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Synthesis and characterization of gamma alumina 
and compared with an activated charcoal on the 
fluoride removal from potable well water

ABSTRACT
Fluoride compounds are widely distributed in nature and are generated in many industrial 
processes. In many parts of the world, significant causes of diseases are associated with 
elevated concentrations in drinking water. In comparison with other techniques, adsorp-
tion onto a solid surface (activated alumina, activated charcoal, zeolites, etc.) is a simple, 
versatile, and appropriate process for removal the fluoride. In this study, we synthesized 
Gamma alumina (γ-Al2O3) by homogeneous precipitation and compared its effectiveness at 
removing fluoride from water to a commercial brand activated charcoal. Process was car-
ried out at pH 5 and 7. Fibrillar morphology of the γ-Al2O3 powder presents high porosity 
in comparison with the activated charcoal that has many small pores in its compact struc-
ture. Mesoporous γ-Al2O3 powder has a lower surface area (332 m2 • g–1) than microporous 
charcoal powder (601 m2 • g–1), as determined by both gas nitrogen adsorption-desorption 
and scanning electron microscopy. However, γ-Al2O3 has a higher zeta potential and lower 
particle size than that determined for the activated charcoal. Adsorption isotherms of the 
fluoride removal concur with the Langmuir model for both adsorbents. γ-Al2O3 removes 
up to 95.5% of fluoride ions, significantly more than the activated charcoal (26%) at pH 5. 
Thus, based on results obtained, the adsorption process is controlled by the diffusion of 
fluoride ions in liquid immediately adjacent the outer surface of the adsorbent material.  

RESUMEN
Los compuestos de fluoruro están ampliamente distribuidos en la naturaleza y se generan 
en varios procesos industriales. En muchas partes del mundo, las causas importantes 
de enfermedades están asociadas con concentraciones elevadas de estos elementos en el 
agua potable. En comparación con otras técnicas, la adsorción sobre una superficie sólida 
(alúmina activada, carbón activado, zeolitas, etc.) es un proceso simple, versátil y adecuado 
para la eliminación del fluoruro. La gamma alúmina (γ-Al2O3) sintetizada por precipitación 
homogénea se comparó con carbón activado comercial para la eliminación del fluoruro pre-
sente en el agua. El proceso se realizó a pH 5 y pH 7. La morfología fibrilar del polvo 
de γ-Al2O3 presenta alta porosidad en comparación con el carbón activado, que muestra 
una gran cantidad de pequeños poros en su estructura compacta. Según lo determinado 
por adsorción-desorción de gas nitrógeno, el polvo de γ-Al2O3 mesoporosa tiene un área de 
superficie menor (332 m2 • g–1) que la obtenida para el polvo de carbón activado micropo-
roso (601 m2 • g–1), concordando con la porosidad observada por microscopía electrónica 
de barrido. Por otra parte, la γ-Al2O3 tiene un potencial zeta mayor y tamaño de partícula 
menor que la determinada para el carbón activado. Las isotermas de adsorción del fluoruro 
concuerdan con el modelo de Langmuir para ambos adsorbentes. La γ-Al2O3 elimina hasta 
el 95.5% de ion fluoruro mucho más que el carbón activado (26%) a pH 5. Así, con base en 
los resultados obtenidos se puede decir que el proceso de adsorción es controlado por la 
difusión de iones de fluoruro que están presentes en el agua inmediatamente adyacente 
a la superficie exterior del material adsorbente.
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INTRODUCTION
Fluoride is a chemically active non-metallic element. It 
bonds directly with most elements and indirectly with 
nitrogen, chlorine, and oxygen, and is released from 
the majority of compounds that contain fluorides. Cal-
cium fluoride (CaF2) can be found specifically related 
to some important areas at the Central and North of 
Mexico (Guanajuato, San Luis Potosí, Aguascalientes, 
Jalisco, Zacatecas, Chihuahua, Sonora) and is among 
the most stable chemical compounds. Fluoride is also 
found in seawater, rivers, and mineral springs, and in 
the stems of certain herbs, bones, and in animal teeth 
(Craig, Lutz, Berry & Yang, 2015; Fordyce, 2011; Tri-
pathy, Bersillon & Gopal, 2006). The concentration of 
fluoride ions in water varies according to their origin. 
Surface waters tend to contain lower concentrations 
of this ion in comparison with the groundwater be-
cause the latter is in contact with deposits of the mi-
neral fluorite and other minerals that contain fluoride 
(Thompson, 2012; Maheshwari, 2006).

Water is an essential natural resource for sustain-
ing life on the earth. However, the chemical composi-
tion of the surface or subsurface is one of the prime 
factors upon which the quality of water for domestic, 
industrial, or agricultural purpose depends. According 
to World Health Organization (WHO) guidelines and 
NOM-127-SSA1-1994, the fluoride concentration in 
drinking water should not exceed 1.5 mg/L (Maliyek-
kal, Shukla, Philip & Nambi, 2008; Vences-Álvarez, 
Velázquez-Jiménez, Chazaro-Ruiz, Díaz-Flores & Rangel-
Méndez, 2015). Several techniques have been used for 
the removal of fluoride from drinking water by ad-
sorption, ion exchange, electrodialysis, electrocoagu-
lation and precipitation processes. In those methods 
for removal of fluoride ions, the adsorption onto a solid 
surface (activated alumina, activated charcoal, zeo-
lites, etc.) is a simple, versatile, and appropriate pro-
cess for treating a drinking water system, especially 
for small communities. Adsorption can remove ions 
over a wide pH range and to residual concentrations 
lower than precipitation, and it is an economical tech-
nique (Guzmán, Nava, Coreño, Rodríguez & Gutiérrez,  
2016; Rafique, Awan, Wasti, Qazi & Arshad, 2013; 
Sujana & Anand, 2010). Today, there is a need to fo-
cus greater attention on the potential future damage 
to human health and the environmental impact caused 
by the fluoride ion, which has been found in drink-
ing water (Mohapatra, Anand, Mishra, Giles & Singh, 
2009; Valdez-Jiménez, Soria-Fregozo, Miranda-Beltrán, 
Gutiérrez-Coronado & Pérez-Vega, 2011).

The objective of this work is to compare the remov-
al of fluoride ions from drinking water using activated 
γ-Al

2O3 and activated charcoal at varying pH (5 and 7) 
levels, which are adjusted with hydrochloric acid.

Experimental procedure
We compared the effectiveness of two different materi-
als in the removal of fluoride from potable well water, 
the first fibrillar gamma alumina nanopowder (γ-Al2O3), 
and the second a commercial activated charcoal pow-
der (CA). The first material, γ-Al2O3, was prepared by 
homogeneous precipitation. A basic aluminum sulfate 
(BAS) was synthesized from a mixture of aluminum 
sulfate and ammonium bisulfite solutions. The BAS was 
then neutralized in a solid/liquid reaction with ammo-
nia solution to transform it to aluminum hydroxides. 
Then, hydroxides were oven dried at 110 °C to obtain 
pseudoboehmite which was in turn used as a γ-Al2O3 
precursor since it transforms to this phase at 450 °C. 
(Sugita, Contreras, Juárez, Aguilera & Serrato, 2001; 
Zamorategui, Soto & Sugita, 2012a). Purity of the sec-
ond material, commercial charcoal (Karal), is described 
in table 1. Specific surface area of both adsorbent mate-
rials was determined by single-point Brunauer, Emmett 
and Teller (BET) method (ASAP, 2010 Micromeritrics In-
strument Corp., USA). Morphology and particle size 
was examined by Field Emission Scanning Electron Mi-
croscopy (FE-SEM; JEOL, JSM 7401F). Zeta potential 
(pZ), particle size of the γ-Al2O3, and dispersed activat-
ed carbon in water were measured by electroacoustic 
technique with a particle size analyzer (AcoustoSizer II, 
ESA; Colloidal Dynamics, USA) using a 10 mM solu-
tion of potassium chloride (KCl). Remaining fluoride ion 
in the final treated water was measured using a fluo-
ride ion selective electrode.

Samples were prepared with concentrations of 5 ppm 
(mg/L), 10 ppm (mg/L), 25 ppm (mg/L), 50 ppm (mg/L), 
100 ppm (mg/L), 125 ppm (mg/L), 150 ppm (mg/L) 
and 200 ppm (mg/L) of fluoride ion in deionized water. 
We used 0.3 grams of adsorbent material, and the pH 
(5 and 7) was adjusted with hydrochloric acid. Samples 
were left for five days at room temperature (28 °C). After 
five days, solution was filtered and final concentrations 
of fluoride ions were determined. It was considered that 
equilibrium is reached when the fluoride concentration 
obtained was the same or that there was a difference of 
5% over the earlier recorded period.

Substance Concentration (%)

Chloride (Cl) 0.2 

Iron (Fe) 0.1 

Sulfate (SO)4 0.2 

Heavy metals 0.005 

Table 1. 
Composition of the commercial activated charcoal (Karal) powder.

Source: Author’s own elaboration.
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RESULTS AND DISCUSSION

Particle size and morphology
Figure 1a shows the FE-SEM image of the activated 
γ-Al2O3 powder prepared by homogeneous precipitation. 
The powder consists of nanofibers about 100 nm in 
length that tend to form amorphous agglomerates due 
to their high surface energy, therefore generating high 
porosity. In comparison with the morphology of the 
activated charcoal powder (figure 1b), we can see that 
the powder exhibits a higher degree of agglomeration 
and consequently has a lot of small pores.

Adsorption/desorption of N2, BET analysis

Figure 2 shows the adsorption-desorption isotherms 
of the γ-Al2O3 and CA. The γ-Al2O3 isotherm shows a 
type IV according to the International Union of Pure 
and Applied Chemistry (IUPAC) definition, which is 
characteristic of a mesoporous material (Kim, Lee, 
Jun, Park & Potdar, 2007; Park & Jeong, 2008). Ir-
regular shape isotherms with the hysteresis loop 
type E indicate that the pores in the material have an 
inkwell-type shape. The γ-Al2O3 synthesized by homo-
geneous precipitation has a smaller specific surface 
area (332 m2 • g–1) than that determined for the CA 
(601 m2 • g–1) (Lavado-Meza, Sun-Kou & Recuay-Arana, 
2012). The smaller area presents an isotherm type I, 
according to the IUPAC classification, which is char-
acteristic of processes where micropore filling occurs. 
The major consumption of N2 in the adsorption-
desorption isotherm of the CA occurred at a low 
relative pressure (< 0.2) and reached a plateau at 
high relative pressure. In agreement with the porosity 
observed by FE-SEM, and the above-mentioned pore 
distribution, the CA and γ-Al2O3 are micro and meso-
porous materials respectively (figure 2b).

Zeta potential and particle size
Figure 3a shows the effect of pH variation on zeta po-
tential. Profile of zeta potential vs. pH corresponds 
to changes in particle surface charge and takes the 
characteristic shape and isoelectric point typical for 
γ-Al2O3. Its isoelectric point (IEP) was found to be at 
pH 8.5, which is consistent with reported data (Bowen, 
Carry, Luxembourg & Hofmann, 2005). As can be seen 
in figure 3a, potential in the γ-Al2O3 suspension is high, 
either below or above the IEP, i.e., for negatively and 
positively charged particles and these changes in po-
tential are related to the flocculation phenomena and 
the neutralized surface charge (Zamorategui, Surgita, 
Zárraga, Tanaka & Uematsu, 2012b). In contrast with 

Figure 1. FE-SEM images of a) activated γ-Al2O3 and b) activated charcoal (CA).
Source: Author’s own elaboration.

Figure 2. Graphs a) N2 adsorption-desorption isotherm and b) Pore diameter of 
the γ-Al2O3 and CA.

Source: Author’s own elaboration.
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the CA, surface charge of the γ-Al2O3 is always positive 
at low zeta potential. This result can have an effect on 
the removal of the fluoride ion (F-). Furthermore, the 
particle size of γ-Al2O3 is smaller than that of the CA 
(figure 3b) which is related to their zeta potential.

Langmuir isotherm
Removal of an ion is mainly attributed to the inter-
action of surface groups and the ion through vari-
ous mechanisms, such as: donor-acceptor reactions 
of electrons and/or formation of metal complexes 
such as COOH-M (Elmouwahidi, Zapata-Benabithe, 
Carrasco-Marín & Moreno-Castilla, 2012; Mor, Ravindra 
& Bishnoi, 2007). Activated charcoal and γ-Al2O3 are 
well-known as adsorbents of substances interacting 
by van der Wall’s forces.

Adsorption isotherms are important to describe 
how the adsorbate interacts with the adsorbent, and 
it is important to establish the most appropriate cor-
relation for the equilibrium curves. Thus, several iso-
therms (namely, Langmuir, Freundlich, Temkin, and 
Dubinin-Radushkevich) have been studied. Adsorp-
tion isotherms for γ-Al2O3 and activated charcoal are 
shown in figure 4a and these are in agreement with 
the Langmuir equation which is represented as:

qe = k • QmaxCe / (1+ kCe).                                         (1)

Where qe is the amount of fluoride ion adsorbed 
per gram of adsorbent, Qmax is the maximum amount 
of fluoride ion per unit weight of absorbent to form 
a complete monolayer on the surface (mg • g–1), k is 
the Langmuir constant, and Ce is the concentration of 
fluoride ion remaining in the solution (Ghorai & Pant, 
2005). Table 1 summarizes the parameters of the Lang-
muir equation at pH 5 and pH 7.

In order to determine the optimum pH for the max-
imum removal of fluoride ions, equilibrium adsorption 
of fluoride ions was carried out at pH 5 and pH 7. 
It is clear that the adsorption by mesoporous γ-Al2O3 

and microporous CA is dependent on the initial pH of 
the solution, and the maximum uptake is obtained at 
pH 5, approximately 35 mg of F-/g and 8 mg of F-/g, 
respectively. Results show that γ-Al2O3 possesses a 
much higher adsorption capacity than the CA at both 
pH 5 and pH 7.

Removal curves of the γ-Al2O3 and CA at pH 5 and 
pH 7 are shown in figure 4b. In this study, solutions 
of 50 ppm of fluoride ion were used. As can be seen, 
maximum rate of fluoride removal was during the 
first minute and the γ-Al2O3 is the better adsorbent 
(95.5%) in comparison with the CA (26%) at pH 5 and 
at pH 7 (89.8% and 59.4%).

Figure 3. Graphs a) Zeta potential and b) particle size of the γ-Al2O3 and CA.
Source: Author’s own elaboration.

Figure 4. Graphs a) Langmuir isotherms and b) Percent removal curves of the 
γ-Al2O3 and CA.

Source: Author’s own elaboration.
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Results indicate that the adsorption of fluoride 
ions occurs on the outermost surface of the adsorbent 
material, and this is not affected by the difference in 
porosities. Adsorption process is controlled by the dif-
fusion of the fluoride ion in the liquid immediately 
adjacent the outer surface adsorbent material. Sub-
sequently, fluoride ion must diffuse into the particle 
of adsorbent, which is the reason why the amount of 
fluoride ion adsorbed is less for the activated charcoal 
than for the activated alumina, since the phenome-
non is influenced by the size of the pores through 
which the fluoride ion is transported.

CONCLUSION
γ-Al2O3 synthesized by the homogeneous precipitation 
method has good properties as an adsorbent material, 
which can be used to remove the fluoride ion present 
in drinking water. This material can remove up to 96% 
of fluoride ions in drinking water at pH 5 and 90% at 
pH 7. A higher zeta potential is observed than that for 
the activated charcoal, an increase in the adsorption 
due to the positive surface charge obtained at low pH, 
far away the isoelectric point (8.5). Activated carbon 
improved the behavior of fluoride ion removal slightly 
at pH 7 due to the increased surface charge. Removal 
process of the fluoride ion occurs on the outermost 
surface of the adsorbent material, and this is not affect-
ed by the difference in porosities. Thus, in this case 
study, activated charcoal does not appear to have the 
sufficient properties for the fluoride ion removal pro-
cess. Although 58.6% of fluoride ions were removed at 

Sample 
K

(L/mg)
Qmax 

(mg/g)
R

(Corr.)
Langmuir
equation

(pH 5)

γ-Al2O3 0.16109 43.600 99.1
qe = (0.1611) • (43.60Ce)/

(1+0.1611Ce)

CA 0.036494 8.357 97.78
qe= (0.0365) • (8.357Ce)/

(1+0.0365Ce)

Sample K (L/mg)
Qmax 

(mg/g)
R

(Corr.)
Langmuir
equation

(pH 7)

γ-Al2O3 0.33 21.3 98.9
   qe = (0.33) • (21.3Ce)/

(1+0.33Ce)

CA 0.035 9.84 99.3
   qe = (0.035) • (9.84Ce)/

(1+0.035Ce)

Table 1. 
Parameters of the Langmuir equation (pH 5 and pH 7).

Source: Author’s own elaboration.

pH 7 from potable well water by the activated charcoal, 
it is not enough to comply with the Mexican Official 
Norm NOM-127-SSA1-1994 (1.5 mg  •  L–1).
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