

Agronomía Mesoamericana

ISSN: 1021-7444

pccmca@cariari.ucr.ac.cr

Universidad de Costa Rica

Costa Rica

Noda-Leyva, Yolai; Pérez-Vázquez, Arturo; Valdés-Rodríguez, Ofelia Andrea Establecimiento de tres especies de oleaginosas bajo asociación Agronomía Mesoamericana, vol. 26, núm. 2, 2015, pp. 323-332 Universidad de Costa Rica Alajuela, Costa Rica

Disponible en: http://www.redalyc.org/articulo.oa?id=43738993013

Número completo

Más información del artículo

Página de la revista en redalyc.org

ESTABLECIMIENTO DE TRES ESPECIES DE OLEAGINOSAS BAJO ASOCIACIÓN¹

Yolai Noda-Leyva², Arturo Pérez-Vázquez³, Ofelia Andrea Valdés-Rodríguez⁴

RESUMEN

Establecimiento de tres especies de oleaginosas bajo asociación. El objetivo del presente trabajo fue evaluar la asociación de tres especies de oleaginosas: Jatropha curcas (Linn), Ricinus communis (Linn) y Moringa oleifera (Lam) en la etapa de establecimiento. El estudio se realizó en el área experimental del Colegio de Postgraduados, Campus Veracruz, México, durante el periodo 2013-2014. Se utilizó un diseño completamente aleatorizado y se muestrearon diez plantas al azar por cada especie en las que se evaluó altura de la planta, grosor del tallo y de la rama primaria, proyección de la copa y afectaciones por plagas y enfermedades. Se empleó estadística descriptiva (promedio). Jatropha y Moringa tuvieron un crecimiento acelerado (20 cm) entre los 45 y 60 días de evaluación, mientras que el crecimiento de Ricinus fue más lento (10 cm) y su altura resultó inferior a la reportada en la literatura. Las variables grosor del tallo y de la rama primaria y proyección de la copa en J. curcas y M. oleifera tuvieron poca variabilidad; las plantas de Ricinus fueron afectadas por plagas y patógenos, sin embargo, no se encontraron los mismos insectos en las especies evaluadas. Moringa fue la especie que sobresalió respecto a las variables evaluadas y Jatropha expresó un comportamiento morfológico similar al encontrado en sistemas de monocultivo. Para Ricinus la asociación no fue favorable debido al efecto de la sombra y el ataque severo de agentes patógenos.

Palabras clave: cultivos asociados, plantas oleaginosas, morfología vegetal.

ABSTRACT

Establishment of three species of oleaginous under association. The objective of this study was to evaluate the association of three species of oleaginous: Jatropha curcas (Linn), Ricinus communis (Linn) and Moringa oleifera (Lam) in the establishment phase. The study was conducted in the experimental area of Colegio Postgraduados, Campus Veracruz, in Mexico from 2013 to 2014. A completely randomized design was used and ten plants of each species were randomly sampled; plant height, stem and the primary branch diameter, the projection of the crown and pests and diseases problems were evaluated. Descriptive statistics (average) was used. Jatropha and Moringa had a growth spurt (20 cm) between 45 and 60 days of evaluation, while Ricinus growth was slower (10 cm) and its height was lower than reported in the literature. The variables of the stem and the primary branch diameter as well as the crown projection of J. curcas and M. oleifera had little variability; Ricinus plants were affected by pests and pathogens; however, the insects found were not the same in the species tested. Moringa was the species that had the highest value in most of the variables evaluated and Jatropha had a morphological pattern similar to that found in monoculture systems. For Ricinus, the association was not favourable due to the effect of shade and the severe attack of pathogens.

Keywords: associated crops, oil crops, plant morphology.

Colegio de Veracruz, Carrillo Puerto no. 26, Xalapa, Ver. México. CP 91000. valdesandrea@yahoo.com.mx

Recibido: 18 de noviembre, 2014. Aceptado: 18 de marzo, 2015. Este trabajo fue parte del proyecto de investigación "Evaluación del impacto social de proyectos de biocombustibles en el sureste de México", financiado por la Secretaria de Relaciones Exteriores de México.

Universidad de Matanzas Camilo Cienfuegos, Estación Experimental de Pastos y Forrajes Indio Hatuey. Ministerio de Educación Superior, Central España Republicana. CP 44280, Matanzas, Cuba. Teléfono (053) 57-1225. yolai.noda@ihatuey.cu (Autor para correspondencia)

Colegio de Postgraduados, Campus Veracruz. Km. 88.5 Carretera Federal Xalapa-Veracruz, vía Paso de Ovejas entre Puente Jula y Paso San Juan, Tepetates, Veracruz. CP 91690. Apartado Postal 421 Veracruz, México. parturo@colpos.mx

INTRODUCCIÓN

De acuerdo con la Agencia Internacional de Energía, la demanda de este recurso crecerá para el 2040 en un 37% en todo el mundo. En el caso específico del petróleo, el consumo es mucho mayor que la producción. En el año 2014 el incremento fue de 1,4%, lo cual no deja de ser paradójico que en el mundo año tras año se consuman unos cuantos millones de barriles diarios más de los que se producen (IEA, 2014).

Los cultivos energéticos o agroenergéticos constituyen una solución apropiada, ya que cualquier país puede fabricar su propio biocombustible, aunque los costos de producción favorezcan más a unas naciones que a otras (Rodrígues, 2009), lo que dependerá en gran medida de las especies vegetales seleccionadas, la adecuada ruta tecnológica que se utilice y el uso apropiado de la tierra.

Actualmente, existen diversos criterios sobre la utilización de los suelos agrícolas para el fomento de los cultivos energéticos. En este sentido, CEPAL-FAO (2007); FAO (2008) y Suárez (2014), sugieren utilizarlos en los suelos menos productivos, y emplear cultivos asociados para hacer un uso óptimo de la tierra.

Diferentes especies de plantas se han estudiado con el propósito de generar fuentes alternas de combustión, un caso especial son las plantas C₄, como el maíz (Zea mays), la caña de azúcar (Saccharum officinarum) y el sorgo (Sorghum bicolor), que poseen alta eficiencia fotosintética y son capaces de capturar hasta el 5% de la energía solar; además, fijan mayor cantidad de CO, y lo convierten en compuestos orgánicos de cadenas carbonadas más largas. Por tanto, estos cultivos tienen potencial para producir grandes cantidades de energía por unidad de área cultivada en un tiempo dado (Zhu, 2008). Otras plantas C₃ como soya (Glycine max), girasol (Helianthus annus), Jatropha (Jatropha curcas), Ricinus (Ricinus communis) y Moringa (Moringa oleifera) - entre las oleaginosas - son capaces de producir frutos de alto valor energético como alimento humano y animal y/o combustible (Funes et al., 2011).

La Jatropha y Ricinus se destacan como plantas energéticas, ya que no compiten con la alimentación humana. En cambio, en los últimos cinco años, la Moringa ha sido muy aceptada para el consumo, fundamentalmente de sus hojas y semillas, debido a sus propiedades medicinales, pero también se ha incluido

su uso para la obtención de biodiesel. Estos cultivos, en sentido general, contribuyen al mejoramiento medioambiental, ya que incrementan la reforestación, fijan CO₂ y mejoran el suelo. Además, son una fuente generadora de empleos y propician el desarrollo económico rural, a partir de la obtención de materias primas, nuevos renglones exportables, y por ende, disminución en las importaciones (Suárez et al., 2014).

Estas plantas crecen con frecuencia en suelos yermos, potreros y tierras de cultivo, sin embargo, es poco probable que se encuentren asociadas formando un sistema agrícola de producción; por tanto el objetivo del presente trabajo fue evaluar la asociación de tres especies de oleaginosas: *Jatropha curcas* (Linn), *Ricinus communis* (Linn) y *Moringa oleífera* (Lam) en la etapa de establecimiento.

MATERIALES Y MÉTODOS

Ubicación del área experimental

Este trabajo se realizó en el área agrícola experimental del Colegio de Postgraduados, Veracruz, México, ubicado en la zona centro del Estado, en las coordenadas 19º 06′00" de latitud norte y 96º 16′32" de longitud oeste, a una altitud de 67 msnm. Limita al norte con Paso de Ovejas; al este con Medellín; al sureste con Jamapa; y al sur y oeste con Soledad de Doblado.

Periodo de evaluación

El estudio se realizó en un sistema de asociación de cultivos Jatropha, Ricinus y Moringa provenientes de Sotavento, San Luis Potosí y del Estado de Morelos, respectivamente. Estas fueron sembradas en vivero el 1 de marzo de 2013 y trasplantadas a campo 64 días después (5 de mayo de 2013).

El período experimental comenzó el 12 de mayo del 2014 y terminó el 28 de julio del 2014. Las evaluaciones se realizaron cada quince días, para un total de siete muestreos.

El suelo del área experimental

El análisis químico del suelo se realizó a una profundidad entre 15 y 30 cm (Anderson e Ingram, 1993), en cinco puntos diferentes del área de estudio. Se determinó el pH por el método potenciométrico

(Gómez et al., 1995); la conductividad eléctrica (CE), nitrógeno (N) y potasio (K) mediante las técnicas de la AOAC (1995); el fósforo (P) por el método de Oniani (1964); así como los porcentajes de arcilla, limo y arenas (Cuadro 1).

Cuadro 1. Características químicas del suelo perteneciente al área experimental del Colegio de Postgraduados de Veracruz, México. Mayo a julio de 2014.

Table 1. Chemical characteristics of soil at the experimental area of Colegio de Postgraduados in Veracruz, Mexico. From May to July, 2014.

Indicador	Valor medio
pH	6,28
CE (dS/m)	0,12
N (%)	0,14
P (ppm)	17,66
K (ppm)	0,89
Arcilla (%)	40,85
Limo (%)	23,15
Arena (%)	36,00

El suelo se clasificó de textura franco arcilloso. De acuerdo con dichos indicadores (Cuadro 1), esta área tiende a ser ligeramente ácida. Es considerado medianamente rico en nitrógeno; los tenores de fósforo disponible y de bases intercambiables (K) fueron altos. Por los niveles de CE es un suelo no salino, por tanto, en función de estas características, puede considerarse de alta fertilidad (Fernández et al., 2006).

El clima durante el periodo experimental

En el Cuadro 2 se muestra el valor total de precipitaciones, así como los valores medios de temperatura máxima, media y mínima y la humedad relativa del primer año de los cultivos y del periodo en el que se realizó el estudio.

La humedad relativa alcanzó valores representativos para las condiciones de Veracruz, con valores similares a la media histórica (Anon, 2014).

Diseño y metodología experimental

Todas las plántulas de Moringa, Jatropha y Ricinus fueron sembradas a un marco de 3 m entre surcos y 2 m entre plantas (densidad de 1666,6 plantas/ha), los cuales fueron intercalados a una distancia de 1 m.

Se utilizó un diseño totalmente aleatorizado, considerando cada planta a muestrear como una réplica. El área total fue de 878 m², para llevar a cabo la determinación de los indicadores morfológicos se muestrearon diez plantas al azar para cada especie, lo que representó un tamaño de muestra de 9,5%.

Variables medidas y frecuencias de las mediciones

Las fechas de muestreo correspondieron con el final del establecimiento de las plantas e inicio de la etapa de producción de cada especie, exactamente un año después del trasplante (12 de mayo de 2014). A partir de esa fecha las evaluaciones se realizaron cada quince días, según la metodología propuesta por Campuzano (2009).

Las evaluaciones realizadas fueron las siguientes:

- Altura de la planta (cm): se empleó una cinta

Cuadro 2. Comportamiento de las variables climáticas en el Colegio de Postgraduados de Veracruz, México, de mayo de 2013 a abril de 2014 y del periodo experimental, donde se evaluó la asociación de tres oleaginosas durante su establecimiento, de mayo a julio de 2014.

Table 2. Behavior of climate variables at Colegio de Postgraduados in Veracruz, Mexico, from May 2013 to April 2014 and the experimental period, where the association of three aleaginous was evaluated during establishment, from May to July, 2014.

Período	Te	emperatura (°	Humedad	Precipitación		
	Máxima	Mínima	Media	relativa (%)	(mm)	
5/5/2013 al 30/4/2014	28,2	20,7	27,1	81,8	1251,8	
1/5/2014 al 31/7/2014	31,7	22,9	26,7	84,0	1140,0	

métrica (1 mm de resolución), la cual se colocó perpendicularmente desde la base de la planta hasta el ápice del tallo principal.

- Grosor del tallo (cm): se midió el diámetro del tallo principal, a una distancia de 3 cm, de la base del tallo.
- Proyección de la copa (cm): se midió el diámetro de la proyección horizontal de la copa del árbol en el suelo
- Grosor de la primera rama primaria (cm): se midió con una cinta métrica a los 10 cm a partir del tallo principal.
- Largo y ancho de la hoja (cm): se midió la tercera hoja de la rama primaria, de la base del tallo hacia el ápice, en cada una de las plantas evaluadas.
- Plagas y enfermedades (%): se estimó el porcentaje de enfermedades en los diez árboles de cada especie (infestación producida por hongos y/o virus en la planta entera, es decir, microorganismos patógenos) y el porcentaje de daños producidos por insectos fitófagos. Se utilizó una escala de cuatro grados: 0 (inmune), 1 (resistente), 2 (tolerante) y 3 (susceptible). A cada uno de estos cuatro grados le correspondieron los siguientes rangos de lesiones foliares:

Grado	Rango de lesiones
0	0 a 1 % (inmune)
1	2 a 10 (resistente)
2	11 a 20 % (tolerante)
3	> de 20 % (susceptible)

Análisis estadístico

Para la interpretación de los resultados se utilizó la descripción de los indicadores medidos, estimados y contabilizados durante el período experimental, sobre la base de los estadísticos descriptivos (promedio). Para ello se empleó el paquete estadístico SPSS versión 11.5.

RESULTADOS Y DISCUSIÓN

Después de transcurridos los primeros doce meses de establecimiento en campo, las plantas de Jatropha tuvieron una altura superior a 1 m (Figura 1). Durante todo el periodo evaluado los valores variaron entre 1,62 y 2,24 m de altura. Entre los 45 y 60 días el cultivo

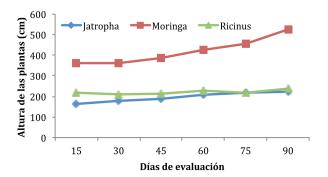


Figura 1. Dinámica de crecimiento de tres plantas oleaginosas, durante su establecimiento bajo asociación. Área experimental del Colegio de Postgraduados de Veracruz, México. Mayo a julio, 2014.

Figure 1. Growth dynamic of three oleagenous plants during its establishment under association. Experimental area of Colegio de Postgraduados in Veracruz, Mexico. From May to July, 2014.

desarrolló un crecimiento de 0,20 m, influenciado posiblemente por el efecto de las precipitaciones en esta época. Comportamiento similar se observó para la Moringa en este periodo. Sin embargo, para Ricinus el comportamiento fue diferente, ya que las plantas tuvieron un crecimiento más lento (0,10 cm), y la media general fue de 2 m y sin sobrepasar los 3 m. No obstante, hace falta realizar cálculos de tasa relativa de crecimiento, no considerados en este estudio.

Ricinus es un arbusto de crecimiento rápido que puede alcanzar hasta 7 m de altura (Miranda, 2015), por lo que el comportamiento mostrado en este periodo pudo estar dado por la incidencia de plagas encontradas durante la evaluación, fundamentalmente insectos del orden Hemiptera las cuales debilitan a la planta al extraer la savia, son transmisores de virus (virus de mosaico, amarillez, enanismo, etc.) y contribuyen a la formación de fumagina, ocasionado por el exceso de savia que absorben, la cual eliminan desde sus cuerpos poco después. Esta se va acumulando en hojas, tallos y frutos de la planta atacada y dado su alto contenido de azúcares es atrayente de hormigas y favorece el crecimiento de hongos (Ripa et al., 2008). Esta afectación fue más severa entre los 60 y 90 días de evaluación, incluso la altura media de las plantas disminuyó por la muerte del tejido apical del cultivo y de plantas enteras.

Otro aspecto importante que pudo afectar el crecimiento del Ricinus pudo ser su comportamiento

heliófilo (San Miguel y Del Mar, s.f), que se vio afectado por la sombra de las plantas de Moringa, ya que dadas sus características físicas sobrepasaban en altura y diámetro de su copa a las plantas de *R. comunnis*. Por lo que se consideró poco recomendable la asociación de Ricinus con plantas arbóreas que alcancen mayor altura y le impida aprovechar eficientemente la luz del sol en su metabolismo.

El Ricinus es una planta que produce mucha energía, debido al gran contenido de aceite que presentan sus semillas (alrededor del 50%), por tanto, al aprovechar óptimamente la luz solar puede recibir mayor energía potencial por unidad de volumen (Dueñas y Uscocovich, 2012), es por ello que, al asociarla con otras plantas de mayor porte que le transmitan sombra, afectaría la producción de aceite de sus semillas y pone en riesgo la supervivencia del cultivo.

El rango de variación del grosor del tallo, proyección de la copa, grosor de la rama primaria y largo y ancho de la hoja para Jatropha, Moringa y Ricinus durante el periodo de evaluación se observan en los Cuadros 3, 4, 5 y 6, respectivamente.

Hasta los sesenta días de evaluación las plantas tuvieron un adecuado comportamiento y desarrollo de cada indicador para las tres especies. Sin embargo, después de transcurrido este período, las plantas de Ricinus variaron su comportamiento y disminuyó la supervivencia, aspecto que fue notorio a simple vista a pesar de no evaluarse esta variable. A los noventa días de evaluación fue imposible determinar el largo y ancho de las hojas debido a la defoliación intensa de

las plantas, provocado posiblemente por los aspectos mencionados con anterioridad.

Los valores encontrados en las variables estudiadas de Jatropha fueron similares a los reportados por otros autores, al evaluar esta especie en monocultivo (Rao et al., 2008; Machado, 2011). Las plantas mostraron buena adaptabilidad durante el periodo de evaluación. Al finalizar el estudio, la mayoría ya se encontraban fructificando por primera vez, lo cual coincidía con la época propicia en México para la etapa productiva de la Jatropha.

J. curcas necesita de 250 mm de precipitación anualmente para su desarrollo, sin embargo, los niveles óptimos para obtener altos rendimientos están entre 900 y 1200 mm anuales (Toral et al., 2008). Las condiciones agroecológicas registradas para esta especie en el estado de Veracruz, se encuentran entre los 16 a 32 °C, como temperaturas mínima y máxima, con precipitaciones entre los 800 a 2500 mm (Valdés et al., 2013) por lo que las temperaturas y precipitaciones durante el período experimental (1140 mm) estuvieron en el rango que recomienda la literatura, así como de los registros documentados en la región. La Moringa tuvo un aceptable comportamiento durante todo el período de evaluación. Se ha reportado en diferentes estudios que la principal característica que se debe considerar para el desarrollo de este cultivo son los suelos anegados, ya que no soporta encharcamiento (Pérez et al., 2010; Olson y Fahey, 2011; Foidl, 2014), fundamentalmente durante el establecimiento, aspecto que no fue necesario tener en cuenta en el área

Cuadro 3. Variación del grosor del tallo de tres especies de oleaginosas durante su establecimiento bajo asociación. Área experimental del Colegio de Postgraduados de Veracruz, México. Mayo a julio de 2014.

Table 3. Stem diameter variation of three species of oleaginous during its establishment under association. Experimental area of Colegio de Postgraduados in Veracruz, Mexico. From May to July, 2014.

Especie	Grosor del tallo (cm)											
	Inicial*	15	30	45	60	75	90					
Jatropha	6,12	6,17	6,17	6,41	6,86	7,57	8,62					
Moringa	8,77	8,77	8,77	9,11	10,15	11,80	12,19					
Ricinus	3,00	3,01	3,18	3,39	3,67	3,71	3,79					

^{*} Inicial corresponde al primer valor de la evaluación. Las siguientes 15, 30, 45, 60, 75 y 90 días corresponden a las evaluaciones posteriores a la inicial / Initial value corresponds to the first evaluation. The following 15, 30, 45, 60, 75, and 90 days correspond to subsequent evaluations.

Cuadro 4. Variación de la proyección de la copa de tres especies de oleaginosas durante su establecimiento bajo asociación. Área experimental del Colegio de Postgraduados de Veracruz, México. Mayo a julio de 2014.

Table 4. Variation of the projection of the crown of three species of oleaginous during its establishment under association. Experimental area of Colegio de Postgraduados in Veracruz, Mexico. From May to July, 2014.

Especie	Proyección de la copa (cm)											
	Inicial*	15	30	45	60	75	90					
Jatropha	76,5	77,7	100,7	140,3	182,8	200,5	200,7					
Moringa	158,8	159,5	159,5	204,1	234,5	311,7	319,0					
Ricinus	66,2	68,5	79,2	93,2	98,7	106,7	104,3					

^{*}Inicial corresponde al primer valor de la evaluación. Las siguientes 15, 30, 45, 60, 75 y 90 días corresponden a las evaluaciones posteriores a la inicial / Initial value corresponds to the first evaluation. The following 15, 30, 45, 60, 75, and 90 days correspond to subsequent evaluations.

Cuadro 5. Variación del grosor de la rama primaria de tres especies de oleaginosas durante su establecimiento bajo asociación. Área experimental del Colegio de Postgraduados de Veracruz, México. Mayo a julio de 2014.

Table 5. Variation of the primary branch diameter of three species of oleaginous during its establishment under association. Experimental area of Colegio de Postgraduados in Veracruz, Mexico. From May to July, 2014.

Especie	Grosor de la rama primaria (mm)											
	Inicial*	15	30	45	60	75	90					
Jatropha	18,6	19,1	24,3	26,3	32,1	36,7	39,5					
Moringa	13,0	13,5	13,5	24,1	33,4	38,1	43,4					
Ricinus	1,1	1,1	8,8	9,7	13,3	15,3	16,8					

^{*} Inicial corresponde al primer valor de la evaluación. Las siguientes 15, 30, 45, 60, 75 y 90 días corresponden a las evaluaciones posteriores a la inicial / Initial value corresponds to the first evaluation. The following 15, 30, 45, 60, 75, and 90 days correspond to subsequent evaluations.

Cuadro 6. Variación del largo y ancho de la hoja de las diferentes especies de oleaginosas durante su establecimiento bajo asociación. Área experimental del Colegio de Postgraduados de Veracruz, México. Mayo a julio de 2014.
 Table 6. Variation of the leaf length and width of the different oil plant species during its establishment under association. Experimental area of Colegio de Postgraduados in Veracruz, Mexico. May to July, 2014.

Especie	Largo de la hoja (cm)							Ancho de la hoja (cm)						
	Inicial*	15*	30	45	60	75	90	Inicial*	15	30	45	60	75	90
Jatropha	8,2	8,6	9,6	10,1	11,5	11,8	14,7	8,8	9,0	10,2	10,5	11,7	12,5	16,8
Moringa	24,6	25,3	27,4	28,2	29,4	29,6	-	17,6	18,9	18,9	19,7	20,9	20,9	-
Ricinus	11,7	12,3	15,3	15,3	15,5	16,2	-	13,5	14,1	17,1	17,5	18,9	19,4	-

^{*} Inicial corresponde al primer valor de la evaluación. Las siguientes 15, 30, 45, 60, 75 y 90 días corresponden a las evaluaciones posteriores a la inicial / Initial value corresponds to the first evaluation. The following 15, 30, 45, 60, 75, and 90 days correspond to subsequent evaluations.

experimental ya que los suelos son de buen drenaje y las condiciones del mismo fueron propicias para el desarrollo del cultivo.

A los 90 días de evaluación no se pudo determinar el largo y ancho de la tercera hoja de la primera rama primaria, debido a que las plantas estaban defoliadas. Aspecto que se supone pudo estar dado por la fisiología de la planta, ya que no se concibió otra posible causa. Tampoco fue considerado este comportamiento por el efecto de las condiciones climáticas ya que según Magaña (2012) *M. oleifera* tiende a perder las hojas en periodos de estrés hídrico y no durante las precipitaciones.

Dentro de las principales características de la Jatropha, se encuentra la posibilidad de intercalarse con otros cultivos, ya que los árboles de Moringa son leguminosas y añaden nitrógeno al suelo y se recomienda para recuperación de suelos en zonas áridas y semiáridas, además su raíz principal tuberosa y profunda es una gran reserva de agua para épocas de sequía (Castro, 2013). Con respecto a ello, la asociación de *M. oleífera* con la Jatropha resultó favorable; sin embargo, se considera que para establecerse intercalada con Ricinus se debería tener en cuenta manejos agronómicos como la poda, para garantizar la intercepción de los rayos solares y mayor aprovechamiento de estos por *R. comunis*.

El grado de afectación producido por plagas y agentes patógenos en cada especie se muestran en el Cuadro 7. Como es notable, hasta los sesenta días la Jatropha fue la más afectada, encontrándose la presencia de trips, salta hojas y un insecto de aparato bucal masticador (probablemente grillo o

larva de lepidoptero) que no se observó físicamente, pero si se presenciaron muchas hojas dañadas con perforaciones irregulares. Como síntomas se observó que las hojas tienden a engarrotarse (o arrugarse), debido posiblemente a la presencia de una enfermedad causada por un virus. No obstante, la afectación en las plantas no fue representativa. Es notable que entre los días 30 y 45 el porcentaje de plagas y agentes patógenos disminuyó, se destaca que esta etapa coincidió con el comienzo de las lluvias, por lo que pudo ser este un factor beneficioso que influyó en la planta.

En la última evaluación, no se encontró presencia de insectos ni larvas, pero si se observaron varios síntomas de enfermedades en las hojas (Figura 2), que han sido descritos por varios autores (Erazo, sf; Quiroga et al. 2014) y que puede ser provocado por el hongo *Colletotrichum* sp., patógeno causante de la antracnosis en Honduras, Brasil y Paraguay. La descripción de estos síntomas están relacionados con manchas foliares de diferentes colores, que generalmente se inician en los bordes de las hojas y, en ocasiones, en el centro. Además, aparecen acérvulos de color café oscuro en el envés de las hojas, en las que a veces las partes afectadas se desprenden, lo que les causa agujeros y reduce de forma notable el área foliar de la planta.

No obstante, cabe destacar que a pesar de los síntomas, las plantas se observaron vigorosas, quizás porque el grado de afectación no fue muy severo. Lo significativo fue la variabilidad encontrada entre cada evaluación, separada por quince días cada una, y sin embargo, la presencia de insectos y detención de síntomas de enfermedades fue diferente en cada caso, por lo que se pudo deducir que la planta se recuperaba cada

Cuadro 7. Grado de afectación producido por plagas y agentes patógenos en tres especies de oleaginosas durante su establecimiento bajo asociación. Área experimental del Colegio de Postgraduados de Veracruz, México. Mayo a julio de 2014.
 Table 7. Degree of leaf damage produced by pests and pathogen agents in three species of oleaginous during its establishment under association. Experimental area of Colegio de Postgraduados in Veracruz, Mexico. From May to July, 2014.

	Dai	Daño causado por microorganismos patógenos (%)												
Especie	Inicial*	15	30	45	60	75	90	Inicial*	15	30	45	60	75	90
Jatropha	30	30	90	70	80	90	90	30	30	40	10	80	20	0
Moringa	0	0	0	0	0	0	0	0	0	0	4	0	0	0
Ricinus	30	30	40	70	100	50	100	30	30	40	10	90	50	100

^{*} Inicial corresponde al primer valor de la evaluación. Las siguientes 15, 30, 45, 60, 75 y 90 días corresponden a las evaluaciones posteriores a la inicial / Initial value corresponds to the first evaluation. The following 15, 30, 45, 60, 75, and 90 days correspond to subsequent evaluations.

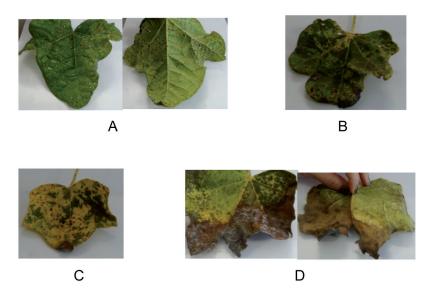


Figura 2. Síntomas de enfermedades detectados en las plantas de *Jatropha curcas* durante su establecimiento bajo asociación con Ricinus y Moringa. Colegio de Postgraduados de Veracruz-México, en los meses de mayo a julio de 2014. A) Mancha angular de color café oscuro en el tejido de la hoja, B) Manchas amarillas, C) Amarillamiento del tejido de la hoja, D) Manchas necróticas en el tejido de la hoja.

Figure 2. Symptoms of diseases detected in *Jatropha curcas* plants during their establishment under association with Ricinus and Moringa. Colegio de Postgraduados in Veracruz, Mexico, from May to July, 2014.

A) Angular dark brown spot on the leaf tissue, B) Yellow spots, C) Yellowing of leaf tissue, D) Necrotic spots on leaf tissue.

vez que era invadida por agentes fitófagos o patógenos.

Para Ricinus también los índices de afectación de plagas fueron notables, alcanzó valores a los 90 días, de 100% de plantas afectadas. Como ya se mencionó, se detectaron diferentes especies de insectos del orden Hemiptera, que provocaron que la planta se convirtiera en el medio ideal para que se desarrollaran algunos microorganismos patógenos, a través de la fumagina que excretaban. Los daños ocasionados por esta plaga fueron severos, al punto de ser una de las causas posibles que provocó la muerte de muchas plantas de esta especie en el sistema. Las plantas afectadas mostraban necrosis, disecación del tallo y muerte de los brotes terminales y de la planta entera. Descripciones similares fueron realizadas por Quiroz, et al. (2011) al evaluar los tejidos, ellos demostraron que la enfermedad es causada por Xanthomonas campestris, sin embargo, sería necesario realizar estos estudios de aislamiento para poder afirmar que se trata del mismo agente causal.

En la Moringa no se detectó presencia de insectos fitopatógenos, solo se presenció en la última evaluación, la defoliación de muchas plantas, pero se presume que pudo ser el efecto de algún proceso fisiológico, aunque es difícil asegurarlo con certeza, por lo que en evaluaciones futuras deberá constituir objeto de estudio.

Es importante destacar que en esta investigación se corroboró que las especies Jatropha y Ricinus no presentaron resistencia a plagas y patógenos, contrario a lo planteado por varios autores (Quimbayo, 2010; Moreno, 2014), quienes afirman que estas especies presentan resistencia por su toxicidad, lo cual ha sido difundido durante la última década. En ninguno de los cultivos se detectaron los mismos insectos, por lo que todo parece indicar, que hasta el momento los que constituyen plagas en una especie, no lo son para las demás en este sistema productivo de Jatropha-Moringa-Ricinus.

La Moringa fue la especie que sobresalió en cuanto a mayor altura de la planta, grosor del tallo y de la primera rama primaria, proyección de la copa, largo y ancho de la hoja y menor afectación de plagas y enfermedades, y la Jatropha expresó un comportamiento morfoagronómico similar al encontrado en los sistemas de monocultivo, sin embargo, para el Ricinus la asociación no fue favorable debido al efecto de la sombra y el ataque severo de agentes patógenos.

AGRADECIMIENTO

Se agradece a la LPI3 (Colpos) y a la Secretaría de Relaciones Exteriores de México por su apoyo económico.

LITERATURA CITADA

- Anderson, J.M., and J. Ingram. 1993. Tropical soil biology and fertility. A handbook of methods. 2nd ed. CAB International. Wallingford, GBR.
- Anon. 2014. Media histórica del clima en Veracruz. http://www.accuweather.com/es/mx/veracruz/236233/aprilweather/236233 (consultado 19 ago. 2014).
- AOAC (Official Methods of Analysis). 1995. Official methods of analysis of AOAC International. 16th ed. Volume 1. WA, DC, USA.
- Campuzano, L.F. 2009. Perspectivas de la investigación de Jatropha curcas L. En Colombia parte I: componente genético. Rev. Fac. Nac. Agron. Medellín 62:10-14.
- Castro, A.M. 2013. El árbol moringa (Moringa oleífera Lam.): una alternativa renovable para el desarrollo de los sectores económicos y ambientales de Colombia. Tesis de grado, Universidad Militar Nueva Granada, Bogotá, COL.
- CEPAL-FAO. 2007. Oportunidades y riesgos del uso de la bioenergía para la seguridad alimentaria en América Latina y el Caribe. Estudio conjunto. CEPAL-FAO, Santiago de Chile. http://www.olade.org/sites/default/files/CIDA/Biocomustibles/FAO/informe_bioenergia. pdf (consultado 18 ago. 2014).
- Dueñas, V.M., y J.G. Uscocovich. 2012. Evaluación de 10 cultivares promisorios de higuerilla (*Ricinus communis* L.). Tesis Ing. Agr., Universidad Técnica de Manabí, Portoviejo, ECU.
- Erazo, J.D. sf. Manual de plagas y enfermedades de Tempate (*Jatropha curcas*). BID, MAG, CENTA, ESA.

- FAO. 2008. Cambio climático, bioenergía y seguridad alimentaria: opciones para las instancias decisorias de políticas identificadas por las reuniones de expertos. En: Conferencia de alto nivel sobre la seguridad alimentaria mundial: los desafíos del cambio climático y la bioenergía. 3-5 junio, 2008. FAO, Roma, ITA.
- Fernández, L.C., N.G. Rojas, T.G. Roldán, M.E. Ramírez, H.G. Zegarra, R. Uribe, R.J. Reyes, D. Flores, y J.M. Arce. 2006. Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Instituto Mexicano del Petróleo. Secretaría de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología, México, D.F., MEX.
- Foidl, N., L. Mayorga, y W. Vásquez. 2014. Utilización del marango (*Moringa oleifera*) como forraje fresco para ganado. Conferencia electrónica de la FAO sobre "Agroforestería para la producción animal en Latinoamérica". http://www.fao.org/livestock/agap/ frg/agrofor1/foidl16.htm (consultado 12 jul. 2014).
- Funes, F., G.J. Martín, J. Suárez, D. Blanco, F. Reyes, L. Cepero, L. Rivero, E. Rodríguez, V. Savran, Y. Del Valle, M. Cala, M. Vigil, J.A. Sotolongo, S. Boillat, y J.E. Sánchez. 2011. Evaluación inicial de sistemas integrados para la producción de alimentos y energía en Cuba. Rev. Pastos y Forrajes 34:445-462.
- Gómez, R., F. Fernández, y B. Noval. 1995. Resultados del recubrimiento de semillas con micorrizas vesículo arbusculares. Informe de Resultados. Instituto Nacional de Ciencias Agrícolas de Cuba, CUB.
- IEA (International Energy Agency). 2014. World energy outlook 2014: Executive summary. OECD/IEA, Paris, FRA.
- Machado, R. 2011. Caracterización morfológica y productiva de procedencias de *Jatropha curcas* L. Rev. Pastos y Forrajes 34:267-280.
- Magaña, W. 2012. Aprovechamiento poscosecha de la Moringa (*Moringa oleffera*). Rev. Iber. Tecnología Postcosecha 13:171-174.
- Miranda, E. 2015. Evaluación del comportamiento y adaptación de 19 accesiones de higuerilla (*Ricinus communis* L.) procedentes de 4 departamentos en Pucallpa Perú. En: Libro de resúmenes-ponencias V Encuentro Científico Internacional del Norte Verano-Invierno 2014. Universidad Privada Antenor Orrego, Trujillo, PER. p. 111.
- Moreno, J. G. 2014. Experiencia en el manejo del cultivo de Jatropha bajo condiciones de riego y temporal en el norte de Sinaloa. Centro de Validación y Transferencia de

- Tecnología de Sinaloa A. C. (CVTTS), México. http://www.fps.org.mx/divulgacion/index.php?option=com_attachments&task=download&id=76 (consultado 20 ago. 2014).
- Olson, M., y J. Fahey. 2011. Moringa oleifera: un árbol multiusos para las zonas tropicales secas. Rev. Mex. Biodiv. 82:1071-1082.
- Oniani, O.G. 1964. Determinación del fósforo y potasio del suelo en una misma solución de los suelos Krasnozen y Podsólicos en Georgia. Agrojima 6:25-32.
- Pérez, A., T. Sánchez, N. Armengol, y F. Reyes. 2010. Características y potencialidades de Moringa oleifera, Lamark. Una alternativa para la alimentación animal. Rev. Pastos y Forrajes 33(4):1-16.
- Quimbayo, A., C. Castilla, y L.F. Campuzano. 2010. El uso actual del cultivo de la Jatropha curcas L. en sistemas agroforestales y silvopastoriles y su potencial para contribuir al desarrollo social y económico de un cultivo en expansión mundial. Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Villavicencio-Meta, COL.
- Quiroga, R., M.A. Rosales, M. Rincón, E. Aguilar, E. Garrido, F. Holguín, J. A. González, M. Salazar y G. Hernández. 2014. Enfermedades del piñón. En: A. Pérez et al., editores, Manual de buenas prácticas para el cultivo de *Jatropha curcas* L. Colegio de Postgraduados, Veracruz, MEX. p. 38-49.
- Quiroz, C., M.J. Botero, y J. Castaño. 2011. Etiología de la necrosis de los brotes terminales de la higuerilla (*Ricinus communis* L.). Rev. Acad. Colomb. Cienc. Exact. Fís. Nat. 35(135):133-142.
- Rao, G.R., G. Korwar, A. Shanker, and Y. Ramakrishna. 2008. Genetic associations, variability and diversity in

- seed characters, growth, reproductive phenology and yield in *Jatropha curcas* (L.) accessions. Trees 22:697-709. DOI 10.1007/s00468-0229-4
- Ripa, R., P. Larral, y S. Rojas. 2008. Plagas de palto y cítricos en Chile. En: R. Ripa, y P. Larral, editores. Manejo de plagas en paltos y cítricos. Instituto de Investigaciones Agropecuarias (INIA), CHI. p. 132-134.
- Rodrígues, R. 2009. Agroenergía, una nueva política geoblobal. Perspectivas 21:64-67.
- San Miguel, M., y M. Del Mar. sf. Ricino, *Ricinus communis*: características botánicas y distribución. Barcelona: Institut Universitario Dexeus, Servicio de Alergia e Inmunología Clínica. Madrid, ESP.
- Suárez, J., G.J. Martín, L. Cepero, D. Blanco, J.A. Sotolongo, V. Savran, E. del Río, y J.L. Rivero. 2014. Procesos de innovación local en Agroenergía, orientados a la mitigación y adaptación al cambio climático en Cuba. Rev. Cubana Cienc. Agríc. 48:17-20.
- Toral, O., J.M. Iglesias, S. Montes de Oca, J.A. Sotolongo, S. García, y M. Torsti. 2008. *Jatropha curcas* L., una especie arbórea con potencial energético en Cuba. Rev. Pastos y Forrajes 31:191-206.
- Valdés, R., V.A. Pérez, P.E. García, A.H. Inurreta, R.C Avila y R.O. Ruíz. 2013. Condiciones agroecológicas de procedencias nativas de *Jatropha curcas* L. en el estado de Veracruz. En: A. Pérez, y E. García, editores, Energía alterna y biocombustibles: Innovación e investigación para un Desarrollo Sustentable. Colegio de Postgraduados, MEX. p. 143-152.
- Zhu, X.G. 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19:153-160.