

Colombia Forestal

ISSN: 0120-0739

colombiaforestal@udistrital.edu.co

Universidad Distrital Francisco José de

Caldas

Colombia

Ariza Cortés, William; Toro Murillo, Juan Lázaro; Lores Medina, Angélica ANÁLISIS FLORÍSTICO Y ESTRUCTURAL DE LOS BOSQUES PREMONTANOS EN EL MUNICIPIO DE AMALFI (ANTIOQUIA, COLOMBIA) Colombia Forestal, vol. 12, diciembre, 2009, pp. 81-102 Universidad Distrital Francisco José de Caldas Bogotá, Colombia

Disponible en: http://www.redalyc.org/articulo.oa?id=423939612007

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica

Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

ANÁLISIS FLORÍSTICO Y ESTRUCTURAL DE LOS BOSQUES PREMONTANOS EN EL MUNICIPIO DE AMALFI (ANTIOQUIA, COLOMBIA)

Floristic and structural analysis of premontane humid forests in Amalfi (Antioquia, Colombia)

Palabras clave: bosques premontanos, Andes, diversidad florística, estructura de la vegetación, Amalfi, Antioquia.

Keywords: premontane forests, Andes, floristic diversity, vegetation structure, Amalfi, Antioquia.

William Ariza Cortés¹ Juan Lázaro Toro Murillo² Angélica Lores Medina³

RESUMEN

Se determinó la composición florística y la estructura de un bosque húmedo premontano, ubicado en el extremo norte de la Cordillera Central, a partir de 0.1 ha, de acuerdo con la metodología propuesta por ISA-JAUM. Adicionalmente se recolectó material vegetal en zonas de claros, rastrojos y potreros. Se encontraron 421 especies de plantas vasculares en total; 238 de ellas procedentes del muestreo de 0.1 ha, de las cuales solamente 150 poseen un DAP > 2.5 cm, lo que resalta la bondad del método de muestreo empleado al registrar gran cantidad de elementos epífitos y herbáceos dentro del bosque. La composición en general es concordante con lo reportado en áreas boscosas similares; las familias con mayor número de especies fueron Melastomataceae (32), Lauraceae (31), Rubiaceae (29) y Araceae (15). Se reportaron algunas novedades corológicas para el departamento de Antioquia, como el registro de Colombobalanus excelsa (Fagaceae). A nivel estructural se encontró una alta densidad de individuos (388); el comportamiento de las clases de altura y clases diamétricas siguió la distribución típica de bosques tropicales disetáneos, concentrando la mayor cantidad de individuos en las clases inferiores, donde pocas especies con individuos de alturas y diámetros altos concentran el mayor peso ecológico (IVI) del bosque. A pesar de la enorme diversidad documentada, en la actualidad estos bosques están sujetos a un intenso proceso de fragmentación y pérdida de cobertura.

ABSTRACT

The floristic composition and the structure of a humid hill forest were determined. The forest is located in the northernmost area of the Colombian Central Mountain Range. The methodology proposed by ISA-JAUM was employed in this study, from a 0.1 ha sample. Moreover, plant material was collected from clear spots, stubbles and grasslands. A total of 421 vascular plants species were found. Two hundred and thirty eight of these come from the 0.1 ha sample and only 150 had DBH > 2.5 cm, which highlights the benefits of the sample method employed, since it was possible to record a large number of epiphytic and herbaceous elements in the forest. In general, the composition matches what was previously reported in similar areas. The families Melastomataceae (32), Lauraceae (31), Rubiaceae (29) and Araceae (15) were the ones holding the largest number of species. New chorological records for the state of Antioquia were reported in this study; for instance, Colombobalanus

¹ Proyecto Curricular de Ingeniería Forestal, Universidad Distrital Francisco José de Caldas. Correspondencia: arizacortes@yahoo.com

² Corporación Autónoma Regional del Centro de Antioquia. jltoro@corantioquia.gov.co

Proyecto Forestal, Instituto Colombiano Agropecuario. gelastocoridae@gmail.com

excelsa (Fagaceae). High density of individuals (388) was found at structural level. The patterns of height and diametrical classes followed the typical distribution of disetaneous tropical forests, in which the largest amount of individuals occur in the lowest classes and few species with individuals having the greatest diameters and heights account for the major ecological weight in the forest. Despite the great diversity documented, these forests are currently subject to an intensive process of fragmentation and loss of coverage.

INTRODUCCIÓN

La región septentrional de la cordillera de los Andes es considerada uno de los lugares más diversos del planeta (Hernández & Sánchez 1992, Gentry 1995, Cuervo 2002). Su posición estratégica y la enorme diversidad de hábitats hacen posible el establecimiento de una gran cantidad de organismos (Cavelier *et al.* 2001); otro factor importante en la concentración de especies en el área fueron las numerosas migraciones de taxones debido a la reconexión entre América del Sur y América del Norte durante el Plio-Pleistoceno (Webster 1995).

Dentro de los ecosistemas andinos, la franja altitudinal correspondiente a los llamados bosques subandinos o premontanos presenta algunos de los niveles más altos de concentración de especies por unidad de área, debido a la confluencia de elementos tropicales y montanos (Gentry 1982, 1995, 2001; Rangel & Velásquez 1997). La interacción de factores como precipitación, latitud y altitud privilegiados hacen que estos bosques posean una inmensa riqueza natural. La Reserva Forestal del Bajo Cauca - Nechí, ubicada en el extremo norte de la Cordillera Central, ha sido considerada una de las zonas más diversas y con mayor cantidad de endemismos en nuestro país (Hernández & Sánchez 1992, Cogollo & Ramírez 1997). Una de las áreas

con mayores remanentes de bosque premontano dentro de la reserva es el municipio de Amalfi, ubicado al noroeste del departamento de Antioquia.

Sin embargo, el conocimiento acerca de estos ecosistemas es incipiente: Tuberquia *et al.*, en el año 2000, realizaron algunos muestreos en el área, bajo el marco de la educación ambiental; adicionalmente se han realizado recolecciones esporádicas de material vegetal, en prácticas académicas de biología de la Universidad de Antioquia, y Gómez (2005) realizó una caracterización florística y estructural en bosques premontanos del municipio de Anorí, donde se corrobora la alta diversidad florística de estos ecosistemas.

El presente trabajo pretende aumentar el conocimiento sobre la composición, la diversidad y la estructura de los bosques premontanos del municipio de Amalfi, constituyendo la base para formular las estrategias de manejo y conservación necesarias en estas áreas.

METODOLOGÍA

ÁREA DE ESTUDIO

El estudio se realizó en el sector norte del municipio de Amalfi (noroeste del departamento de Antioquia), en la vereda Guayabito, microcuenca de la quebrada Guayabito, localizada a 06° 53' 58" N y 75° 04' 58" O, en alturas comprendidas entre 1500 y 1800 msnm (Figura 1), sobre pendientes que oscilan entre el 60 y el 120%. La precipitación promedio es de 3091 mm al año y la temperatura promedio anual es de 22° C; de acuerdo con la clasificación de Holdridge (IGAC 1976), corresponde a la zona de vida del bosque muy húmedo premontano (bmh-PM) en transición al bosque pluvial premontano (bp-PM). Actualmente estos bosques se encuentran sometidos a una alta tasa de fragmentación y extracción maderera.

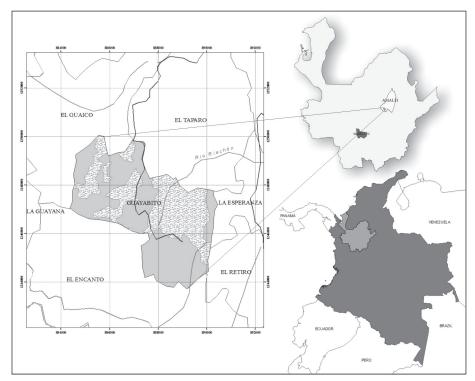


Figura 1. Área de estudio.

MUESTREO

Se establecieron cinco transectos rectangulares de $50 \times 4 \text{ m}$, siguiendo la metodología propuesta por ISA-JAUM (2004), en donde se censaron y midieron todos los individuos con un diámetro a la altura del pecho (DAP) $\geq 2.5 \text{ cm}$, y adicionalmente en el lado derecho del transecto se recolectaron o registraron todas las especies, como helechos, hierbas y epífitas, que por su porte o hábito de crecimiento no alcanzaban los 2.5 cm de DAP (Figura 2).

Las variables consideradas fueron: altura total, altura comercial, diámetro a la altura del pecho (DAP) y cobertura (proyección de las copas en los ejes x y

y). La clasificación de los hábitos de crecimiento se realizó de acuerdo con los lineamientos propuestos por la metodología ISA-JAUM (2004).

Se recolectaron muestras botánicas del primer individuo de cada especie, tomando como mínimo tres duplicados. Cada ejemplar botánico fue debidamente marcado con el número del levantamiento, las iniciales y el número del colector; posteriormente los ejemplares fueron procesados de acuerdo con los lineamientos propuestos por Ariza & Medina (2006). En lo posible, cada individuo recolectado fue fotografiado con el fin de facilitar el proceso de identificación.

Figura 2. Esquema del censado y medición del RAP modificado (ISA-JAUM 2004).

Adicionalmente se realizaron tres salidas de campo, durante las cuales se hicieron colecciones generales en zonas aledañas a los transectos (bordes y claros de bosque, potreros, etc.), con el fin de contar con un mayor número de muestras en estado reproductivo y facilitar la determinación del material procedente de los transectos. Los ejemplares botánicos obtenidos en el proyecto se depositaron en la colección del Herbario Nacional Colombiano (COL), Herbario de Referencia de Corantioquia (HRC) y Herbario Forestal Gilberto Emilio Mahecha Vega (UDBC), principalmente bajo la numeración del primer autor (Anexo 1).

ANÁLISIS Y PROCESAMIENTO DE LA INFORMACIÓN

El material vegetal fue procesado en el Herbario del Jardín Botánico de Medellín (JAUM); la curaduría del material se realizó empleando la información taxonómica existente para cada uno de los grupos, con la colaboración de especialistas y confrontando con las colecciones del Herbario del Jardín Botánico de Medellín y del Herbario Nacional Colombiano (COL).

Para el análisis florístico se empleó la clasificación de las familias de pteridofitos propuesta por Smith et al. (2006); las familias de angiospermas y gimnospermas fueron agrupadas de acuerdo con el sistema de clasificación de APG (2003). En el análisis fisionómico-estructural de la vegetación se calculó el Índice de Valor de Importancia (IVI) para los individuos con DAP > 2.5 cm, y se establecieron intervalos de clases de altura y DAP con base en los valores máximos y mínimos de cada parámetro y el número de individuos (Lema 1995). En la estimación de la diversidad se calcularon los índices Margalef (Dmg), Menhinick (Dmn) Berger-Parker y Simpson, teniendo en cuenta que son los más empleados para la comparación de la diversidad alfa (Magurran 1989).

RESULTADOS

COMPOSICIÓN Y RIQUEZA FLORÍSTICA

En el muestreo de 0.1 ha se encontraron 72 familias de angiospermas, una de gimnospermas y cin-

co de pteridofitos agrupadas en 163 géneros, y 238 especies en total. Las familias con mayor número de especies fueron Lauraceae (23), Rubiaceae (21), Melastomataceae (18), Araceae (14), Clusiaceae (11), Leguminosae (10), Orchidaceae (9) y Arecaceae (7). Los géneros mejor representados fueron *Miconia* (9), *Ocotea* (7), *Inga* y *Clusia* (5), *Anthurium*, *Philodendron* y *Palicourea* (4).

Al incluir solamente los individuos con DAP > 2.5 cm se encontraron 57 familias, 102 géneros y 150 especies, donde Lauraceae (20) y Melastomataceae (15) fueron las familias con mayor número de especies, seguidas de Clusiaceae (10), Myrtaceae (7), Leguminosae (7) y Arecaceae (6). Dentro de los géneros mejor representados se destacan Clusia (7), Inga y Myrcia (4). Las recolecciones generales realizadas en zonas de potrero, bordes de bosque y zonas de claros, aumentaron la cantidad de especies de 238 a 421; de igual manera, el número de géneros pasó de 163 a 263 y el número de familias se elevó de 72 a 104. Entre algunos de los taxones encontrados solamente con este tipo de muestreo se destacan los miembros de la familia Asteraceae, Urticaceae, Salicaceae y Loranthaceae (anexo 1). En la Tabla 1 se muestra la riqueza de algunos bosques premontanos del país a partir de muestras de 0.1 ha.

Se reportan diversas especies por primera vez para el departamento de Antioquia. Uno de los registros más sobresalientes es la especie *Colombobalanus excelsa*, la cual había sido reportada en los departamentos de Valle, Huila y Santander. Adicionalmente se amplía considerablemente la distribución altitudinal de numerosas especies. En la Tabla 2 se observa la ampliación en la distribución geográfica y altitudinal de algunas de las especies encontradas.

ESTRUCTURA VERTICAL

La estructura vertical indica que la mayor parte de los individuos se encuentran en los dos primeros intervalos de clase de altura 4.2 < 6.9 m (20.11%) y 1.5 < 4.2 m (18.25%). Este primer grupo de alturas corresponde a géneros como *Clusia* y *Miconia*, así como a gran cantidad de individuos de *Wettinia fascicularis*. La curva continúa disminuyendo progresivamente hasta la clase de altura 15 < 17.7 m, donde se eleva debido a la gran abundancia de

individuos de especies como *Compsoneura* aff. *capitellata* y *Roucheria columbiana*. A partir de allí la curva decrece progresivamente hasta los estratos superiores, donde es posible encontrar individuos con alturas hasta de 29 m, los cuales corresponden a especies como *Vochysia* aff. *aurantiaca, Ternstroemia macrocarpa, Chrysophyllum prieurii, Aniba coto y Quercus humboldtii* (Figura 3).

ESTRUCTURA HORIZONTAL

El total de individuos con DAP > 2.5 fue de 388; el hábito predominante es el arbóreo con un 63.4%

del total de los individuos, seguido del hábito arbustivo con un 10%. Las cinco especies más abundantes en el bosque incluyen al 22.49% del total de los individuos; se destacan los valores de abundancia y frecuencia de la especie *Wettinia fascicularis*. Las especies más dominantes aportaron el 3623% del área basal del muestreo (5.72 m²), y tan sólo dos especies se encontraron presentes en los cinco transectos realizados (*Wettinia fascicularis* y *Roucheria columbiana*). En la Tabla 3 es posible observar cómo las dos especies más importantes ecológicamente concentran casi el 25% del IVI en los transectos (Anexo 2).

Tabla 1. Riqueza de especies y familias en algunos bosques premontanos de Colombia, a partir de muestras de 0.1 ha.

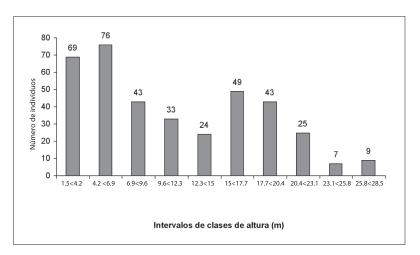
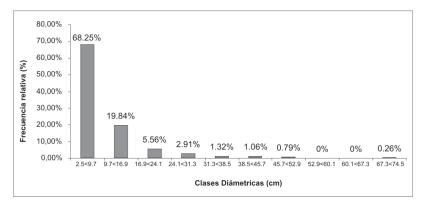

Fuente	Localidad	Altura (msnm)	No. d	No. de	
			DAP > 0	DAP > 2.5 cm	familias
Cantillo & Fajardo, 2004	Reserva de Yotoco (Valle)	1200 - 1700	-	80	40
Gentry, 1988	Reserva la Planada (Nariño)	1800	-	116	54
Navarro, 2003	Cubarral (Meta)	1900		92	55
	Vereda El Roble, Reserva La Forzosa	1530 - 1560	148	145	51
Gómez, 2005 Anorí (Antioquia)	Vereda El Roble, Reserva La Forzosa	1620 - 1765	201	133	60
	Vereda Santa Gertrudis	1325 - 1460	169	121	51
Gentry, 1995	Antadó (Antioquia)	1560	-	160	55
Varias localidades	Napo (Ecuador)	1150	-	151	56
varias iocalidades	Río Candamo (Perú)	800	-	232	65
Amalfi (Antioquia)	Vereda Guayabito	1500 - 1800	238	150	72
Presente estudio	,				

Tabla 2. Ampliación geográfica y altitudinal de la distribución de algunas especies encontradas en un bosque premontano del municipio de Amalfi.

Especies	Distribución geográfica (Colombia)	Distribución altitudinal
Ormosia revoluta	Valle, Antioquia*	1600 - 2200
Ormosia cuatrecasasii	Chocó, Valle, Antioquia*	50 - 200, 1600*
Marcgravia dressleri	Santander, Antioquia*	1200 - 1700
Colombobalanus excelsa	Huila, Santander, Valle, Antioquia*	1300 - 2300
Micropholis crotonoides	Caquetá, Chocó, Magdalena, Valle, Antioquia*	50 - 1800


Especies	Distribución geográfica (Colombia)	Distribución altitudinal
Ecclinusa bullata	Chocó, Valle, Antioquia*	50 - 1200, 1800*
Roucheria columbiana	Valle, Chocó, Antioquia	50 - 1000, 1800*
Licania octandra	Amazonas, Antioquia, Caquetá, Chocó, Córdoba, Meta, Valle, Putumayo, Santander, Antioquia	100 - 800, 1800*

^{*} Ampliación de la distribución a partir del presente estudio.

Figura 3. Estructura vertical de los individuos con DAP > 2.5 cm en 0.1 ha de un bosque premontano en el municipio de Amalfi, Antioquia, Colombia.

ESTRUCTURA TOTAL

Figura 4. Distribución diamétrica de individuos con DAP > 2.5 cm en 0.1 ha de un bosque premontano en el municipio de Amalfi, Antioquia.

Tabla 3. Especies con mayor valor de importancia (IVI), abundancia, frecuencia y dominancia relativas en un bosque premontano en el municipio de Amalfi (Antioquia).

	Especie	Valor (%)
	Wettinia fascicularis	6.11
elativa	Protium aff. tovarense	5.38
ıbundancia relativa	Roucheria columbiana	4.65
Abunc	Miconia punctata	3.42
	Compsoneura aff. capitellata	2.93
	Wettinia fascicularis	2.13
	Roucheria columbiana	2.13
	Tovomita weddelliana	1.7
	Protium aff. tovarense	1.7
Frecuencia relativa	Compsoneura aff. capitellata	1.7
	Graffenrieda latifolia	1.7
	Clusia cf. magnifolia	1.7
	Miconia lamprophylla	1.7
	Miconia punctata	1.7
	Virola macrocarpa	1.7
	Wettinia kalbreyeri	1.7
lativa	Quercus humboldtii	12.59
recuencia relativa	Chrysophyllum prieurii	8.06
Frecue	Dacryodes sp.	6.46
	Ternstroemia sp.	5.22
	Protium aff. tovarense	3.89
	Quercus humboldtii	13.99
	Protium aff. tovarense	10.98
IVI	Wettinia fascicularis	10.86
	Roucheria columbiana	10.2
	Chrysophyllum prieurii	10.07

Como se observa en la Figura 4 (p.86), la distribución diamétrica presentó un comportamiento en forma de "jota" invertida, encontrándose en la categoría más baja (2.5 < 9.7) el mayor número de

individuos (258), disminuyendo progresivamente en número a medida que se incrementan los valores del diámetro; no se presentaron individuos en las clases entre 52.9 < 67.3 y sólo un individuo en la última clase (67.3 < 74.5). Las especies con mayores valores de DAP fueron *Quercus humboldtii* (70.66 cm), *Chrysophyllum prieurii* (49.33 cm), *Vochysia* aff. *aurantiaca* (47.42 cm) y *Ternstroemia macrocarpa* (46.47 cm).

DIVERSIDAD

Los índices de diversidad de Shannon y Simpson muestran que el bosque es heterogéneo y no hay predominio de ninguna especie, como lo confirma el índice de Berger-Parker para la especie más abundante (*Protium* aff. *tovarense*) (ver Tabla 4).

Tabla 4. Índices de alfa diversidad.

Índice	Valor
Margalef	6.735
Menhinick	3.343
Berger-Parker	*0.06
Shannon	5.02
Uniformidad de Shannon	0.96
Simpson	0.016

^{*}Calculado para la especie más abundante.

DISCUSIÓN

RIQUEZA Y COMPOSICIÓN

Al comparar los valores en muestreos con DAP > 2.5 cm, el área de estudio posee una de las más altas riquezas de familias y especies documentadas en muestreos de 0.1 ha, sólo comparable con muestreos como el de Gómez (2005) en el municipio de Anorí, o los de Gentry (2001) en Antadó, el Napo en Ecuador o el río Candamo en Perú, donde la riqueza fue superior a 150 especies. La composición florística a nivel de familias es congruente con los datos obtenidos por diversos autores para la franja premontana de los Andes, con Lauraceae, Melastomoataceae y Rubiaceae como las familias más abundantes (Rangel 1995, Gentry 1995, Cavelier *et al.* 2001); sin embargo, en el

presente estudio la familia Araceae aparece como una de las mejor representadas, lo que evidencia la gran abundancia y diversidad de epífitas. Existe una buena correspondencia entre los géneros y las familias más abundantes, géneros como *Miconia*, *Anthurium* e *Inga* ya habían sido reportados como los más abundantes en la franja premontana de los Andes, sin embargo, el número promedio de especies en estudios previos es ostensiblemente menor (Gentry 1995, Franco *et al.* 1997).

Al excluir del análisis los individuos con DAP < 2.5 cm ocurre una disminución del 21% en la cantidad de familias, del 37% en la cantidad de géneros y del 36% en el número de especies, lo que evidencia la gran cantidad de elementos no leñosos dentro del bosque; la familia Araceae desaparece y familias como Myrtaceae ingresan dentro de las más abundantes, lo que muestra el efecto del diámetro mínimo sobre los resultados obtenidos en composición y riqueza. Otros autores han discutido sobre las modificaciones al muestreo tipo RAP (Rapid Assessment Plots) y la influencia del diámetro mínimo de muestreo sobre la estimación de la diversidad vegetal de los bosques tropicales (Franco et al. 1997, ISA-JAUM 2004, Dueñas et al. 2007).

Las recolecciones generales aumentan la riqueza florística en un 76%, y garantizan un mayor grado de certeza en las determinaciones, por tratarse de ejemplares en estado reproductivo. Se encontró gran cantidad de elementos heliófitos, típicos de áreas abiertas y bordes de bosque, entre los que se destacan *Cecropia, Pourouma, Piptocoma, Vernonathura* y *Munozia,* entre otros. Esto evidencia el sesgo que se genera al emplear sólo este tipo de muestreo en el estudio de la diversidad florística de un ecosistema boscoso.

ESTRUCTURA

En los bosques tropicales andinos generalmente se observa una disminución progresiva en el número de individuos a medida que aumenta la altura de los árboles (Dueñas *et al.* 2007, Cantillo *et al.* 2004), sin embargo, las diferencias observadas en la distribución vertical suponen una estructura variable que puede responder a la gran dinámica de claros en ecosistemas montañosos con altas pen-

dientes (Robert 2003) y a las marcadas diferencias florísticas entre los estratos.

La distribución de las clases diamétricas, que coincide con otros estudios en bosques andinos (López et al. 2006, Dueñas et al. 2007, Cantillo et al. 2004), se acerca a una distribución normal típica de bosques naturales disetáneos de poca intervención (Lamprecht 1990), debido a la alta presencia de regeneración natural, y a los pocos individuos en las clases mayores, de especies como *Quercus* humboldtii y Vochysia aff. aurantiaca, coincidiendo con lo reportado en el municipio de Anorí (Gómez 2005, López et al. 2006).

La importancia ecológica de las especies, representada por los valores de IVI, sugieren un comportamiento heterogéneo dentro del ecosistema. El IVI se ve fuertemente influenciado por la presencia de individuos de gran tamaño, como el caso de la especie *Quercus humboldtii*, la cual presentó uno de los mayores valores de IVI con tan sólo cuatro individuos, dos de los cuales poseían diámetros mayores a 45 cm. Lo anterior coincide con datos reportados en bosques tropicales, donde unos pocos árboles con alturas y diámetros altos son los que presentan el mayor IVI dentro del bosque (Dueñas *et. al* 2007).

El comportamiento estructural de géneros como *Wettinia, Vochysia, Protium* y *Compsoneura* fue similar al observado por Gómez (2005) en otros bosques premontanos, donde se reportan como de alta importancia ecológica dentro del ecosistema.

DIVERSIDAD

Al comparar con otros estudios en bosques premontanos húmedos, la diversidad encontrada es notoriamente mayor (Gomez 2005, Navarro 2004) y se refleja en valores superiores de índices como los de Margalef y Menhinick, debido principalmente a la mayor cantidad de especies encontradas en el presente estudio. Al contrastar el valor obtenido en índices como los de Berger-Parker y Simpson con el listado de especies es posible observar que a pesar de la presencia de especies con alta tendencia asociativa como *Quercus humboldtii* la heterogeneidad del ecosistema es alta. Esto ha sido

reportado previamente en bosques con condiciones similares de altitud y precipitación (Rangel *et al.* 2004, Kappelle & Zamora 1995).

CONCLUSIONES

Los bosques premontanos presentes en la región septentrional de la Cordillera Central son ecosistemas estratégicos, con una complejidad estructural alta y una enorme diversidad florística. Así mismo, el hallazgo de numerosos registros nuevos a nivel local y regional evidencia el déficit en el muestreo de la vegetación presente en el área de estudio.

La metodología de muestreo, así como el diámetro mínimo empleado, inciden drásticamente en la estimación de la riqueza y diversidad de los bosques tropicales y especialmente en ecosistemas donde hábitos de crecimiento tales como hierbas y epífitas se encuentran bien representados. Es preciso estandarizar el diámetro mínimo de muestreo para hacer estimaciones de riqueza y diversidad representativas en cada uno de los ecosistemas estudiados.

Es necesario profundizar en el inventario de la diversidad debido a la cantidad de novedades corológicas a nivel local y regional. Adicionalmente, conviene adelantar investigaciones relacionadas con la dinámica y la funcionalidad de los bosques del área, con el fin de generar bases sólidas para el manejo y conservación de estos ecosistemas estratégicos.

AGRADECIMIENTOS

A Corantioquia por su financiación y apoyo en la elaboración del trabajo; a los funcionarios del Herbario del Jardín Botánico de Medellín (JAUM), en especial a su director Álvaro Cogollo por su apoyo constante; a los funcionarios del Herbario de la Universidad de Antioquia (HUA) y del Herbario Nacional Colombiano por su ayuda en la identificación del material botánico, y muy especialmente a Duver Botero y los propietarios de la finca Costa Rica en la vereda Guayabito por su colaboración en el trabajo de campo. A todos los que de una u otra forma colaboraron para el desarrollo de este trabajo.

REFERENCIAS BIBLIOGRÁFICAS

ANGIOSPERM PHYLOGENY GROUP II.

2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot. J. Linn. Soc. 141: 399-436.

- Ariza, W. & R. Medina. 2006. Guía para la identificación de las variedades de coca cultivadas en Colombia. Presidencia de la República, Universidad Distrital Francisco José de Caldas. Bogotá. Pg. 40.
- Cantillo, E. & A. Fajardo. 2004. Reserva Natural de Yotoco: su vegetación leñosa. Colombia Forestal No. 17 (1): 75-93.
- Cavelier, J., D. Lizcaino & M. T. Pulido. 2001. Bosques nublados del neotrópico: Colombia. En: M. Kapelle & A. Brown (eds.). Bosques nublados del neotrópico. Instituto Nacional de Biodiversidad. Santo Domingo de Heredia. Pg. 700.
- Cogollo, A. & J. G. Ramírez. 1997. Estudio sobre la biodiversidad en la Reserva Natural Regional Bajo Cauca-Nechí en el departamento de Antioquia. Fundación Jardín Botánico Joaquín Antonio Uribe de Medellín. Pg. 79.
- Cuervo, A. M. 2002. Efecto de la fragmentación de hábitat sobre aves de bosques sub-andinos en los municipios de Amalfi y Anorí. Informe final. Corantioquia. Medellín.
- Dueñas A., A. Betancur & R. Galindo. 2007. Estructura y composición florística de un bosque húmedo tropical del Parque Nacional Natural Catatumbo Barí, Colombia. Colombia Forestal 10 (20): 26-35.
- **Franco-Rosselli, P., J. Betancur & J. L. Fernán-dez-Alonso.** 1997. Diversidad florística en dos bosques subandinos del sur de Colombia. Caldasia 19 (1-2): 205-234.
- **Gentry, A.H.** 1982. Patterns of neotropical plants species diversity. Evolutionary Biology 15: 1-84.
- Gentry, A. H. 1995. Patterns of diversity and floristic composition in neotropical montane forest. En: S. P. Churchill H. Baslev, E. Forero & J. L. Lutyn (eds.). Biodiversity and conservation of

- neotropical montane forests. The New York Botanical Garden. Pp. 103-126.
- Gentry, A. H. 2001. Patrones de diversidad y composición florística en los bosques de las montañas neotropicales. En: M. Kapelle & A. Brown. Bosques nublados del neotropico. Instituto Nacional de Biodiversidad, INBio. Costa Rica.
- **Gómez, D.** 2005. Análisis florístico de los bosques premontanos en el municipio de Anorí (Antioquia). Informe Final. Corantioquia. Medellín. Pg. 150.
- Hernández, J. & H. Sánchez. 1992. Biomas terrestres de Colombia. En: G. Halffter (comp.). La diversidad biológica de Iberoamérica. Acta Zoológica Mexicana. Vol. especial. México.
- Instituto Geográfico Agustín Codazzi (IGAC). 1976. Zonas de vida o formaciones vegetales de Colombia. Memoria explicativa sobre Mapa Ecológico. Bogotá.
- **Isa-Jaum.** 2004. Propuesta metodológica de parcelas normalizadas para los inventarios de vegetación. Equipo de investigación Convenio ISA-JAUM. Medellín. Pp. 3-10.
- Judd, W. S., C. S. Campbell, E. A. Kellog & S. P. F. Sterens. 1999. Plant Systematics: A phylogenetic approach. Sinauer Assoc. Sunderland. Pg. 464.
- Kappelle, M. & N. Zamora. 1995. Change in woody species richness along an altitudinal gradient in Talamancan montane Quercus forests, Costa Rica. En: Biodiversity of Conservation of Neotropical Montane Forests. The New York Botanical Garden. Bronx, New York. Pp. 53-77.
- **Lamprecht, H.** 1990. Silvicultura en los trópicos. República Federal Alemana. GTZ.
- Lema, T. A. 1995. Dasometría. Algunas aproximaciones estadísticas a la medición forestal. Universidad Nacional de Colombia. Medellín. Pg. 401.
- **López, W., L. Barreto, A. Duque & F. Moreno.** 2006. Composición florística, abundancia y pa-

- trones de diversidad alfa en dos fragmentos de bosques montanos en la región de los Andes. Informe final. Corantioquia. Medellín. Pg. 87.
- **Magurran, A. E.** 1989. Diversidad ecológica y su medición. Editorial Vedra. Barcelona.
- Navarro, J. 2004. Análisis florístico y estructural de los bosques de piedemonte, en el municipio de San Luis de Cubarral (Meta). Tesis de grado. Ingeniería Forestal. Universidad Distrital Francisco José de Caldas.
- Rangel-Ch., J. O., A. M. Cleef, S. Salamanca & C. Ariza. 2004. La vegetación de los bosques y selvas del Tatamá. En: T. van der Hammen, J. O. Rangel-Ch. & A. M. Cleef (eds.). La cordillera occidental transecto del Tatamá. Ecoandes 6. J. Crammer. Berlín, Stuttgaart.
- Rangel-Ch., J. O. & A. Velázquez. 1997. Métodos de estudio de la vegetación. En: J. O. Rangel-Ch., P. Lowry & M. Aguilar. Colombia Diversidad Biótica II. Tipos de vegetación en Colombia. Universidad Nacional de Colombia. Bogotá. Pp. 59-87.
- **Robert, A.** 2003. Simulation of the effect of topography and tree falls on stand dynamics and stand structure of tropical forests. Ecological Modelling 167 (3): 287-303.
- Smith, A. R., K. M. Pryer, E. Schuettpelz, P. Korall, H. Schneider & P. G. Wolf. 2006. A classification for extant ferns. Taxon 55 (3): 705-731.
- Tuberquia, D., D. Rodríguez & C. Gutiérrez. 2000. Informe proyecto educación ambiental basada en inventarios florísticos y prácticas de propagación de especies vegetales del bosque húmedo tropical (Municipios Anorí y Amalfí). Fondo Nacional de Regalías & Jardín Botánico Joaquín Antonio Uribe. Medellín.
- Webster, L. G. 1995. The panorama of neotropical cloud forest. En: S. P. Churchill, H. Baslev, E. Forero & J. L. Lutyn (eds.). Biodiversity and conservartion of neotropical montane forests. The New York Botanical Garden. Pp. 103-126.

ANEXOS

Anexo 1. Listado de especies encontradas en un bosque premontano en el municipio de Amalfi, Antioquia, Colombia, con su familia botánica, la cita de un ejemplar botánico de referencia y el tipo de muestreo empleado para su recolección.

			*Ejemplar de	Tipo de	recolección
Número	Nombre científico	Familia	referencia	Transecto	Muestreo general
1	Aphelandra boyacensis Leonard	ACANTHACEAE	WAC 1356		Х
2	Saurauia brachybotrys Turcz.	ACTINIDIACEAE	WAC 991	Χ	Х
3	Viburnum cornifolium Killip & A.C. Sm.	ADOXACEAE	WAC 999	Χ	
4	Bomarea carderi Mast.	ALSTROEMERIACEAE	WAC 1219		Х
5	Alzatea verticillata Ruiz & Pav.	ALZATEACEAE	WAC 1014		Х
6	Tapirira guianensis Aubl.	ANACARDIACEAE	WAC 757	Χ	Х
7	Guatteria amplifolia Triana & Planch.	ANNONACEAE	GT 532	Χ	
8	Guatteria cestrifolia Triana & Planch.	ANNONACEAE	WAC 663	Χ	
9	Guatteria cf. cargadero Triana & Planch.	ANNONACEAE	WAC 1355	Χ	Χ
10	Guatteria lehmannii R.E. Fr.	ANNONACEAE	WAC 1145	Χ	
11	Klarobelia anomala R.E. Fr. Chatrou	ANNONACEAE	WAC 805	Χ	
12	Annona montana Macfad.	ANNONACEAE	GT 521		Χ
13	Guatteria recurvisepala R. & Fries	ANNONACEAE	WAC 1042		Χ
14	Rollinia pittieri Saff.	ANNONACEAE	GT 561		Χ
15	Xylopia aromatica (Lam.) Mart.	ANNONACEAE	WAC 1211		Χ
16	Aspidosperma desmanthum Benth. ex Müll. Arg.	APOCYNACEAE	WAC 1444	Χ	Χ
17	Fischeria blepharopetala S.F. Blake.	APOCYNACEAE	WAC 1090	Χ	
18	Rauvolfia leptophylla A.S. Rao	APOCYNACEAE	WAC 1208	Χ	
19	Tabernaemontana heterophylla Vahl.	APOCYNACEAE	WAC 1077		Х
20	Tassadia obovata Decne.	APOCYNACEAE	WAC 1193		Χ
21	llex cf. danielis Killip & Cuatrec.	AQUIFOLIACEAE	WAC 1364	Χ	
22	<i>llex</i> cf. laurina Kunth	AQUIFOLIACEAE	WAC 1374	Χ	
23	<i>llex</i> sp.	AQUIFOLIACEAE	WAC 917	Χ	
24	<i>llex maxima</i> W.J. Hahn	AQUIFOLIACEAE	WAC 1337		Χ
25	Anthurium cf. caucanum Engl.	ARACEAE	WAC 895	Χ	
26	Anthurium cupreum Engl.	ARACEAE	WAC 1414	Χ	Χ
27	Anthurium myosuroides (Kunth) Schott	ARACEAE	WAC 846	Χ	
28	Anthurium scandens (Aubl.) Engl.	ARACEAE	GT 527	Χ	
29	Euterpe precatoria Mart.	ARECACEAE	WAC 1445	Χ	
30	Monstera adansonii Schott	ARACEAE	WAC 796	Χ	
31	Monstera dubia (Kunth) Engl. & K. Krause	ARACEAE	WAC 715	Χ	
32	Monstera obliqua Miq.	ARACEAE	WAC 802	Χ	
33	Philodendron fragrantissimum (Hook.) G. Don	ARACEAE	WAC 727	Χ	
34	Philodendron cf. panamense K. Krause	ARACEAE	WAC 721	Χ	
35	Philodendron sp.	ARACEAE	WAC 728	Χ	

			*Ejemplar de	Tipo de recolección	
lúmero	Nombre científico	Familia	referencia	Transecto	Muestreo general
36	Philodendron strictum G.S. Bunting	ARACEAE	WAC 890	Х	
37	Stenospermatium aff. spruceanum Schott	ARACEAE	WAC 1458	Χ	
38	Stenospermation andreanum Engl.	ARACEAE	WAC 898	Χ	
39	Philodendron tripartitum (Jacq.) Schott	ARACEAE	WAC 1232		χ
40	Xanthosoma daguense Engl.	ARACEAE	WAC 803		χ
41	Dendropanax cf. querceti Donn. Sm.	ARALIACEAE	WAC 869	Χ	
42	Dendropanax sp.	ARALIACEAE	WAC 1071	Χ	
43	Schefflera fontiana Cuatrec.	ARALIACEAE	WAC 1257	Χ	
44	Schefflera sp. 3	ARALIACEAE	GT 461	Χ	
45	Schefflera sp. 1	ARALIACEAE	WAC 1050		Χ
46	Schefflera sp.2	ARALIACEAE	WAC 673		Χ
47	Aiphanes hirsuta Burret	ARECACEAE	WAC 961	Χ	
48	Geonoma interrupta (Ruiz & Pav.) Mart.	ARECACEAE	WAC 1329	Χ	
49	Pholidostachys synanthera (Mart.) H.E. Moore	ARECACEAE	WAC 970	Χ	
50	Prestoea acuminata (Willd.) H.E. Moore	ARECACEAE	WAC 972	Х	
51	Socratea exorrhiza (Mart.) H. Wendl.	ARECACEAE	WAC 808	Χ	
52	Wettinia fascicularis (Burret) H.E. Moore & J. Dransf.	ARECACEAE	WAC 1163	Χ	
53	Wettinia kalbreyeri (Burret) R. Bernal	ARECACEAE	WAC 932	Х	
54	Geonoma undata Klotzsch	ARECACEAE	WAC 1455		Х
55	<i>Mikania</i> sp.	ASTERACEAE	WAC 1143	Χ	
56	Paragynoxys corei (Cuatrec.) Cuatrec.	ASTERACEAE	WAC 1045	Χ	Х
57	Baccharis nitida (Ruiz & Pav.) Pers.	ASTERACEAE	WAC 1137a		Χ
58	Condylidium iresinoides (Kunth) R.M. King & H. Rob.	ASTERACEAE	WAC 870		Х
59	<i>Ichthyothere garcia-barrigae</i> H. Rob.	ASTERACEAE	WAC 1119		Х
60	Mikania hookeriana DC.	ASTERACEAE	WAC 1138		Х
61	Munnozia senecionidis Benth.	ASTERACEAE	WAC 1139		Х
62	Pentacalia trianae (S. Díaz & S. Obando) Cuatrec.	ASTERACEAE	GT 511		Х
63	Piptocoma discolor (Kunth) Pruski	ASTERACEAE	WAC 892		Х
64	Vernonanthura patens (Kunth) H. Rob.	ASTERACEAE	GT 556		Х
65	Begonia fischeri Schrank	BEGONIACEAE	WAC 1205	Х	
66	Tabebuia guayacan (Seem.) Hemsl.	BIGNONIACEAE	WAC 1238		Х
67	Cordia barbata J. Estrada	BORAGINACEAE	WAC 1141		Х
68	<i>Cordia dwyeri</i> Nowicke	BORAGINACEAE	WAC 1412		Х
69	Guzmania angustifolia (Baker) Wittm.	BROMELIACEAE	WAC 893	Χ	
70	Guzmania pearcei (Baker) L.B. Sm.	BROMELIACEAE	WAC 871	Χ	
71	Guzmania pungens L.B. Sm.	BROMELIACEAE	WAC 1450	Χ	
72	Pitcairnia bicolor L.B. Sm. & Read	BROMELIACEAE	WAC 1173	Χ	
73	Guzmania laeta H. Luther	BROMELIACEAE	WAC 877		Х
74	Pitcairnia kalbreyeri Baker	BROMELIACEAE	WAC 865		Χ

			*Ejemplar de	Tipo de	recolección
Número	Nombre científico	Familia	referencia	Transecto	Muestreo general
75	Racinaea steyermarkii (L.B. Sm.) M.A. Spencer & L.B. Sm.	BROMELIACEAE	WAC 898		Х
76	Tillandsia orbicularis L.B. Sm.	BROMELIACEAE	WAC 690		Χ
77	Vriesea elata (Baker) L.B. Sm.	BROMELIACEAE	WAC 732		Χ
78	Dacryodes sp.	BURSERACEAE	WAC 1300	Χ	
79	Protium aff. tovarense Pittier	BURSERACEAE	WAC 1004		Χ
80	Burmeistera cf. microphylla Donn. Sm.	CAMPANULACEAE	WAC 1058		Χ
81	Centropogon granulosus C. Presl	CAMPANULACEAE	WAC 1335		Х
82	Siphocampylus cf. longibracteolatus	CAMPANULACEAE	WAC 1059		Χ
83	Tontelea attenuata Miers	CELASTRACEAE	WAC 1467	Χ	
84	Maytenus sp.	CELASTRACEAE	WAC 841		Х
85	Zinowiewia australis Lundell	CELASTRACEAE	WAC 1171		Х
86	Hedyosmum gentryi D'Arcy & Liesner	CHLORANTHACEAE	WAC 1003		Х
87	Hedyosmum racemosum (Ruiz & Pav.) G. Don	CHLORANTHACEAE	WAC 1366		Χ
88	Couepia platycalyx Cuatrec.	CHRYSOBALANACEAE	WAC 919	Χ	
89	<i>Licania octandra</i> (Hoffmanns. ex Roem. & Schult.) Kuntze	CHRYSOBALANACEAE	WAC 683	Х	
90	Licania sp.	CHRYSOBALANACEAE	WAC 1362	Χ	
91	Clethra fagifolia Kunth	CLETHRACEAE	WAC 990	Χ	
92	Clethra cf. lanata M. Martens & Galeotti	CLETHRACEAE	WAC 1183		Х
93	Calophyllum brasiliense Cambess.	CLUSIACEAE	WAC 976	Χ	Х
94	Chrysochlamys sp.	CLUSIACEAE	GT 492	Χ	
95	Clusia aff. magnifolia Cuatrec.	CLUSIACEAE	WAC 1008	Χ	Χ
96	Clusia caicedoi Cuatrec.	CLUSIACEAE	WAC 1006	Χ	
97	Clusia cuneifolia Cuatrec.	CLUSIACEAE	WAC 685	Χ	
98	Clusia cylindrica Hammel	CLUSIACEAE	WAC 1190	Χ	χ
99	Clusia lineata (Benth.) Planch. & Triana	CLUSIACEAE	WAC 1060	Χ	
100	Dystovomita sp.	CLUSIACEAE	WAC 773	Χ	Χ
101	Marila geminata Cuatrec.	CLUSIACEAE	WAC 1031	Χ	Χ
102	Tovomita parviflora Cuatrec.	CLUSIACEAE	GT 520	Χ	
103	Tovomita weddelliana Planch. & Triana	CLUSIACEAE	WAC 1000	Χ	
104	Clusia latipes Planch. & Triana	CLUSIACEAE	WAC 1186		Χ
105	Clusia microstemon Planch. & Triana	CLUSIACEAE	GT 502		Χ
106	Clusia schomburgkiana (Planch. & Triana) Benth. ex Engl.	CLUSIACEAE	WAC 1040		Х
107	Commelina sp.	COMMELINACEAE	WAC 1309		Х
108	Alsophila cuspidata (Kunze) D.S. Conant	CYATHEACEAE	WAC 867	Х	
109	Cyathea multiflora Sm.	CYATHEACEAE	WAC 1055	Χ	
110	Cyathea parvula (Jenman) Domin	CYATHEACEAE	WAC 842	Х	
111	Dicksonia sellowiana Hook.	CYATHEACEAE	WAC 1068	Х	
112	Asplundia ahlneri Harling	CYCLANTHACEAE	WAC 692	Х	
113	Cyclanthus bipartitus Poit. ex A. Rich.	CYCLANTHACEAE	WAC 780	Χ	

			*Fiomplay do	Tipo de recolección	
Número	Nombre científico	Familia	*Ejemplar de referencia	Transecto	Muestreo general
114	Dicranopygium sp.	CYCLANTHACEAE	WAC 1308	Х	
115	Sphaeradenia garciae Harling	CYCLANTHACEAE	WAC 733	Χ	
116	Pteridium arachnoideum (Kaulf.) Maxon	DENNSTAEDTIACEAE	WAC 872		Х
117	Tapura colombiana Cuatrec.	DICHAPETALACEAE	WAC 843	Χ	
118	Sloanea brevispina Earle Sm.	ELAEOCARPACEAE	WAC 741	Χ	
119	Cavendishia axillaris A.C. Sm.	ERICACEAE	WAC 1025	Χ	
120	Cavendishia isernii Sleumer	ERICACEAE	WAC 1041	Χ	
121	Orthaea minor (A.C. Sm.) Luteyn	ERICACEAE	WAC 1180	Χ	
122	Psammisia cf. citrina Luteyn & Sylva	ERICACEAE	WAC 1030	Χ	
123	Satyria cf. breviflora Hoerold	ERICACEAE	WAC 1178	Χ	
124	Bejaria aestuans Mutis ex L.	ERICACEAE	WAC 1005		Х
125	Disterigma cryptocalyx A.C. Sm.	ERICACEAE	WAC 1048		Х
126	Psammisia ferruginea A.C. Sm.	ERICACEAE	WAC 1215		Х
127	Erythroxylum citrifolium A. StHil.	ERYTHROXYLACEAE	WAC 997	Х	Х
128	Alchornea sp.	EUPHORBIACEAE	WAC 734	Х	
129	Hieronyma oblonga (Tul.) Müll. Arg.	EUPHORBIACEAE	WAC 1078	Х	Х
130	Hyeronima sp.	EUPHORBIACEAE	WAC 845	Х	
131	Alchornea costaricensis Pax & K. Hoffm.	EUPHORBIACEAE	WAC 1443		Х
132	Croton billbergianus Müll. Arg.	EUPHORBIACEAE	WAC 1410		Х
133	Hyeronima macrocarpa Müll. Arg.	EUPHORBIACEAE	WAC 549		χ
134	Tetrorchidium robledoanum Cuatrec.	EUPHORBIACEAE	WAC 1399		χ
135	Quercus humboldtii Bonpl.	FAGACEAE	WAC 781	Χ	Х
136	Colombobalanus excelsa (Lozano et al.) Nixon & Crepet	FAGACEAE	WAC 1064		Х
137	Tachia parviflora Maguire & Weaver	GENTIANACEAE	WAC 1172	Х	
138	Symbolanthus pterocalyx Struwe	GENTIANACEAE	WAC 694		Х
139	Besleria fallax C.E. Gonzalez, L.E. Skog & Amaya	GESNERIACEAE	WAC 1100	Х	Х
140	Besleria fecunda C.V. Morton	GESNERIACEAE	WAC 1130	Х	Х
141	Besleria formosa C.V. Morton	GESNERIACEAE	WAC 788	Х	Х
142	Columnea cf. florida C.V. Morton	GESNERIACEAE	WAC 1209	Х	Х
143	Columnea cf. sanguinea (Pers.) Hanst.	GESNERIACEAE	WAC 1019	Х	Х
144	Alloplectus ichthyoderma Hanst	GESNERIACEAE	WAC 736		Х
145	Alloplectus panamensis C.V. Morton.	GESNERIACEAE	WAC 782		Х
146	Heliconia burleana Abalo & G. Morales L.	HELICONIACEAE	WAC 1387		Χ
147	Billia rosea (Planch. & Linden) C. Ulloa & P. Jørg.	HIPPOCASTANACEAE	WAC 1072	Χ	Х
148	Hymenophyllum sp.	HYMENOPHYLLACEAE	WAC 1451	Χ	
149	Trichomanes diversifrons (Bory) Mett. ex Sadeb.	HYMENOPHYLLACEAE	WAC 695	Χ	
150	Vismia laevis Triana & Planch.	HYPERICACEAE	WAC 1146		Х
151	Dendrobangia boliviana Rusby	ICACINACEAE	WAC 848		Х
152	Discophora guianensis Miers	ICACINACEAE	WAC 1407		Χ

			*Ejemplar de	Tipo de recolección	
Número	Nombre científico	Familia	referencia	Transecto	Muestreo general
153	Indeterminada	INDETERMINADA	WAC 1162		Х
154	Alfaroa colombiana Lozano, Hern. Cam. & Espinal	JUGLANDACEAE	WAC 888	Χ	
155	Lozania mutisiana Schult.	LACISTEMATACEAE	WAC 1018		Х
156	Hyptidendron arboreum (Benth.) Harley	LAMIACEAE	WAC 1347		Χ
157	Aniba coto (Rusby) Kosterm.	LAURACEAE	WAC 1175	Χ	Χ
158	Aniba puchury-minor (Mart.) Mez	LAURACEAE	WAC 1029	Χ	
159	Aniba taubertiana Mez	LAURACEAE	WAC 1331	Χ	
160	Beilschmiedia costaricensis (Mez & Pittier) C.K.	LAURACEAE	WAC 696	Χ	
161	Allen <i>Endlicheria pyriformis</i> (Nees) Mez	LAURACEAE	WAC 783	Χ	
162	Endlicheria sericea Nees	LAURACEAE	GT 481	Х	
163	Endlicheria rubriflora Mez	LAURACEAE	WAC 738	Χ	
164	Lauraceae sp. 1	LAURACEAE	WAC 785	Χ	
165	Lauraceae sp. 2	LAURACEAE	WAC 777	Χ	
166	Lauraceae sp. 3	LAURACEAE	WAC 875	Χ	
167	Nectandra cufodontisii (O.C. Schmidt) C.K. Allen	LAURACEAE	WAC 1221	Χ	
168	Nectandra membranacea (Ruiz & Pav.) Nees	LAURACEAE	WAC 873	Χ	
169	Ocotea aciphylla (Nees) Mez	LAURACEAE	WAC 778	Χ	
170	Ocotea aurantiodora (Ruiz & Pav.) Mez	LAURACEAE	WAC 869	Χ	
171	Ocotea costulata (Nees) Mez	LAURACEAE	WAC 697	Χ	
172	Ocotea leucoxylon (Sw.) Laness.	LAURACEAE	WAC 849	Χ	
173	Ocotea oblonga (Meisn.) Mez	LAURACEAE	WAC 737	Χ	
174	Ocotea puberula (Rich.) Nees	LAURACEAE	WAC 874	Χ	
175	Ocotea smithiana 0. Schmidt	LAURACEAE	WAC 766	Х	
176	Persea areolatocostae (C.K. Allen) van der Werff	LAURACEAE	WAC 642	Х	
177	Persea hexanthera L.E. Kopp	LAURACEAE	WAC 779	Х	
178	Pleurothyrium glabritepalum van der Werff	LAURACEAE	WAC 981	Χ	
179	Pleurothyrium trianae (Mez) Rohwer	LAURACEAE	WAC 698	Χ	
180	Endlicheria tschudyana (Lasser) Kosterm.	LAURACEAE	WAC 1168		Χ
181	Nectandra acutifolia (Ruiz & Pav.) Mez	LAURACEAE	WAC 1259		Х
182	Nectandra cuspidata Nees	LAURACEAE	WAC 1207		Χ
183	Nectandra laurel Klotzsch ex Nees	LAURACEAE	WAC 1147		Χ
184	Ocotea guianensis Aubl.	LAURACEAE	WAC 714		Х
185	Ocotea macropoda (Kunth) Mez	LAURACEAE	WAC 784		Χ
186	Mutisiopersea chrysophylla (L.E. Kopp) Kosterm.	LAURACEAE	WAC 1016		Χ
187	Persea cuneata Meisn.	LAURACEAE	WAC 660		Χ
188	Eschweilera coriacea (DC.) S.A. Mori	LECYTHIDACEAE	WAC 1450	Χ	
189	Eschweilera sessilis A.C. Sm.	LECYTHIDACEAE	WAC 1049		Х
190	Andira chigorodensis R.T. Penn.	LEGUMINOSAE	WAC 693	Χ	
191	Dussia lehmannii Harms	LEGUMINOSAE	WAC 1459	Χ	Χ

			*Ejemplar de	Tipo de recolección	
lúmero	Nombre científico	Familia	referencia	Transecto	Muestreo general
192	Inga cf. auristellae Harms	LEGUMINOSAE	WAC 1357	Х	
193	Inga cf. leptocarpa T.D. Penn.	LEGUMINOSAE	GT 540	Χ	
194	Inga cinnamomea Spruce ex Benth. Kuntze	LEGUMINOSAE	WAC 1250	Χ	Χ
195	Inga cocleensis Pittier	LEGUMINOSAE	WAC 1249	Χ	Χ
196	<i>Inga</i> sp.	LEGUMINOSAE	GT 562	Χ	
197	Macrolobium sp.	LEGUMINOSAE	WAC 1378	Χ	
198	Macrolobium sp. 2	LEGUMINOSAE	WAC 795	Χ	
199	Parkia nitida Miq.	LEGUMINOSAE	WAC 1039	Χ	Х
200	Abarema callejasii Barneby & Grimes	LEGUMINOSAE	WAC 1017		Х
201	Albizia carbonaria Britton	LEGUMINOSAE	WAC 1446		Х
202	Inga heterophylla Willd.	LEGUMINOSAE	WAC 1328		
203	Inga marginata Willd.	LEGUMINOSAE	WAC 717		Х
204	Ormosia revoluta Rudd	LEGUMINOSAE	WAC 831		Х
205	Roucheria columbiana Hallier f.	LINACEAE	WAC 1015	Χ	Х
206	Strychnos erichsonii R.H. Schomb. ex Progel	LOGANIACEAE	GT 485	Χ	
207	Lomariopsis vestita E. Fourn.	LOMARIOPSIDACEAE	WAC 1457	Х	
208	Aetanthus ovalis Rusby	LORANTHACEAE	WAC 699		Х
209	Gaiadendron punctatum (Ruiz & Pav.) G. Don	LORANTHACEAE	WAC 1009		Х
210	Oryctanthus occidentalis (L.) Eichler	LORANTHACEAE	WAC 851		Х
211	Oryctanthus spicatus (Jacq.) Eichler	LORANTHACEAE	WAC 740		Х
212	Phthirusa pyrifolia (Kunth) Eichler	LORANTHACEAE	WAC 1244		Χ
213	Psittacanthus dilatatus A.C. Sm.	LORANTHACEAE	WAC 1189		Х
214	Struthanthus leptostachyus (Kunth) G. Don	LORANTHACEAE	WAC 1032		Χ
215	Magnolia espinalii (Lozano) Govaerts	MAGNOLIACEAE	WAC 700		Χ
216	Magnolia yarumalensis (Lozano) Govaerts	MAGNOLIACEAE	WAC 664		Х
217	Banisteriopsis elegans (Triana & Planch.) Sandwith	MALPIGHIACEAE	WAC 1012	Χ	Х
218	Hiraea sp.	MALPIGHIACEAE	WAC 852	Χ	
219	Byrsonima garcibarrigae Cuatrec.	MALPIGHIACEAE	WAC 1185		Х
220	Byrsonima nemoralis Cuatrec.	MALPIGHIACEAE	WAC 1062		Х
221	Bombacoideae sp. 2	MALVACEAE	WAC 893	Χ	
222	<i>Matisia</i> sp.	MALVACEAE	WAC 652	Χ	
223	Spirotheca rosea (Seem.) P.E. Gibbs & W.S.	MALVACEAE	WAC 1021	Χ	
224	Alverson <i>Matisia intricata</i> (A. Robyns & S. Nilsson) W.S. Alverson	MALVACEAE	GT 483		Χ
225	Sida acuta Burm. f.	MALVACEAE	WAC 1070		Χ
226	Calathea sp.	MARANTACEAE	WAC 1310	Χ	
227	Marcgravia affinis Hemsl.	MARCGRAVIACEAE	GT 471	Χ	
228	Marcgravia cf. brownei (Triana & Planch.)	MARCGRAVIACEAE	WAC 1169	Χ	
229	Krug & Urb. Marcgraviastrum mixtum (Triana & Planch.) Bedell	MARCGRAVIACEAE	WAC 1075	Х	
230	Marcgravia dressleri Giraldo-Cañas	MARCGRAVIACEAE	WAC 1220		Х

			*Ejemplar de	Tipo de recolección	
Número	Nombre científico	Familia	referencia	Transecto	Muestreo general
231	Allomaieta hirsuta (Gleason) Lozano	MELASTOMATACEAE	WAC 743	Х	
232	Allomaieta zenufanasana Lozano	MELASTOMATACEAE	WAC 1415	Χ	
233	Blakea quadrangularis Triana	MELASTOMATACEAE	WAC 917	Χ	
234	Conostegia cf. bracteata Triana	MELASTOMATACEAE	WAC 992	Χ	
235	Graffenrieda cf. micrantha (Gleason) L.O. Williams	MELASTOMATACEAE	WAC 1122	Χ	
236	Graffenrieda latifolia subsp. meridensis Wurdack	MELASTOMATACEAE	WAC 1181	Χ	
237	Meriania antioquiensis L. Uribe	MELASTOMATACEAE	WAC 1011	Χ	
238	Meriania longifolia (Naudin) Cogn.	MELASTOMATACEAE	WAC 1022	Χ	
239	Miconia costaricensis Cogn.	MELASTOMATACEAE	WAC 1150	Χ	Χ
240	Miconia dolichorrhyncha Naudin.	MELASTOMATACEAE	WAC 854	Χ	
241	Miconia floribunda (Bonpl.) DC.	MELASTOMATACEAE	WAC 1182	Χ	Х
242	Miconia lamprophylla Triana	MELASTOMATACEAE	WAC 996	Χ	Х
243	Miconia prasina (Sw.) DC.	MELASTOMATACEAE	WAC 1247	Х	
244	Miconia punctata (Desr.) D. Don ex DC.	MELASTOMATACEAE	WAC 1180	Х	Х
245	Miconia reducens Triana	MELASTOMATACEAE	WAC 1054	Х	Х
246	Miconia resima Naudin	MELASTOMATACEAE	WAC 742	Х	
247	Miconia theizans (Bonpl.) Cogn.	MELASTOMATACEAE	WAC 1234	Х	
248	Topobea inflata Triana	MELASTOMATACEAE	WAC 1352	Х	
249	Adelobotrys adscendens (Sw.) Triana	MELASTOMATACEAE	WAC 1157		Х
250	Adelobotrys sp.	MELASTOMATACEAE	WAC 1069		Χ
251	Blakea calyptrata Gleason	MELASTOMATACEAE	WAC 1245		Χ
252	Conostegia montana (Sw.) D. Don ex DC.	MELASTOMATACEAE	WAC 876		Χ
253	Graffenrieda galeottii (Naudin) L.O. Williams	MELASTOMATACEAE	WAC 787		Χ
254	Graffenrieda gracilis (Triana) L.O. Williams	MELASTOMATACEAE	WAC 701		Χ
255	Henriettella aff. trachyphylla Triana	MELASTOMATACEAE	WAC 786		Χ
256	Miconia dodecandra Cogn.	MELASTOMATACEAE	WAC 1140		Χ
257	<i>Miconia gracilis</i> Triana	MELASTOMATACEAE	WAC 937		Χ
258	Miconia mirabilis (Aubl.) L.O.Williams	MELASTOMATACEAE	WAC 681		
259	Miconia serrulata (DC.) Naudin	MELASTOMATACEAE	GT 584		Х
260	Miconia stenostachya DC.	MELASTOMATACEAE	WAC 1180		Х
261	Salpinga dimorpha (Gleason) Wurdack	MELASTOMATACEAE	WAC 1035		Χ
262	Tibouchina lepidota (Bonpl.) Baill.	MELASTOMATACEAE	WAC 1038		Х
263	Guarea glabra Vahl	MELIACEAE	WAC 1061	Χ	
264	Ruagea glabra Triana & Planch.	MELIACEAE	WAC 1149		Х
265	Trichilia martiana C. DC.	MELIACEAE	GT 470		Χ
266	Trichilia pallida Sw.	MELIACEAE	WAC 744		Χ
267	Mendoncia glabrescens Leonard	MENDONCIACEAE	WAC 1010	Х	
268	Anomospermum reticulatum (Mart.) Eichler	MENISPERMACEAE	WAC 1159		Х
269	Mollinedia cf. killipii J.F. Macbr.	MONIMIACEAE	WAC 745	Χ	

Número			*Ejemplar de	Tipo de recolección		
	Nombre científico	Familia	referencia	Transecto	Muestreo general	
270	Mollinedia tomentosa (Benth.) Tul.	MONIMIACEAE	WAC 703		Х	
271	Clarisia biflora Ruiz & Pav.	MORACEAE	WAC 789	Χ	Χ	
272	Ficus americana Aubl.	MORACEAE	WAC 1013	Χ		
273	Helicostylis tovarensis (Klotzsch & Karsten) C.C.Berg	MORACEAE	WAC 1002	Χ		
274	Naucleopsis capirensis C.C. Berg	MORACEAE	WAC 746	Χ		
275	Perebea guianensis subsp. castilloides (Pittier) C.C. Berg	MORACEAE	WAC 1051	X	Х	
276	Ficus gomelleira Kunth & C.D. Bouché	MORACEAE	GT 546		Х	
277	Ficus mutisii Dugand	MORACEAE	WAC 1388		Х	
278	Ficus trigona L. f.	MORACEAE	WAC 704		Χ	
279	Sorocea sp.	MORACEAE	WAC 856		Х	
280	Compsoneura aff. capitellata (A. DC.) Warb.	MYRISTICACEAE	WAC 1216	Χ		
281	Virola macrocarpa A.C. Sm.	MYRISTICACEAE	WAC 1046	Χ		
282	Otoba novogranatensis Moldenke	MYRISTICACEAE	WAC 1319		Х	
283	Cybianthus occigranatensis (Cuatre.) Angostini	MYRSINACEAE	WAC 1043	Χ		
284	Cybianthus schlimii (Hook. f.) G. Agostini	MYRSINACEAE	WAC 732	Χ		
285	Cybianthus venezuelanus Mez	MYRSINACEAE	WAC 1218	Χ		
286	Myrsine coriacea (Sw.) R. Br. ex Roem. & Schult.	MYRSINACEAE	WAC 1260	Χ		
287	Parathesis sp.	MYRSINACEAE	WAC 1123	Χ		
288	Geissanthus occidentalis Cuatrec.	MYRSINACEAE	WAC 1028		Χ	
289	Myrsine aff. latifolia (Ruiz & Pav.) Spreng.	MYRSINACEAE	WAC 1260		Χ	
290	Myrsine pellucida (Ruiz & Pav.) Spreng.	MYRSINACEAE	WAC 1199		Χ	
291	Eugenia biflora DC.	MYRTACEAE	WAC 712	Χ		
292	Myrcia fallax (Rich.) DC.	MYRTACEAE	WAC 1047	Χ		
293	Myrcia paivae 0. Berg	MYRTACEAE	WAC 747	Χ		
294	<i>Myrcia</i> sp. 1	MYRTACEAE	WAC 1052	Χ		
295	Myrcia sp. 2	MYRTACEAE	WAC 1222	Χ		
296	Eugenia sp. 1	MYRTACEAE		Χ		
297	Eugenia sp. 2	MYRTACEAE		Χ		
298	Neea amplifolia Donn. Sm.	NYCTAGINACEAE	WAC 1435	Χ		
299	Ouratea cf. ferruginea Engl.	OCHNACEAE	WAC 857	Х		
300	Ludwigia hyssopifolia (G. Don) Exell	ONAGRACEAE	WAC 1204		Χ	
301	Epidendrum paniculatum Ruiz & Pav.	ORCHIDACEAE	WAC 1179	Χ		
302	Epidendrum sp. 1	ORCHIDACEAE	WAC 804	Χ		
303	Epidendrum sp. 2	ORCHIDACEAE	WAC 920	Χ		
304	Epidendrum sp. 3	ORCHIDACEAE	WAC 931	Χ		
305	Odontoglossum sp.	ORCHIDACEAE	WAC 1212	Χ		
306	Oncidium sp.	ORCHIDACEAE	WAC 705	Х		
307	Platystele examen-culicum Luer	ORCHIDACEAE	WAC 839	Χ		

Número			*Eiomplar do	Tipo de recolección		
	Nombre científico	Familia	*Ejemplar de referencia	Transecto	Muestreo general	
308	Pleurothallis garayana (Ospina) Luer	ORCHIDACEAE	WAC 858	Х		
309	Stelis sp.	ORCHIDACEAE	WAC 1024	Χ		
310	Oncidium abortivum Rchb. f.	ORCHIDACEAE	WAC 1144		Х	
311	Pleurothallis sp.	ORCHIDACEAE	WAC 748		Х	
312	Sobralia sp.	ORCHIDACEAE	GT 445		Х	
313	Passiflora alnifolia Kunth	PASSIFLORACEAE	WAC 1079		Χ	
314	Phyllanthus attenuatus Miq.	PHYLLANTHACEAE	WAC 993		Χ	
315	Richeria grandis Vahl	PHYLLANTHACEAE	WAC 706		Χ	
316	Phyllonoma ruscifolia Willd.	PHYLLONOMACEAE	WAC 1066		Χ	
317	Picramnia gracilis Tul	PICRAMNIACEAE	WAC 1326	Χ	Χ	
318	Peperomia sp.	PIPERACEAE	WAC 1469	Χ		
319	Piper aequale Vahl	PIPERACEAE	WAC 1151	Χ		
320	Piper archeri Trel. & Yunck.	PIPERACEAE	WAC 1198	Χ		
321	Piper munchanum C. DC.	PIPERACEAE	WAC 1202	Χ		
322	Peperomia umbellifera Yunck.	PIPERACEAE	WAC 838		Χ	
323	Piper calceolarium C. DC.	PIPERACEAE	WAC 1152		Χ	
324	Piper glanduligerum C. DC.	PIPERACEAE	WAC 1203		Х	
325	Chusquea aff. scandens Kunth	POACEAE	WAC 1454	Х		
326	Chasquea aff. purdieana Munro	POACEAE	GT 450	Χ		
327	Paspalum candidum (Humb. & Bonpl. ex Flüggé)	POACEAE	WAC 1261	Χ		
328	Kunth Axonopus compressus (Sw.)	POACEAE	WAC 1262		Х	
329	Paspalum sp.	POACEAE	WAC 1263		Х	
330	Podocarpus oleifolius (D. Don ex Lamb.) Kuntze	PODOCARPACEAE	WAC 1264		Х	
331	Securidaca sp.	POLYGALACEAE	WAC 653	Χ		
332	Monnina celastroides (Bonpl.) Chodat	POLYGALACEAE	WAC 1177		Х	
333	Campyloneurum angustifolium (Sw.) Fée	POLYPODIACEAE	WAC 859		Х	
334	Panopsis mucronata Cuatrec.	PROTEACEAE	GT 537	Χ		
335	Roupala montana Aubl.	PROTEACEAE	WAC 707		Х	
336	<i>Quiina</i> sp.	QUIINACEAE	WAC 836	Χ		
337	Sterigmapetalum colombianum Monach.	RHIZOPHORACEAE	WAC 1161	Χ	Χ	
338	Prunus sp.	ROSACEAE	WAC 711	Χ		
339	Coussarea paniculata (Vahl) Standl.	RUBIACEAE	WAC 638	Χ		
340	Elaeagia pastoensis L.E. Mora	RUBIACEAE	WAC 708	Χ	Χ	
341	Faramea glandulosa Poepp. & Endl.	RUBIACEAE	WAC 1081	Χ		
342	Faramea lehmannii Standl.	RUBIACEAE	WAC 844	Χ		
343	Faramea occidentalis (L.) A. Rich.	RUBIACEAE	WAC 1196	Χ		
344	Faramea oraria Standl. ex Steyerm	RUBIACEAE	GT 525	Χ		
345	Faramea parvula Standl.	RUBIACEAE	DT 946	Χ		
346	Hippotis brevipes Spruce ex K. Schum.	RUBIACEAE	WAC 1313	Х	Х	

			*Ejemplar de -	Tipo de recolección		
Número	Nombre científico	Familia	referencia	Transecto	Muestreo general	
347	Hoffmannia cf. pauciflora Standl.	RUBIACEAE	WAC 770	Χ		
348	Ladenbergia macrocarpa (Vahl) Klotzsch	RUBIACEAE	WAC 994	Χ	Х	
349	Ladenbergia muzonensis (Goudot) Standl.	RUBIACEAE	WAC 882	Χ	Х	
350	Notopleura longissima Bremek.	RUBIACEAE	GT 513	Χ		
351	Palicourea angustifolia Kunth	RUBIACEAE	WAC 1065	Χ		
352	Palicourea cf. acetosoides Wernham	RUBIACEAE	WAC 960	Χ		
353	Palicourea cf. calophlebia Standl.	RUBIACEAE	WAC 1074	Χ		
354	Palicourea sp.	RUBIACEAE	WAC 776	Χ		
355	Posoqueria latifolia (Rudge) Roem. & Schult.	RUBIACEAE	GT 536	Χ		
356	Psychotria allenii Standl.	RUBIACEAE	WAC 835	Х		
357	Psychotria brachiata Sw.	RUBIACEAE	WAC 1073	Х		
358	Psychotria poeppigiana Müll. Arg.	RUBIACEAE	WAC 998	Χ		
359	Rudgea cf. colombiana Standl.	RUBIACEAE	WAC 1242	Χ		
360	Amaioua guianensis Aubl.	RUBIACEAE	WAC 860		Х	
361	Coccocypselum 2hirsutum Bartl. ex DC.	RUBIACEAE	WAC 1241		Х	
362	Guettarda crispiflora Vahl	RUBIACEAE	WAC 1251		Х	
363	Palicourea rigidifolia (Dwyer & M.V. Hayden)	RUBIACEAE	WAC 833		Х	
364	Dwyer <i>Palicourea thermydri</i> J.H. Kirkbr.	RUBIACEAE	WAC 1158		χ	
365	Psychotria galeottiana (M. Martens) C.M. Taylor					
	& Lorence	RUBIACEAE	WAC 861		Х	
366	Psychotria reflexiramea Standl.	RUBIACEAE	WAC 750		Х	
367	Sabicea cana Hook. f.	RUBIACEAE	WAC 1001		Х	
368	Zanthoxylum sp.	RUTACEAE	WAC 879	Χ		
369	Hortia brasiliana Vand. ex DC.	RUTACEAE	WAC 793		Х	
370	Zanthoxylum melanostictum Schltdl. & Cham	RUTACEAE	WAC 1027		Х	
371	Meliosma glossophylla Cuatrec.	SABIACEAE	WAC 862	Χ		
372	Banara guianensis Aubl.	SALICACEAE	WAC 1023		Х	
373	Casearia arborea (Rich.) Urb.	SALICACEAE	WAC 1164		Х	
374	Casearia cajambrensis Cuatrec.	SALICACEAE	WAC 1214		Х	
375	Casearia grandiflora Cambess.	SALICACEAE	WAC 847		Х	
376	Casearia javitensis Kunth	SALICACEAE	WAC 735		Х	
377	Neoptychocarpus chocoensis A.H. Gentry & Forero	SALICACEAE	WAC 868		Х	
378	Allophyllus sp.	SAPINDACEAE	WAC 794	Χ		
379	Matayba arborescens (Aubl.) Radlk.	SAPINDACEAE	WAC 880	Χ		
380	Paullinia pachycarpa Benth.	SAPINDACEAE	GT 571	Χ	Х	
381	Serjania aff. rhombea Radlk.	SAPINDACEAE	WAC 1109	Χ		
382	<i>Talisia</i> sp.	SAPINDACEAE	WAC 863	Χ		
383	Cupania americana L.	SAPINDACEAE	WAC 1258		Х	
384	Paullinia clathrata Radlk.	SAPINDACEAE	GT 530		Х	
385	Chrysophyllum argenteum Jacq.	SAPOTACEAE	WAC 724	Χ		

Número			*Ejemplar de	Tipo de recolección		
	Nombre científico	Familia	referencia	Transecto	Muestreo general	
386	Chrysophyllum cf. colombianum (Aubrév.) T.D. Penn	SAPOTACEAE	WAC 918	Х		
387	Chrysophyllum prieurii A. DC.	SAPOTACEAE	WAC 1057	Х		
388	Micropholis crotonoides (Pierre) Pierre	SAPOTACEAE	WAC 665	Х	Х	
389	Pouteria cf. baehniana Monach.	SAPOTACEAE	WAC 831	Х		
390	Ecclinusa bullata T.D. Penn.	SAPOTACEAE	GT 501		Х	
391	Schlegelia monachinoi Moldenke	SCHLEGELIACEAE	WAC 840	Х		
392	Escobedia grandiflora (L. f.) Kuntze	SCROPHULARIACEAE	WAC 1082		Х	
393	Picrolemma huberi Ducke	SIMAROUBACEAE	WAC 1411		Х	
394	Siparuna cf. subscandens A.C. Sm.	SIPARUNACEAE	WAC 855	Х		
395	Siparuna aspera (Ruiz & Pav.) A. DC.	SIPARUNACEAE	WAC 1246		Х	
396	Siparuna conica S.S. Renner & Hausner	SIPARUNACEAE	WAC 1210		Х	
397	Smilax siphilitica Humb. & Bonpl. ex Willd.	SMILACACEAE	WAC 864	Х		
398	Juanulloa ochracea Cuatrec.	SOLANACEAE	WAC 709	Х		
399	Solanum thelopodium Sendtn.	SOLANACEAE	WAC 1167	Х		
400	Cestrum sp.	SOLANACEAE	GT 538		Х	
401	Solanum aturense Dunal	SOLANACEAE	WAC 1166		Х	
402	Turpinia occidentalis (Sw.) G. Don	STAPHYLLEACEAE	WAC 837		Х	
403	Styrax sp.	STYRACACEAE	WAC 881	Х		
404	Styrax macrocalyx Perkins	STYRACACEAE	WAC 1465		Х	
405	Gordonia fruticosa (Schrad.) H. Keng	THEACEAE	WAC 798	Х		
406	Ternstroemia macrocarpa Triana & Planch.	THEACEAE	WAC 980	Х		
407	Pourouma minor Benoist	URTICACEAE	WAC 1392	Х		
408	Cecropia angustifolia	URTICACEAE	WAC 1156		Х	
409	<i>Cecropia</i> sp.	URTICACEAE	WAC 1460		Х	
410	Cecropia telenitida Cuatrec.	URTICACEAE	WAC 691		Х	
411	Phenax hirtus (Sw.) Wedd.	URTICACEAE	WAC 1248		Χ	
412	Pourouma bicolor Mart.	URTICACEAE	WAC 731		Х	
413	Urera baccifera (L.) Gaudich. ex Wedd.	URTICACEAE	WAC 865		Х	
414	Valeriana sp.	VALERIANACEAE	WAC 961	Х		
415	Aegiphila falcata Donn. Sm	VERBENACEAE	WAC 1037		Х	
416	Aegiphila sp.	VERBENACEAE	WAC 883		Х	
417	Dendrophthora amalfiensis Kuijt	VISCACEAE	WAC 710		Х	
418	<i>Erisma</i> sp.	VOCHYSIACEAE	WAC 797	Χ		
419	Qualea sp.	VOCHYSIACEAE	WAC 832	Х		
420	Vochysia aff. aurantiaca Stafleu	VOCHYSIACEAE	GT 490	Χ	Х	
421	Renealmia foliifera Standl.	ZINGIBERACEAE	WAC 1327		Χ	

*WAC.: William Ariza Cortés.

*GT. Germán Téllez. *DT.: Dino Tuberquia.

Anexo. 2. Listado de las veinte especies con mayor IVI encontradas en un bosque premontano en el municipio de Amalfi, Antioquia. Incluye abundancia, frecuencia y área basal.

Especie	Abundancia	Abundancia	Frecuencia	Frecuencia	Área basal	Área basal	IVI
	absoluta	relativa	absoluta	relativa	absoluta	relativa	
Quercus humboldtii Bonpl.	4	0.008	0.2	0.34%	0.720	12.59%	13.77%
Protium aff. tovarense Pittier	22	0.046	0.8	1.36%	0.223	3.90%	9.87%
Chrysophyllum prieurii A. DC.	3	0.006	0.6	1.02%	0.461	8.06%	9.71%
Wettinia fascicularis (Burret) H.E. Moore & J. Dransf.	25	0.052	1	1.70%	0.150	2.62%	9.56%
Roucheria columbiana Hallier f.	19	0.040	1	1.70%	0.196	3.42%	9.11%
Dacryodes sp.	3	0.006	0.2	0.34%	0.370	6.46%	7.43%
Terstroemia macrocarpa Triana & Planch.	4	0.008	0.6	1.02%	0.299	5.22%	7.08%
Vochysia aff. aurantiaca aurantiaca Stafleu	6	0.013	0.6	1.02%	0.214	3.75%	6.02%
Compsoneura aff. capitellata (A. DC.) Warb.	12	0.025	0.8	1.36%	0.112	1.96%	5.84%
Tovomita weddelliana Planch. & Triana	10	0.021	0.8	1.36%	0.128	2.25%	5.70%
<i>Graffenrieda latifolia</i> subsp. <i>meridensis</i> Wurdack	11	0.023	0.8	1.36%	0.106	1.85%	5.52%
Micropholis crotonoides (Pierre) Pierre	4	0.008	0.6	1.02%	0.194	3.39%	5.25%
Miconia punctata (Desr.) D. Don ex DC.	14	0.029	0.8	1.36%	0.031	0.55%	4.84%
Cyathea multiflora Sm.	12	0.025	0.8	1.36%	0.050	0.88%	4.76%
Wettinia kalbreyeri (Burret) R. Bernal	8	0.017	0.8	1.36%	0.090	1.58%	4.62%
Quiina sp.	3	0.006	0.6	1.02%	0.154	2.70%	4.35%
Aniba coto (Rusby) Kosterm.	6	0.013	0.6	1.02%	0.100	1.75%	4.03%
Clusia cf. magnifolia Cuatrec.	11	0.023	0.8	1.36%	0.017	0.30%	3.97%
Miconia lamprophylla Triana	11	0.023	0.8	1.36%	0.002	0.04%	3.71%
Erythroxylum citrifolium A. StHil.	7	0.015	0.6	1.02%	0.068	1.20%	3.68%