Lozano-Crisóstomo, N.; Sánchez-Mondragón, J. J.; May-Arrioja, D. A.; Agrawal, G. P.
Energy transfer in a hybrid system caused by the excitation of ultrashort plasmonic pulses
Universidad de Guanajuato
Guanajuato, México

Available in: http://www.redalyc.org/articulo.oa?id=41630111002
Energy transfer in a hybrid system caused by the excitation of ultrashort plasmonic pulses
Transferencia de energía en un sistema híbrido causada por la excitación de pulsos plasmónicos ultracortos

ABSTRACT

In this paper we model and characterize the near infrared coupling between a plasmonic wire and a silicon nanowire. We also study the coupling parameters’ dependence on the dimensions of the directional coupler nanowires.

RESUMEN

En este trabajo modelamos y caracterizamos el acoplamiento entre un nanoalambre metálico y una nanoguía de silicio, en el infrarrojo cercano. Hemos estudiado la dependencia de los parámetros de acoplamiento sobre las dimensiones de las nanoguías que conforman el sistema.

INTRODUCTION

There is no doubt that silicon photonics (Soref, 2006) and plasmonics (Barnes, Dereux & Ebbesen, 2003) have aroused an increasing interest in recent years. Its potential applications on the photonics industry for chip-scale integration have attracted much attention due to the recent progress in silicon-based photonics components, photonic integrated circuits, opto-electronic integrated circuits (Soref, 2008) and plasmonic optical devices (Gramotnev & Bozhevolnyi, 2010). In this work we research the geometrical dependence of the nanowires coupling properties of a hybrid directional coupler built by a silicon nanowire and a plasmonic wire, in close proximity of one another. We model and describe the whole system considering the large silicon material nonlinearity and the surface plasmon polaritons (SPPs)’ strong dissipation. We report the particular behavior of the coupling parameters with the dimensions of the nanowires.

Theoretical characterization

Recently, comprehensive theories have been developed to describe the propagation of near infrared light waves disseminating through silicon nanowires (Daniel & Agrawal, 2010) and plasmonic waveguides (Rukhlenko, Premaratne & Agrawal, 2011). Within the frame of the slowly varying envelope approximation, they are described by vectorial mode amplitude equations. The processes theoretically studied suggest the way to get a connection between silicon photonics and plasmonics and herein we describe the propagation of light pulses in a hybrid coupled system. We develop a theoretical model based on recent work regarding silicon nanowires (Daniel & Agrawal, 2010), and plasmonic waveguides (Rukhlenko et al., 2011) to research coupling...
properties of the system (figure 1). We have coupled a silicon guided mode, cylindrical coordinates along the cylindrical silicon nanowire of radius R, and a plasmonic mode at the metallic nanowire of radius r. These two nanowires, surrounded by the cladding (air), are assumed of unbounded length. If there is a near-field interaction, light from the silicon nanowire can excite a surface plasmon at the metallic wire directly (Hochberg, Baehr-Jones, Walker & Scherer, 2004). The hybrid directional coupler supports only transverse magnetic (TM) optical modes. SPPs, which can only exist for the TM polarization (Maier, 2007), represent electromagnetic waves propagating along a dielectric-metal interface having the electromagnetic field amplitudes strongly enhanced at the interface and decaying exponentially into both the neighboring media (Raether, 1988).

![Figure 1. Schematic illustration of the hybrid directional coupler. Source: Authors own elaboration.](image)

Before relation has a well behavior for wavelengths around 1.5 μm (Chen, Chen, Chuu & Brandes, 2009). For the conducting wire, we use the following well relation: $n^2_k = n^\infty_2 \left[1 - \omega^2_p/\omega(\omega + i/\tau)\right]$, where $n^\infty_2 = 9.6$ (for Ag). The plasma energy (ω_p) of bulk silver is 3.76 eV, and $\tau = 3.1 \times 10^{-14}$ is the relaxation time due to ohmic metal loss (Tong, Lou & Mazur, 2004).

![Figure 2. (a) Real mode index versus the radii of the silicon nanowire at $\lambda = 1.55 \mu m$. The dashed line shows the critical value. (b) Complex mode index versus the radii of the metallic nanowire at $\lambda = 1.55 \mu m$. Source: Authors own elaboration.](image)

By researching the silicon and the surface guided modes (Stratton, 1941), we can perform the numerical solutions of the complex mode index of the waveguides in regard to the radius of each one (figure 2).

Geometrical dependence of coupling properties

The complex linear self-coupling terms κ_m of each mode in the system, which represent a perturbation of the propagation constant of the mth mode, are added in the coupled-mode equations directly from the coupled-mode approach. They are given by

$$\kappa_m = (\mu_0 \sigma_0/[2(\gamma_m + i \sigma_m)]N_m)\int_0^{2\pi} e_m \cdot \Delta n^2_k e_m \cdot \rho d\phi$$

where

$$\sigma_m = (3\beta_m/[2\omega_0 \mu_0 N_m]) \int_0^{2\pi} |e_m|^2 \rho d\phi$$

is the Plasmonic attenuation factor previously defined (Hochberg et al., 2004) and
\[\sigma_m = 1 + \left(\frac{\beta_m}{|2\omega_0N_m|} \right) \int_0^{2\pi} e^{-\rho d_0} \rho d\rho d\phi \]

The new factor defined here, which represents a modulation factor. Here \(e_m \) is the \(m \)th TM linear electric mode structure in the absence of other guided modes, is, \(\beta_m \) in general, the complex-value propagation constant, \(\omega_0 \) is the carrier frequency, \(N_m \) is the normalization constant, and \(\Delta n_m \) is the change in the refractive index due to the presence of the \(m \)th guide mode.

CONCLUSION

In this paper we have developed a theoretical model for the analysis of the coupling properties of a hybrid coupled system which is characterized by a silicon nanowire and a plasmonic wire. We have used cylindrical symmetries for the waveguides to obtain guided modes and to investigate the geometrical dependence. Coupling parameters like the plasmonic attenuation factor and the modulation factor have been calculated to show the nanowire geometrical dependence of the coupling properties of a hybrid directional coupler.

ACKNOWLEDGMENT

N. Lozano-Crisóstomo expresses a special thanks to the Consejo Nacional de Ciencia y Tecnología (Conacyt) for his graduate scholarship number 235214, and to his advisers Profs. G. P. Agrawal and J. J. Sánchez-Mondragón for his guidance and considerations. This.
research was supported by Conacyt under contract CB-2008/101378. He also acknowledge to the Secretaría de Educación Pública-Subsecretaría de Educación Superior-Dirección General de Educación Superior Universitaria project 2012-01-21-002-205 and (Conacyt) project 0000000000189688 for supporting the LAOP Workshop 2012, where this work was presented.

REFERENCES

