática incorrecta. Supongamos entonces ahora que M' es correcta (y compatible con M).

La objeción que se plantea ahora es una variante del alegato relativo al aporte explicativo de los modelos teóricos, con lo cual la réplica a esa objeción será, en rigor, un subproducto de la respuesta que diera antes a ese alegato. La respuesta es que el NM admite que algunas teorías matemáticas resultan superiores a otras en conexión con sus aplicaciones (de hecho, creo que nadie en su sano juicio desafiaría esta postura), de la misma manera en que admite (porque es a esta altura un truismo) que algunos modelos juegan un papel explicativo más sustantivo que otros. Lo que en todo caso el NM negaría o pondría en cuestión es que la relativa superioridad de unos recursos platónicos sobre otros pueda ser tomada en cuenta como indicio de la existencia de entidades abstractas.

Claro que los recursos platónicos son indispensables para hacer ciencia y algunos son más importantes que otros, pero, como ya vimos, nada de esto basta para establecer el platonismo. Esta salvedad es lo que divide las aguas: al presuponer la existencia de cosas como electrones o fotones, contribuimos a explicar el éxito práctico de nuestras mejores teorías, cosa que no sucede al

suponer la existencia de objetos matemáticos o modelos teóricos. He aquí, precisamente, uno de los resultados fundamentales de la sección precedente: tiene sentido (de hecho, es independientemente plausible) suponer que algunos hechos del mundo observable serían diferentes si no existieran cosas tales como los electrones; pero no tiene sentido suponer que algunos hechos del mundo observable (o del mundo físico en general) serían diferentes si no existieran cosas tales como los números reales o las ecuaciones diferenciales.

Ahora bien, esta intuición mantiene plena validez cuando comparamos teorías matemáticas rivales en lugar de considerar teorías matemáticas aisladas. Además, según parecen convenir los filósofos de la ciencia, no es irracional ponderar la superioridad de una teoría sobre otra en lo que respecta a sus virtudes teóricas desde una posición genéricamente antirrealista o agnóstica (antirrealista o agnóstica, tanto acerca de las "entidades teóricas", cuanto de las entidades platónicas). Por lo tanto, el que los recursos platónicos de una teoría científica sean superiores a otros es perfectamente compatible con el antiplatonismo. (Vale aclarar que la consideración precedente no es -ni envuelve- una objeción al realismo de "entidades teóricas" sino, más bien, una reivindicación de la racionalidad del debate realismo vs. antirrealismo. Pero, en el caso de las entidades abstractas, la situación es distinta, porque no solo es racional permanecer en el antirrealismo al reconocer la importancia explicativa de su postulación (y el beneficio de postular unas entidades mejor que otras), sino que, además, la creencia en ellas no puede fundarse abductivamente a partir de consideraciones relativas al milagro de que las cosas en el nivel de lo observable sucedan "como si" los postulados de nuestras mejores teorías fueran acertados).

En fin: la conclusión a la que arribamos es la siguiente: el hecho de que una teoría matemática sea más útil o simple que otra no dice nada en favor de la creencia en sus objeto, dado que —a diferencia de los que sucede con las entidades teóricas— los objetos en cuestión *no hacen la diferencia* en el nivel de la realidad física. EL PAC impide dar estatus ontológico a los criterios pragmáticos que rigen la elección de teorías matemáticas rivales.

Psillos hace dos críticas adicionales a la noción de adecuación nominalista o n-adecuación.

La primera crítica puede plantearse así. Supongamos que T1&T2 es la conjunción lógica de dos teorías científicas tradicionales (platonizadas) T1 y T2 y que Tna1&Tna2 es la conjunción de los respectivos reductos nominalistas de T1 y T2, donde -en la jerga de Psillos- el reducto nominalista de una teoría es el conjunto de sus consecuencias "nominalísticamente establecidas". ¿Cómo garantizar que Tna1&Tna2 preserva el conjunto de las consecuencias

puramente nominalistas de T1&T2? En otras palabras, ¿cómo garantizar que Tna1&Tna2 es n-adecuada?

La preocupación de Psillos es que la n-adecuación de Tna1&Tna2 solo puede garantizarse a costa de la conservatividad de la matemática; es decir, una vez convenido que (i) las teorías tienen contenidos puramente nominalistas y (ii) es factible separar o extraer -en la línea de Field- esos contenidos. El fundamento de esta preocupación es que una de las consecuencias de la conservatividad de la matemática reside precisamente en la posibilidad cierta de nominalizar toda la ciencia y, en el contexto del NM, se presume que esa tarea *no* puede ser llevada a cabo.

El error de Psillos aquí reside en suponer que Tna1&Tna2 es un sustituto n-adecuado de T1&T2 solo si podemos explicitar los contenidos de Tna1&Tna2, es decir, solo si podemos nominalizar T1 y T2. Esto explica que la n-adecuación de una teoría sea vista como un subproducto de la conservatividad de la matemática aplicada. Pero es precisamente la intuición de que la conservatividad no es una condición necesaria para la n-aecuación lo que, en buena medida, explica la emergencia del NM como alternativa al NR. Los partidarios del NM no abogan por la separabilidad de los contenidos nominalistas. Solo buscan darles estatus de candidato independiente para la creencia.

En rigor, la n-adecuación es un asunto completamente ajeno al problema de la conservatividad. Evidencia de esto es que es perfectamente razonable suponer que una teoría tiene contenidos puramente nominalistas *pero* no puede ser nominalizada. Juzgar lo contrario equivale a acorralar al nominalismo tras los pasos del proyecto de Field.

Hay tres buenas razones para restar legitimidad filosófica a ese acorralamiento.

Un argumento inductivo al respecto apunta a la inviabilidad del NR en conexión con las teorías actuales: se plantean serias dificultades al tratar de concebir cómo aplicar las técnicas de nominalización de Field a teorías que suponen una reconceptualización del espaciotiempo newtoniano (como sucede con la teoría de la relatividad) o carecen de una interpretación física precisa (como sucede con la teoría cuántica).

Un argumento metafísico en favor de la existencia de contenidos puramente nominalistas es que PAC es verdadero, es decir, que las entidades platónicas -si las hay- carecen de toda injerencia causal sobre nosotros y el mundo físico. Por tanto, bien podría suceder que el mundo actual @ sea no más que el reducto nominalista de un mundo nomológicamente posible donde la ciencia vigente —con sus aplicaciones indispensables de teorías matemáticas- es literalmente verdadera.

Otro argumento al respecto es uno de orden lingüístico: es factible separar el vocabulario fisicalista y el vocabulario platonista de la ciencia aplicando la intuición bruta de que algunas de las entidades extraempíricas a las que las teorías hacen referencia—si es que acaso existen— no están en el espaciotiempo. Por ejemplo, podemos usar esa intuición como criterio para separar expresiones como 'electrón' de expresiones como ' π ' y tomar esta vía como un expediente práctico para discriminar qué entidades forman parte de la ontología nominalista de la ciencia y cuáles forman parte de su ontología platonista.

En resumen, es razonable asumir que Tna1&Tna2 preserva el conjunto de las consecuencias nominalistas de T1&T2 sin embarcarnos en el (controversial) proyecto de Field, dado que (a), ex suppositione, T1 y T2 tienen una serie de implicancias puramente nominalistas y (b), por estipulación, Tna1 y Tna2 son el conjunto de las implicancias puramente nominalistas de T1 y T2 respectivamente. (Nótese que la validez de (b) es independiente de la posibilidad de volcar expresamente los contenidos de Tna1 y Tna2: nada de lo anterior exige suponer que nosotros estamos en condiciones de formular Tna1 y Tna2).

La segunda crítica adicional al concepto de n-adecuación es que "las teorías no confrontan los fenómenos (...) directamente. Por el contrario, confrontan modelos de los datos, que son estructuras matemáticas (más precisamente, OANMs)" (Psillos 2012 65; bastardilla removida). Por poner un ejemplo (que no es de Psillos), la reconstrucción estándar de la trayectoria orbital de un planeta exige suponer que la estrella relevante y el planeta son esferas perfectas con distribuciones homogéneas de masa que interactúan en un marco dinámicamente aislado de la acción gravitacional de entidades adicionales.

La respuesta natural a esta nueva crítica no es más que una reiteración de la réplica a una objeción que ya he rebatido: la objeción de que la ciencia tiene compromisos explicativamente indispensables con OANMs. Esa crítica al uso del concepto de n-adecuación es una ramificación trivial de aquella objeción.

Ya he argumentado *ad nauseam* que la referencia a entidades matemáticas o cualquier OANM explicativamente indispensable no cuenta como elemento en favor del platonismo. El hecho de que esa referencia sea necesaria para idealizar o abstraer de ciertas condiciones el desempeño nomológico de un sistema físico no modifica el eje del asunto. Solo colabora en la consideración de una *forma* de contribución epistémica que no había sido tenida en cuenta antes.

Pero, en última instancia, la apuesta final de Psillos es que no le será fácil al NM validar la suposición de que los fenómenos adquieren una "estructuración causal" una vez que filtramos las apariencias a partir de modelos.

Psillos alude sin nombrarla aquí a la concepción de van Fraassen (2008). Esta concepción equipara la presentación de una teoría científica con la especificación de una serie de modelos teóricos, modelos de datos y enunciados empíricos. Aquí solo importa detenerse en la cuestión de los modelos. Los modelos de datos tienden un puente entre los modelos de la teoría y los fenómenos: son estructuras que copian o reflejan los fenómenos y, a su vez, son embebibles en los modelos teóricos mediante funciones homomórficas. De aquí la preocupación de Psillos: al contrastar una teoría, el mundo observable queda relegado: en rigor, el científico confronta dos estructuras matemáticas.

Los nominalistas pueden simplemente admitir que los modelos teóricos reflejan las relaciones que aparecen en los modelos de los datos, pero, de acuerdo con Psillos, la cuestión pasa por determinar si la noción de una "estructura causal" es una noción nominalísticamente kosher, es decir, si admite una intelección antiplatonista.

Psillos deja abierta esta posibilidad y pasa a defender la existencia de hechos mixtos (físico-matemáticos) metafísicamente básicos o, alternativamente, a cuestionar la existencia de hechos puramente nominalistas metafísicamente fundamentales. Pero, antes de pasar a considerar este tópico, quisiera aludir brevemente a las opciones disponibles para el NM en lo que respecta a la cuestión de las alegadas estructuras causales.

Una primera opción es conceder que se trata de una noción platónica y reservarle un uso desprovisto de creencia, en la línea de la actitud adoptada hacia los OANMs en general. Que las estructuras -al igual que los OANMs- sean entidades platónicas -si acaso son algo- no implica que la creencia en ellos sea una clave para explicar su relevancia epistémica. La otra opción es concebir que la noción de estructura es un expediente práctico para aludir a ciertas relaciones nominalísticamente kosher entre *relata* nominalísticamente kosher, donde una relación nominalísticamente kosher es una relación espaciotemporal definida o definible sobre un dominio de entidades completamente espaciotemporales. Cualquiera sea la vía que se adopte, lo cierto es que la cuestión de las estructuras causales no representa un problema particularmente acuciante para el NM.

4. EL ESTATUS DE LOS HECHOS MIXTOS

Las teorías científicas maduras (particularmente, las teorías físicas) tienen implicancias físico-matemáticas, es decir, contienen oraciones que aluden a relaciones (no-causales) entre objetos físicos y objetos matemáticos. Tomemos a modo de ejemplo, siguiendo a Balaguer (133), la oración:

(A) El sistema físico S tiene una temperatura de cuarenta grados Celsius.

Esta oración expresa que cierto objeto físico —el sistema S— y cierto objeto matemático —el número 40— mantienen cierta relación (no-causal): la relación temperatura en grados Celsius. De modo que un requisito para la obtención de las condiciones veritativas de oraciones como (A) es la existencia de hechos mixtos, es decir, de hechos físico-matemáticos. Y un requisito para la existencia de tales hechos es la existencia de objetos matemáticos.

Los partidarios del NM aceptan la lectura literal de los enunciados mixtos de la ciencia –esto es, aceptan sus compromisos ontológicos intuitivos– pero niegan la existencia de entidades matemáticas, con lo cual niegan también la existencia de hechos mixtos. A juicio de ellos, (A) es –a lo sumo– una oración nominalísticamente adecuada, es decir, una oración (aproximadamente) verdadera en lo que respecta a su contenido puramente nominalista.

La pregunta es: ¿cómo delimitar el contenido puramente nominalista de una oración o teoría mixta y, por esta vía, convertirlo en candidato independiente para la creencia?

La respuesta de Balaguer es la siguiente: "el contenido puramente nominalista de una teoría T es que el mundo físico hace su parte en el "arreglo legal de T" [holds up its end of the "T bargain"], es decir, hace su parte para hacer verdadera a T" (Balaguer 135). Siguiendo esta línea, podemos decir que el contenido puramente nominalista de A es que hay un hecho completamente espaciotemporal que hace su aporte para la obtención de las condiciones veritativas de A. Pero esta manera de separar contenidos nominalistas nos compromete con la verdad (o verosimilitud) de oraciones físico-matemáticas y, como consecuencia de esto, nos hunde en el platonismo.

Una manera de evitar esta dificultad es estipular que ese aporte es realizado en un mundo nomológicamente posible -distinto al actual- donde A es literalmente verdadera. (Si la apelación a mundos posibles se juzga problemática, podemos estipular simplemente que hay —en el mundo actual— un hecho o un estado de cosas puramente espaciotemporal que *haría* su aporte —un aporte física y causalmente suficiente— para la obtención de las condiciones veritativas de A *si* existieran objetos matemáticos).

Balaguer (133) apela al PAC (el principio de ineficacia causal de las entidades abstractas) para argumentar que, si (A) es verdadera, entonces sus condiciones de verdad (o verosimilitud) sobrevienen a partir de dos clases de hechos enteramente independientes entre sí: una serie de hechos puramente nominalistas relativos al sistema físico S y una serie de hechos puramente platónicos relativos al número 40. Estos hechos son metafísicamente básicos, en el sentido

de que su existencia es condición de posibilidad para la existencia de hechos mixtos. Ahora bien, si los hechos puramente nominalistas son metafísicamente básicos e independientes de los hechos puramente platónicos (esto es, si su existencia es condición necesaria para la superveniencia de las condiciones veritativas de la ciencia empírica, pero no viene condicionada por la existencia de hechos platónicos), entonces es razonable restringir la creencia a los contenidos puramente nominalistas de la ciencia (y apelar al concepto de n-adecuación para dar cuenta del estatus de lo que, hasta el momento, son nuestras mejores teoría).

Psillos pone en duda que el contenido puramente nominalista de (A) sea metafísicamente básico o, al menos, tan genuinamente básico como su contenido puramente platónico. Su argumento es el siguiente:

Sea cual sea el estado [de S] (si (A) es entendida de manera literal y es verdadera), es tal que se encuentra en cierta relación (la relación Celsius) con el número 40. Este número es, por así decir, la única parte no negociable del hacedor de verdad de (A). Lo que sea el estado físico que se encuentra en la relación Celsius con 40 puede variar (al menos, podemos ser ignorantes respecto de él), pero que mantenga esta relación con este número es algo fijado (si (A) es verdadera). Parece ser que la unidad del hacedor de verdad de (A) requiere de este número, a la vez que solo requiere que haya uno u otro estado físico ligado con este número, módulo la relación Celsius. (Psillos 2012 66).

Nótese que el argumento de Psillos no excluye la existencia de hechos nominalistas básicos. En particular, no excluye la existencia de un hecho completamente espaciotemporal operando de manera independiente como condición para la superveniencia de las condiciones de verdad (o verosimilitud) de (A). Tampoco excluye que el que S tenga la temperatura que tiene sea un hecho singular e identificable. Todo lo que se desprende del argumento es que la ocurrencia de este hecho -a diferencia de lo que sucede con los hechos puramente platónicos relativos al número 40- puede responder a *condiciones antecedentes* diversas. Por ejemplo, S puede tener la temperatura que tiene en virtud de su cercanía a cierta fuente de calor, o en virtud del monto de energía cinética acumulada en él, etc.

Pero el *estado* termodinámico de S que oficia como condición para la superveniencia del hecho representado por (A) no es arbitrario en ningún sentido relevante. Lo arbitrario –como veremos en breve– será que se apele al número 40 como expediente para nombrar o representar ese estado.

Que la temperatura de S sea una circunstancia sensible a las condiciones iniciales del mundo es completamente irrelevante en este contexto. El motivo

es que, para el NM, lo fundamental es: (a) que *hay* un hecho completamente espaciotemporal que está detrás de la fachada físico-matemática de (A) y (b) que la *ocurrencia* de ese hecho es -metafísicamente hablando- una condición necesaria y suficiente *para que S se encuentre en el estado termodinámico en el que se encuentra*. Ahora bien, (a) y (b) son supuestos inocuos, porque son corolarios de PAC y, por derivación, de la definición de 'entidad abstracta' comúnmente aceptada por la gente dedicada a la filosofía de la matemática. Esa definición nos dice que las entidades abstractas son entidades causalmente inertes existentes fuera del espaciotiempo y que, como consecuencia de esto, se encuentran metafísicamente aisladas del espaciotiempo. Pero esto implica que el termómetro seguiría marcando '40' al ser apoyado –bajo condiciones apropiadas— sobre el sistema físico S si *-ceteris paribus*— no existieran entidades tales como el número 40 o la función escalar *temperatura en grados Celsius*.

El error de Psillos pasa por confundir el hecho de que S tenga la temperatura que efectivamente tiene con las condiciones iniciales del mundo que –en combinación con las leyes naturales– determinan que S atraviese ese estado termodinámico. Este error se hace patente en el siguiente pasaje:

Cuando se enuncia que la temperatura-de-S-en-Celsius es 40 (...) se afirma que lo que es verdad de S en lo concerniente a su temperatura-en-Celsius es que es igual a 40 y que esto es verdadero independientemente de qué sea exactamente lo que realiza físicamente el estado de temperatura de S. (Psillos 2012 66).

Vale aclararlo: un hecho físico-matemático puede tener "múltiples realizadores físicos" sin que por esto resulte irrelevante o arbitrario cuál sea el estado en el que debe encontrarse el sistema pertinente para que le corresponda un número determinado como valor de una magnitud dada una cierta escala. Supongamos que S tiene 40 grados Celsius de temperatura y que este hecho admite una multiplicidad de realizaciones físicas. El estado físico de S cuya existencia es necesaria para atribuirle el número 40 es que S tenga un monto de calor dado y no otro, independientemente de *las condiciones* que determinan que sea ese y no otro su estado termodinámico. Lo que se realiza en cualquier caso -independientemente de las condiciones antecedentes de rigor- es una relación no-causal específica entre S y 40 operando como condición para la verdad de (A). El que S tenga cierto estado termodinámico y el que, dado ese estado, el valor de la temperatura de S en grados centígrados sea cuarenta, son condiciones *igualmente* relevantes para el darse las condiciones veritativas de (A).

Por añadidura, los hechos platónicos ostentan cierta arbitrariedad (al menos cuando se los concibe como condición para la superveniencia de enunciados mixtos) que escapa a los hechos nominalistas.

Los contenidos platónicos de una oración sobre el estado termodinámico de un sistema físico dependerán en buena medida de la elección de una escala pertinente; esa elección deberá a su vez efectuarse sobre el tamaño atribuido a la unidad, el tamaño del grado y el punto-cero de la escala. Pero estas elecciones son bastante arbitrarias. Por ejemplo, podemos expresar la temperatura de S empleando la escala en grados Celsius y, concomitantemente, fijar los contenidos platónicos de (A) a partir de circunstancias relativas al número 40, tomando como punto cero el punto de congelamiento del agua. Pero también podemos reflejar la temperatura de S empleando la escala en grados Kelvin. Para esto debemos reformular (A) en términos de una oración (B) cuyos contenidos platónicos vengan fijados a partir de circunstancias relativas al número 313,15, tomando al cero absoluto como punto cero de la escala. (Dicho sea de paso, esta arbitrariedad de los contenidos platónicos refuerza la idea de que los contenidos nominalistas de la ciencia constituyen un candidato independiente para la creencia; esto es, que es razonable proceder a explicar el éxito de la ciencia desde un punto de vista antiplatonista. Pues son estos hechos los que el científico quiere estudiar y reflejar en sus teorías y son los recursos platónicos los que pueden variar a la hora de formular y sistematizar las observaciones correspondientes).

La última apuesta de Psillos en conexión con el tópico de los enunciados y los hechos mixtos es cuestionar la concepción de la matemática aplicada (o la aplicabilidad de la matemática) que acompaña al NM (en rigor, se trata de la concepción de Balaguer; pero, *mutatis mutandis*, la visión de fondo es adoptada o presupuesta por casi todos los partidarios del NM). Esa concepción dice que el lenguaje matemático es un expediente práctico para indexar o designar estados de los sistemas físicos (estados dinámicos, estados cinemáticos, etc.). Volviendo a (A), la idea es que el numeral '40' es una manera de indexar o designar cierto estado termodinámico de S.

La objeción de Psillos es que, al adoptar esta visión, "admitimos implícitamente que (A) tiene un contenido puramente nominalista y que no tiene un contenido platónico". Según él, ya "no leemos (A) literalmente; no asumimos honestamente que expresa un hecho mixto (aun cuando no sea un hecho mixto básico)" (2012 67).

Esta objeción parte de una confusión: Psillos pretende que el NM extrae la lectura o interpretación de (A) (la intelección de su significado) a partir de su propia concepción de la aplicabilidad de la matemática; cuando, en rigor, estas cuestiones corren por vías alternativas. El NM, al igual que el platonismo tradicional, promociona expresamente la lectura o interpretación literal de (A) y admite consecuentemente que –leída o interpretada literalmente– esa oración

nos compromete con un hecho mixto; es decir, un hecho relativo a cierta relación entre una entidad espaciotemporal (el sistema físico S) y una entidad no-espaciotemporal (el número 40). De modo que lo que tiene que ocurrir en el mundo para que (A) sea verdadera es que S y 40 mantengan efectivamente la mentada relación. Ahora bien, una vez zanjada esta cuestión (semántica), la pregunta pendiente es: ¿por qué resulta (epistémicamente) relevante referir a números a la hora de hablar de la temperatura de los sistemas físicos?

Una respuesta bastante razonable –una respuesta que tanto los platonistas como los antiplatonistas suelen dar o presuponer¹³, ateniéndose a los rudimentos de la teoría de la medición extensiva— es, más o menos, la siguiente: la secuencia de los números reales está estructurada de manera tal que, una vez elegida una unidad de medición, una escala y el punto cero de rigor, las relaciones entre números reflejan fielmente el ordenamiento de los sistemas físicos con base en la relación comparativa *más frío que*. Pero esta respuesta al problema de la aplicabilidad no implica (ni presupone) nada relativo a la lectura de los enunciados mixtos. Solo nos dice qué papel desempeña el lenguaje matemático en esos enunciados, cualquiera sea la lectura que adoptemos. Volviendo al ejemplo de Balaguer, que '40' sea una manera de designar un particular estado de S no excluye que (A) sea leída literalmente como expresando que el número 40 mantiene una relación no-causal con S, o que la existencia del número 40 sea una precondición para la verdad de (A).

En resumen: Psillos no supo o no quiso distinguir dos cosas: cómo leemos una oración, y qué papel epistémico asignamos a cierta expresión incluida en ella.

Quisiera culminar esta sección con una breve digresión, relativa al estatus del NR (el nominalismo revolucionario). Las consideraciones precedentes abonan una intelección de la aplicabilidad que, en rigor, está a mitad de camino entre el NM y el NR. 14 Digo esto porque, el que la matemática aplicada cumpla un papel fundamentalmente representacional (un papel ligado a la indexación o designación de estados físicos) quiere decir que hay un sustrato nominalista para cada uso de un término matemático. Dicho de manera más general: Por cada estructura matemática postulada en el terreno de la ciencia, hay una estructura nominalista tal que las relaciones cualitativas entre los elementos de la estructura aparecen reflejadas por relaciones cuantitativas entre los elementos de la estructura abstracta. (Por caso, la estructura de los objetos físicos ordenados mediante concatenación con base en la relación compara-

¹³ El lector encontrará una intelección platónica de la aplicabilidad de la matemática esencialmente equivalente a lo que aquí denomino 'concepción representacional' en Baker & Colyvan.

¹⁴ Una tesis emparentada con este punto de vista aparece expresamente sugerido en Balaguer (111-112).

tiva *más frío q*ue viene adecuadamente reflejada por la secuencia los números reales ordenados por la relación *menor* a, una vez definida una función-temperatura pertinente).

Así pues, una vez concebida cierta estructura nominalista con su ordenamiento cualitativo, resulta factible hacer dos cosas importantes: (i) definir relaciones comparativas que preserven los rasgos estructurales de las operaciones platónicas involucradas en la asignación de valores para la magnitud física correspondiente (operaciones como la suma, la resta y la ordenación parcial ≥); (ii) reformular las oraciones mixtas que asignan elementos de la estructura de los reales a elementos de la estructura nominalista al modo de oraciones que reflejan no más que relaciones comparativas entre elementos de la segunda estructura.

Estas observaciones son un primer indicio de que, pese a los consensos filosóficos establecidos, es al menos concebible nominalizar la ciencia siguiendo la estrategia de reaxiomatización de teorías Hartry Field, o alguna estrategia alternativa pero relevantemente parecida; por ejemplo, la que defiendo en un artículo de mi autoría (cf. Guirado).

5. Conclusiones

Vimos en este trabajo que las objeciones antinominalistas de Psillos son irrelevantes, porque, o bien no van dirigidas al NM (sino, en el mejor de los casos, al nominalismo de Field), o bien se basan en alguna confusión filosófica de fondo. Concretamente, Psillos comete tres errores sustantivos: (a) inferir del rechazo moderado de las entidades abstractas un cuestionamiento de su relevancia explicativa; (b) juzgar que la negación o la reformulación errónea de una teoría matemática conservativa es ella misma conservativa; (c) confundir una lectura o interpretación de los enunciados mixtos de la ciencia con cierta concepción de la aplicabilidad del sublenguaje matemático; (d) confundir el aporte de un estado físico para la determinación de las condiciones veritativas de un enunciado mixto con el de sus respectivos realizadores. Estos errores no son circunstanciales ni esporádicos: son los pilares en los que se asientan los argumentos de Psillos.

El análisis de estos argumentos ha sido ocasión para vislumbrar que el NM es una buena alternativa al realismo científico tradicional y, por añadidura, reconocer los factores a los que responde su factibilidad metacientífica.

En primer lugar, vimos que, si PAC -es decir, el principio de aislamiento causal del reino platónico- es verdadero, entonces es razonable conjugar tres

decisiones que aparentan ser incompatibles: (i) dar una explicación realista del éxito de la ciencia, (ii) restringir la creencia a sus contenidos puramente nominalistas y (iii) reconocer la contribución explicativa de la matemática aplicada.

En segundo lugar, vimos que el postular que las teorías científicas *tienen* contenidos (puramente) nominalistas y que estos contenidos reflejan hechos metafísicamente *básicos* es un prerrequisito para fijar las condiciones veritativas de los respectivos enunciados mixtos. Esta doble postulación fortalece considerablemente la presunción de que los contenidos (puramente) nominalistas de la ciencia conforman un sustrato *independiente* para la creencia racional.

En tercer lugar, vimos que el concepto de adecuación nominalista o n-adecuación es un buen sucedáneo del concepto realista ingenuo de verdad (o aproximación a la verdad). Sea para explicar el éxito de la ciencia o caracterizar su objetivo epistemológico, la idea de que nuestras mejores teorías capturan con (tolerable) precisión ciertos aspectos inobservables del mundo *espaciotemporal* es suficiente al respecto. Evidencia de esto es que resulta altamente implausible y contraintuitivo pretender que la creencia en entidades existentes *fuera* del espaciotiempo es una condición para dar cuenta de la adecuación de teorías formuladas para describir el comportamiento de entidades existentes *en* el espaciotiempo.

Las consecuencias de adoptar el realismo científico y el alcance de sus compromisos ontológicos son asuntos que no han llamado toda la atención que merecen entre los especialistas. Quizá el mayor aporte del artículo de Psillos reside en haber puesto estos asuntos sobre la mesa, aunque más no sea para discutir las ramificaciones del argumento Quine-Putnam. Si bien este argumento tiene su raíz en el debate platonismo vs. antiplatonismo matemático, es claro que sus consecuencias se hacen sentir en el terreno más amplio de la ontología de la ciencia. Pues, al discutir la extensión y el papel de los compromisos platónicos de las teorías científicas, nos vemos llevados a repensar cuáles son los contenidos aptos para la creencia racional, qué contribución epistémica conlleva la referencia a entidades abstractas, qué relación guarda con el aporte epistémico de las hipótesis teóricas de la ciencia y cuáles son las conclusiones metafísicas que cabe extraer a partir del análisis de esa contribución.

Aquí he aprovechado los desaciertos de Psillos para esbozar una respuesta a cada una de estas cuestiones. Pues creo haber mostrado que: (i) si bien es cierto que la ciencia tiene compromisos insoslayables con entidades platónicas, también es cierto que el platonismo es incapaz de *explicar* el *factum* de la indispensabilidad y, así, sacar provecho del él; (ii) la adecuación de los contenidos puramente nominalistas de nuestras mejores teorías brinda una explicación suficiente de *todas* sus virtudes epistémicas; (iii) esa explicación no

puede ser mejorada asumiendo el platonismo, dado que —presumiblemente—PAC es verdadero. Mostrar adicionalmente que las tesis (i)-(iii) pueden ser establecidas en el marco de un realismo nominalista a mitad de camino entre el NM y el NR es un asunto pendiente para un trabajo futuro.

Trabajos citados

Armstrong, David Malet. A *Theory of Universals*. Cambridge: Cambridge University Press, 1978.

Baker, Alan & Colyvan, Mark. "Indexing and Mathematical Explanation". *Philosophia Mathematica* 3.19 (2011): 323–334.

Balaguer, Mark. *Platonism and Anti-Platonism in Mathematics*. New York: Oxford University Press, 1998.

Benacerraf, Paul. "Mathematical Truth". *The Journal of Philosophy* 70.19 (1973): 661–679.

Colyvan, Mark. *The Indispensability of Mathematics*. New York: Oxford University Press, 2001.

____."There is No Easy Road to Nominalism". *Mind* 119.474 (2010): 285–306.

Field, Hartry. Science without Numbers. Princeton: Princeton University Press, 1980.

Guirado, Matías. "Una defensa del realismo científico nominalista. Respuesta a Joseph Melia". *Revista Colombiana de Filosofía de la Ciencia* 15.31 (2015): 31–54.

Ketland, Jeffrey. "Nominalistic Adequacy". *Proceedings of the Aristotelian Society* 111.2 (2011): 201–217.

Leng, Mary. "Platonism and Anti-Platonism: Why Worry?". *International Studies in the Philosophy of Science* 19.1 (2005): 65–84.

Pincock, Christopher. "A role for mathematics in the physical sciences". *Nous* 41.2 (2007): 253–275.

Psillos, Stathis. Scientific Realism. How Science Tracks Truth. London: Routledge, 1999.

____. "Scientific Realism: Between Platonism and Nominalism". *Philosophy of Science* 77.5 (2010): 947–958.

____."Living with the abstract: realism and models". *Synthese* 180.1 (2011): 3–17.

____."Anti-Nominalistic Scientific Realism: A Defense". *Properties, Powers and Structures: Issues in the Metaphysics of Realism*. Ed. A. Bird, B. Ellis & H. Sankey. London: Routledge, 2012. 53–69.

Putnam, Hilary. *Mathematics, Matter and Method*. Cambridge: Cambridge University Press, 1975.

Quine, Willard. From a Logical Point of View. Cambridge: Harvard University Press, 1980.

Smart, John. *Philosophy and Scientific Realism*. London: Routledge and Kegan Paul, 1963.

Van Fraassen, Bas. Scientific Representation: Paradoxes of Perspective. New York: Oxford

University Press, 2008.

Vineberg, Susan. "Confirmation and the Indispensability of Mathematics to Science". *Philosophy of Science* 63.3 (1996): 256–263.