

Revista Mexicana de Biodiversidad

ISSN: 1870-3453 falvarez@ib.unam.mx

Universidad Nacional Autónoma de México México

Cárdenas, Melissa Q.; Fernandes, Berenice M. M.; Justo, Márcia C. N.; dos Santos, Antônia L.; Cohen, Simone C.

Helminth parasites of Ctenosciaena gracilicirrhus (Perciformes: Sciaenidae) from the coast of Angra dos Reis, Rio de Janeiro State, Brazil

Revista Mexicana de Biodiversidad, vol. 83, núm. 1, 2012, pp. 31-35

Universidad Nacional Autónoma de México

Distrito Federal, México

Available in: http://www.redalyc.org/articulo.oa?id=42523212003

Complete issue

More information about this article

Journal's homepage in redalyc.org

Scientific Information System

Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative

Helminth parasites of *Ctenosciaena gracilicirrhus* (Perciformes: Sciaenidae) from the coast of Angra dos Reis, Rio de Janeiro State, Brazil

Helmintos parásitos de *Ctenosciaena gracilicirrhus* (Perciformes: Sciaenidae) de la costa d Angra dos Reis, del estado de Rio de Janeiro, Brasil

C. Cohen¹

Melissa Q. Cárdenas[™], Berenice M. M. Fernandes^¹, Márcia C. N. Justo^¹, Antônia L. dos Santos^² and Simono

¹Laboratório de Helmintos Parasitos de Peixes, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil.

²Laboratório de Bioquímica de Proteínas e Peptídeos, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil.

★ melissaq@ioc.fiocruz.br

Abstract. During a survey of the helminth parasites of *Ctenosciaena gracilicirrhus* from the Atlantic Ocean, off Angra dos Reis, Rio de Janeiro State, Brazil, 10 species of metazoan parasites were collected: 1 species of Monogenea (*Choricotyle rohdei*); 3 species of Nematoda (*Hysterothylacium* sp. third stage larvae, *Raphidascaris* sp. third stage larvae, and *Procamallanus* (*Spirocamallanus*) pereirai third and fourth stages larvae and adults); 6 species of Digenea (*Opecoeloides pedicathedrae*, *Opecoeloides melanopteri*, *Diplomonorchis leiostomi*, *Aponurus laguncula*, *Parahemiurus merus* and *Manteriella* sp.). *Choricotyle rohdei* and *Hysterothylacium* sp. had the highest prevalence, mean intensity and abundance and an aggregated pattern of distribution was observed in both species. A positive correlation between the standard length of hosts and the parasitic abundance of *Hysterothylacium* sp. and *C. rohdei* was observed. The prevalence of *C. rohdei* was positively correlated with standard length of the host, while in *Hysterothylacium* sp. there was no correlation. *Ctenosciaena gracilicirrhus* represents a new host record to all species of Nematoda and Digenea presented herein. The genus *Manteriella* is reported for the first time in South America.

Key words: Digenea, Monogenea, Nematoda, fishes, South America.

Resumen. Durante un estudio de los helmintos de *Ctenosciaena gracilicirrhus* de la zona costera de Angra dos Reis, Rio de Janeiro, Brasil, 10 especies de parásitos metazoos fueron recolectados: 1 especie de Monogenea (*Choricotyle rohdei*); 6 de Digenea (*Opecoeloides pedicathedrae, Opecoeloides melanopteri, Diplomonorchis leiostomi, Aponurus laguncula, Parahemiurus merus* y *Manteriella* sp.); 3 nemátodos (*Hysterothylacium* sp. y *Raphidascaris* sp., ambas larvas de tercer estadio y *Procamallanus* (*Spirocamallanus*) *pereira*, larvas de tercer y cuarto estadios y adultos). *Choricotyle rohdei* y *Hysterothylacium* sp. presentaron la mayor prevalencia, intensidad media y abundancia, así como un patrón agregado de distribución. Se observó una correlación positiva entre la longitud estándar de los hospederos y la abundancia parasitaria de *Hysterothylacium* sp. y *C. rohdei*. La prevalencia de *Choricotyle rohdei* se relaciona positivamente con la longitud estándar del huésped, mientras que en *Hysterothylacium* sp., no hubo correlación. *Ctenosciaena gracilicirrhus* representa un nuevo registro de huésped para todas las especies de Digenea y Nematoda registrados en este trabajo. El género *Manteriella* se registra por primera vez en América del Sur.

Palabras clave: Digenea, Monogenea, Nematoda, peces, América del Sur.

Introduction

The study of helminth fauna of marine fishes is very important to understand biological and ecological aspects and the host-parasite relationship. Besides this, the status of a marine environment can be studied directly by using water quality parameters, or indirectly by using bioindicators such as fish parasites (Palm and Rückert, 2009).

Considering that most fish species are economical important, the presence of these helminths depreciat their commercial value, and some nematode, cestode ar trematode larvae have a zoonotic potential.

Ctenosciaena gracilicirrhus (Metzelaar, 1919) inhabi coastal waters, usually over sandy mud bottoms, and distributed in Nicaragua along the Caribbean coast ar Atlantic coasts of South America to southern Brazil. feeds mainly on shrimps (Froese and Pauly, 2011).

Recently, some studies have focused on characteristic of the community ecology of the metazoan parasites from the coastal zone of Angra dos Reis, State of Rio de Janeiro

Brazil (Tavares et al., 2004; Tavares and Luque, 2004a, b; Bicudo et al. 2005; Tavares and Luque, 2008). However, the helminth fauna of *C. gracilicirrhus* is being studied for the first time contributing to the knowledge of the biodiversity of the region.

Materials and Methods

From August 2007 to February 2009, 203 specimens of Ctenosciaena gracilicirrhus from the coast of Angra dos Reis, Rio de Janeiro State, Brazil (23°00'24" S, 44°19'05" W) were collected in order to determine the helminth fauna of this host. For taxonomic studies the nematodes were rinsed in 0.7% NaCl solution, fixed in hot AFA (2% glacial acetic acid, 3% formaldehyde, and 95% of 70% alcohol) and clarified in phenol 50%. The gill archs were separated and the monogeneans collected were cold fixed in 5% formaldehyde, with or without light cover glass pressure. The digeneans were cold fixed in AFA with slight compression under cover glass. Specimens of Monogenea and Digenea were stained with Langeron's alcoholic acid carmine, dehydrated in an ethyl-alcohol series, cleared in beechwood creosote and mounted in Canada balsam as permanent slides. Vouchers specimens were deposited in the "Coleção Helmintológica do Instituto Oswaldo Cruz" (CHIOC), Rio de Janeiro, Brazil. Calculations of the parameters of infection, related to prevalence, mean intensity, mean abundance were based on Bush et al. (1997). The quotient between variance and mean of parasite abundance (index of dispersion) was used to determine possible distribution patterns and was tested by the d statistical index (Ludwig and Reynolds, 1988). Spearman's rank correlation coefficient (rs) was used determine possible correlations between the standard length of hosts and parasites abundances of each species of parasite. To test correlations between the standard length and the prevalence of infection of each species of parasite, Pearsons's correlation coefficient (r) was used, with angular processing of prevalence data (arc sine \sqrt{x}) (Zar, 1996) and partition of host samples into twenty 0.7 cm length intervals. Statistical analyses were applied to parasite species with over 10% prevalence and the results considered significant when $p \ge 0.05$.

Results

Two hundred and three specimens of *Ctenosciaena* gracilicirrhus were analysed, with standard length that ranged from 3 to 17 cm (10±2.1 cm). Ten species of helminth parasites were collected: 1 of Monogenea (*Choricotyle rohdei* Cohen, Cárdenas, Fernandes and Kohn, 2011); 6 of Digenea (*Opecoeloides pedicathedrae* Travassos, Freitas

and Bührnheim, 1966, Opecoeloides melanopteri Amat 1983, Diplomonorchis leiostomi Hopkins, 1941, Aponura laguncula Looss, 1907, Parahemiurus merus (Linto 1910) Manter, 1940 and Manteriella sp.), and 3 specio of Nematoda (Hysterothylacium sp. third stage larva Raphidascaris sp. third stage larvae, and Procamallanus (Spirocamallanus) pereirai Annereaux, 1946 (third stage larvae, fourth stage larvae and adults).

Choricotyle rohdei and Hysterothylacium sp. ha the highest prevalence, mean intensity and abundane (Table 1). Although Digenea was the group that showed high diversity of species, they presented a low prevalence and mean intensity (Table 1).

C. rohdei and *Hysterothylacium* sp. showed a typic aggregated distribution pattern presenting an index dispersion (DI= 12.6, d= 52.2 and DI= 30.8, d= 92.4 respectively.

Spearman's rank correlation coefficient indicated positive correlation between the standard length of hos and the parasitic abundance of *Hysterothylacium* sp. at *C. rohdei*. Pearsons's correlation coefficient showed the prevalence of *C. rohdei* was positively correlated wis standard length of the host, while in *Hysterothylacium* s there was no correlation (Table 2).

The host sex does not influence the prevalence at abundance of infection, (*Choricotyle* Z_c = -0.18, P= 0.7 and *Hysterothylacium* Z_c = -0.11, P= 0.99).

Discussion

Previous studies on helminth parasites from of gracilicirrhus were published by Pereira and Boeger (200 with a proposition of a new species of trypanorhync Heteronybelinia annakohnae, collected from Rio Grand and also reported Progillotia dollfusi Carvajal and Reg 1983 from Rio de Janeiro, both in Brazil. Recently, a ne monogenean species, Choricotyle rohdei was describe from this host (Cohen et al., 2011). In the present paper C. gracilicirrhus is referred to as a new host for all species of Nematoda and Digenea, and the detection of the gent Manteriella Yamaguti, 1958 represents the first report the genus in South America.

The presence of distinct larval helminths suggests the possibility that *C. gracilicirrhus* occupies an intermedial level in the marine food web. Nematodes of the Ascaridoidea (families Anisakidae and Raphidascarididae naturally parasitize fishes, cephalopods, marine mamma and piscivorous birds, and humans can also become accidental hosts by ingestion of infected fish. The presence of anisakid larvae on the viscera and flesh may have a impact upon visual aesthetics and the market value, an parasite removal only adds to the product cost while

Table 1. Prevalence (P), mean intensity (MI), mean abundance (MA) and site of infection of the parasites from *Ctenosciaena graci cirrhus* from the coastal zone of Angra dos Reis, Rio de Janeiro State, Brazil

Parasites	P%	IR	I/MI (SD)	MA (SD)	Site of Infection
MONOGENEA					
Choricotyle rohdei (CHIOC 37.473-37.491)	25.1	1 - 19	1.96 ± 2.56	0.49 ± 1.55	Gills
DIGENEA					
Aponurus laguncula (CHIOC 37.535)	0.50	-	2*	-	Intestine
Diplomonorchis leiostomi (CHIOC 37.534)	0.50	-	1*	-	Intestine
Manteriella sp. (CHIOC 37.539)	0.50	-	1*	-	Intestine
Opecoeloides melanopteri (CHIOC 37.537)	2.50	-	1.00	0.02 ± 0.15	Stomach
					Intestine
Opecoeloides pedicathedrae (CHIOC 37.536)	7.40	1 - 2	1.13 ± 0.35	0.08 ± 0.31	Intestine
Parahemiurus merus	0.50	-	1*	-	Intestine
Immature specimen (CHIOC 37.538)					
NEMATODA					
Hysterothylacium sp. (larvae) (CHIOC 35.772)	10.30	1 - 12	1.81 ± 2.4	0.19 ± 0.9	Body Cavity Stomach
Procamallanus (S.) pereirai (adults and larvae)	7.40	1 - 2	1.07 ± 0.22	0.08 ± 0.30	Intestine
(CHIOC 35.773, 35.775, 35.776)					
Raphidascaris sp. (larva)	0.50	-	1*	-	Intestine
(CHIOC 35.774)					

(SD)= Standard deviation,* only one specimen parasitized.

Table 2. Values of Spearman's rank correlation coefficient (*rs*) and Pearson's correlation coefficient (*r*) obtained in relations between standard length of host, abundance and prevalence of *Choricotyle rohdei* and *Hysterothylacium* sp.

Parasite species	rs	p	r	p
Choricotyle rohdei	0.754*	< 0.0001	0.599*	0.0052
Hysterothylacium sp.	0.535^{*}	< 0.0001	0.416	0.0679

p= level of significance, (*) significant values.

further reducing its attraction to consumers (Doupé et al. 2003).

The present work provides a new host record for third stage larvae of *Hysterothylacium* sp. and *Raphidascaris* sp. Only a single individual of *Raphidascaris* sp. was found in the intestine, which may indicate that *C. gracilicirrhus* is an accidental host for this species. However, *Hysterothylacium* sp. had a high prevalence indicating that *C. gracilicirrhus* is an important host for this alogenous endohelminth species.

Camallanids are considered a health problem for fishes when maintained in a closed ecosystem in the presence of suitable intermediate hosts (Rychlinski and Deardorff, 1982). Most species of *Procamallanus* (*Spirocamallanus*) are parasites of freshwater and marine hosts in South America. The larval stages of *P.* (*S.*) pereirai have been reported in 3 marine fish species of the family Sciaenidae: *Nebris microps* Cuvier, 1830, *Paralonchurus brasiliensis* (Steindachner, 1875), *Macrodon ancylodon* (Bloch and Schneider, 1801) and *Stellifer brasiliensis* (Schulz, 1945), and 1 more of the family Cyanoglossidae: *Symphurus*

tesselatus (Quoy and Gaimard, 1824), from Rio de Janei: State (Santos et al., 1999).

Choricotyle rohdei and Hysterothylacium sp. showed the typical aggregated pattern of distribution observed many parasite systems. According to Holmes (1990), the aggregated distribution may increase the reproductive efficiency in some adult species, since it enhances matrix opportunities. Besides, this distribution pattern improve the opportunity to infect the host (Dobson, 1990).

The high abundance of *C. rohdei* might be related to the population density increase of *C. gracilicirrhus* in offshoreproductive grounds, which might facilitate transmission of ectoparasites with a direct life cycle, similar to the suggested by Venerus et al. (2005) in *Pseudoperc semifasciata* off Patagonia.

A positive correlation between the standard leng of hosts and the parasitic abundance of *C. rohdei* at *Hysterothylacium* sp. indicates that the number of specimen of parasites is greater as the standard length of fish increases. The same occurs between the standard length host and the prevalence of *C. rohdei*. In *Hysterothylaciu* sp., however, no correlation was observed between the prevalence of parasites and the standard length of the host

In our results we observed that host sex does n influence the prevalence and abundance of infectio According to Luque et al. (1996) and Alves et al. (200 the absence of correlations in parasite prevalence are abundance with the sex of the host fish is a wide documented pattern, and interpreted as a consequence absence of sexual differences in some biological aspect of the fish.

As mentioned by Polyanski (1961), quantitative and qualitative changes in parasitism are expected as the fish grows. Saad-Fares and Combes (1992) related that ontogenetical changes in the feeding behavior might have an influence on parasite prevalence and abundance in the host size classes. However, this pattern cannot be generalized because in many host-parasite species systems the correlation is positive but weak and non-significant (Saad-Fares and Combes, 1992; Poulin, 2000).

The present study increases the data on the biodiversity and enhances the knowledge of the helminthes with regard to public health importance, such as the nematodes of family Anisakidae. However, more information about host biology is needed to improve the interpretation of these parasitological patterns, in an ecological framework incorporating pertinent environmental and biological information, as recommended by Marcogliese (2001).

Acknowledgments

The authors are grateful to Dr Pedro José Diniz de Figueiredo from "Central Nuclear Almirante Álvaro Alberto, Eletrobrás, Eletronuclear, Angra dos Reis" and Dr Aderval Ferrari Vaz de Almeida from "Laboratório de Monitoração Ambiental, Eletronuclear, Angra dos Reis", for the facilities and infrastructure offered to examine the fishes, and by the classification of the hosts.

Literature cited

- Alves, D. R., J. L. Luque and A. R. Paraguassú. 2002. Community ecology of the metazoan parasites of Pink Cuskeel, Genypterus brasiliensis (Ostechthyes: Ophidiidae) from the coastal zone of the State of Rio de Janeiro, Brazil. Memórias do Instituto Oswaldo Cruz 97:683-689.
- Bicudo, J. A., L. E. R.Tavares and J. L. Luque. 2005. Larvas de Anisakidae (Nematoda: Ascaridoidea) parasitas da cabrinha *Prionotus punctatus* (Bloch, 1793) (Osteichthyes: Triglidae) do litoral do Estado do Rio de Janeiro, Brasil. Revista Brasileira de Parasitologia Veterinária 14:109-118.
- Bush, A. O., K. D. Lafferty, J. M. Lotz and A. W. Shostak. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83:575-83.
- Cohen, S. C., M. Q. Cárdenas, B. M. M. Fernandes and A. Kohn. 2011. On a new species of *Choricotyle* (Monogenea, Diclidophoridae) a parasite of a marine fish from the littoral of the State of Rio de Janeiro, Brazil. Comparative Parasitology 78:261-264.
- Dobson, A. P. 1990. Models of multi-species parasites-host communities. *In* Parasite communities: patterns and process, G. W. Esch, A. O. Bush and J. Aho (eds.). Chapman and Hall, New York. p. 261-287.

- Doupé, R. G., A. J. Lymbery, S. Wong and R. P. Hobbs. 200 Larval anisakid infections of some tropical fish speci from north-west Australia. Journal of Helminthology 77:363-365
- Froese, R. and D. Pauly (Eds.) 2011. FishBase. World Wie Web electronic publication. www.fishbase.org; last access 01.II.2011.
- Holmes, J. C. 1990. Competition, contacts, and other factor restricting niches of parasitic helminths. Annales Parasitologie Humaine et Comparée 65:69-72.
- Ludwig, J. A. and J. F. Reynolds. 1988. Statistical Ecolog A primer methods and computing. Wiley-Interscient Publications, New York. 337 p.
- Luque, J. L., J. F. R. Amato and R. M. Takemoto. 199 Comparative analysis of the communities of metazor parasites of *Orthopristis ruber* and *Haemulon steindachne* (Osteichthyes: Haemulidae) from the southeastern Brazilia littoral: I. Structure and influence of the size and sex hosts. Revista Brasileira de Biologia 56:279-292.
- Marcogliese, D. J. 2001. Pursuing parasites up the food chain implications of food web structure and function on parasit communities in aquatic systems. Acta Parasitologica 46:82-9
- Palm, H. W. and S. Rückert. 2009. A new approach to visualiecosystem health by using parasites. Parasitology Research 105:539-53.
- Pereira, J. Jr. and W. A. Boeger. 2005. Larval tapeworn (Platyhelminthes, Cestoda) from sciaenid fishes of the southern coast of Brazil. Zoosystema 27:5-25.
- Polyanski, Y. I. 1961. Ecology of parasites of marine fishes. Parasitology of Fishes, V. A. Dogiel, G. K. Petrushevs and Y. I. Polyanski. Oliver and Boyd (eds.). Oliver & Boy Edinburgh and London. p. 47.
- Poulin, R. 2000. Variation in the intraspecific relationsh between fish length and intensity of parasitic infectio biological and statistical causes. Journal of Fish Biolog 56:123-137.
- Rychlinski, R. A. and T. L. Deardorff. 1982. Disease prevention and control. *Spirocamallanus*: a potential fish heal problem. Freshwater and Marine Aquarium 5:79-83.
- Saad-Fares, A. and C. Combes. 1992. Abundance/host si relationships in a fish trematode community. Journal Helminthology 66:187-192.
- Santos, C. P., M. Q. Cárdenas and H. Lent. 1999. Studies of Procamallanus (Spirocamallanus) pereirai Annereau 1946 (Nematoda: Camallanidae), with new host records an new morphological data on the larval stages. Memórias of Instituto Oswaldo Cruz 94:635-40.
- Tavares, L. E. R., A. J. A. Bicudo and J. L. Luque. 200 Metazoan parasites of needlefish *Tylosurus acus* (Lacépèd 1803) (Osteichthyes: Belonidae) from the coastal zone the State of Rio de Janeiro, Brazil. Revista Brasileira of Parasitologia Veterinária 13:36-40.

- Tavares, L. E. and J. L. Luque. 2004a. Community ecology of metazoan parasites of the later juvenile common snook *Centropomus undecimalis* (Osteichthyes: Centropomidae) from the coastal zone of the state of Rio de Janeiro, Brazil. Brazilian Journal Biology 64:523-529.
- Tavares, L. E. and J. L. Luque. 2004b. Community ecology of the metazoan parasites of white sea catfish, *Netuma barba* (Osteichthyes: Ariidae), from the coastal zone of the state of Rio de Janeiro, Brazil. Brazilian Journal of Biology 64:169-76.
- Tavares, L. E. R. and J. L. Luque. 2008. Similarity between metazoan parasite communities of two sympatric brackings species from Brazil. Journal of Parasitology 94:98 989
- Venerus, L. A., L. Machinandiarena, M. D. Ehrlich and A. M. Parma. 2005. Early life history of the Argentine sandpere *Pseudopercis semifasciata* (Pinguipedidae) off northe Patagonia. Fishery Bulletin 103:195-206.
- Zar, J. H. 1996. Biostatistical analysis. 3rd ed., Prentice-Ha Inc., New Jersey, Upper Saddle River. 662 p.