

Corpoica. Ciencia y Tecnología Agropecuaria

ISSN: 0122-8706

revista_corpoica@corpoica.org.co

Corporación Colombiana de Investigación Agropecuaria Colombia

Farfán, Pedro Domingo; Insuasty, Orlando; Casierra, Fanor Distribución espacio temporal y daño ocasionado por Pestalotia spp. en frutos de guayaba

Corpoica. Ciencia y Tecnología Agropecuaria, vol. 7, núm. 2, julio-diciembre, 2006, pp. 89 -98

Corporación Colombiana de Investigación Agropecuaria Cundinamarca, Colombia

Disponible en: http://www.redalyc.org/articulo.oa?id=449945021011

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica

Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

ARTÍCULO TÉCNICO

Pedro Domingo Farfán¹, Orlando Insuasty², y Fanor Casierra³

ABSTRACT

Damage and spatial-temporal distribution of Pestalotia spp. in guava fruits

To determine Pestalotia spp. spatial and temporal distribution and the level of physical and chemical damage on the guava fruit (Psidium guajava) at the Río Suárez watershed, fruits with disease symptoms from 104 farms were evaluated on farms where fruit damage has increased economic losses. Spatial distribution was evaluated on 16 farms at the Vélez municipality (Santander, Colombia) during four rainfall periods. Physical damage was established by a severity index(%) taking into account fruit maturity, production system, altitude, planning density and tree age. Potential chemical alterations in affected mature fruit were analyzed on total soluble solids (%), reduced sugars (%) and titrable acidity (% of citric acid). During the dry season (January and February) the pathogen was found on 102 of the 104 farms evaluated. The highest incidence (≥85%) was found at Puente Nacional, Jesús María y Guavatá, and the lowest (36,7%) at Oiba and Guadalupe. During transition periods, dry/wet (July) and wet/dry (March) the higher incidences were recorded, 93,1 and 90,6%, respectively. Disease severity was higher in yellow-green and mature fruit, in the guava x coffee system, between 1.901 and 1.960 m.a.s.l., and in planting densities higher than 490 tress per hectare. No chemical alterations were found on fruit affected by Pestalotia spp.

> Key words: guava, temporal-spatial distribution, crust, severity, damage.

Recibido: julio 24 de 2006. Aceptado: diciembre 4 de 2006.

1. Biólogo, Universidad Pedagógica y Tecnológica de Colombia -UPTCe-mail: pedrodomingofarfan@yahoo.es

2. Investigador profesional asociado, Estación Experimental CIMPA, Barbosa (Santander), CORPOICA, e-mail: oribu6755@vahoo.com de Colombia -UPTC-, Facultad de Ciencias

3. Docente, Universidad Pedagógica y Tecnológica Agropecuarias. e-mail: fanor@gmx.net

Distribución espacio temporal y daño ocasionado por Pestalotia spp. en frutos de guayaba

RESUMEN

A fin de determinar la distribución espacio-temporal del hongo Pestalotia spp., así como los grados de daño físico y alteración química que ocasiona en los frutos de guayaba (Psidium guajava L.) en la Hoya del Río Suárez (Colombia), se evaluaron frutos con síntomas de la enfermedad procedentes de 104 fincas productoras en las que se presentan pérdidas económicas a causa de las costras sobre el fruto. La distribución temporal se indagó en 16 fincas del municipio de Vélez (Santander) durante cuatro períodos climáticos anuales. El daño físico se estableció mediante el índice de severidad (%), teniendo en cuenta madurez, sistema de producción, altitud, densidad de siembra y edad de los árboles. Para detectar posibles alteraciones químicas en frutos maduros afectados se analizaron las variables sólidos solubles totales (%), azúcares reductores (%) y acidez titulable (% de ácido cítrico). La distribución espacial, evaluada en época de verano (enero y febrero), determinó la presencia del patógeno en 102 de las 104 fincas estudiadas. En los municipios de Puente Nacional, Jesús María y Guavatá se presentó la mayor incidencia en frutos (≥85%), mientras que en Oiba y Guadalupe fue la más baja (36,7%). En los períodos de transición invierno/verano (julio) y verano/invierno (marzo) ocurrieron las mayores incidencias con 93,1 y 90,6%, respectivamente. La severidad de la enfermedad fue mayor en frutos pintones y maduros, en el sistema guayaba x café, entre 1.901 y 1.960 m.s.n.m. y en densidades superiores a 490 árboles por hectárea. Se constató que Pestalotia spp. no causó alteraciones químicas en el fruto.

Palabras clave: guayaba, distribución espacio-temporal, costras, severidad, daño.

INTRODUCCIÓN

 $oldsymbol{\mathbb{L}}$ n Согомвіа, єг сигтіvo de la guayaba (Psidium guajava L.) ocupa el primer lugar por su área en producción (cerca de 80.000 hectáreas), la cual supera incluso al banano de exportación; el sistema de producción comprende árboles en sistema disperso, en arreglos mixtos, solo e intercalado (DANE, 1999 citado por Lozano et al., 2002). En el país existen 300 fábricas de bocadillo que producen 3.500 t/año, vinculan aproximadamente a 8.500 personas y generan 400 empleos permanentes (Corpoica, 1997).

La guayaba tiene alto potencial de consumo en los mercados nacional e internacional por presentar un alto valor nutricional, excelente sabor y aroma (Corpoica, 1996; Pimiento, 1994); sin embargo, la mayor limitante para la exportación e industrialización del cultivo es la mala calidad de la fruta ocasionada por la presencia de plagas, enfermedades, daños físicos, diferencias de tamaño, peso, grado de madurez y apariencia externa (Corpoica, 1998).

Los hongos se cuentan entre las plagas que más afectan la guayaba, pues infestan del 75 al 100% de los frutos en fincas de los municipios de Moniquirá, Puente Nacional, Vélez, Guavatá y Jesús María (Vega, 1998); entre éstos, el más importante es Pestalotia spp., que causa daño principalmente a los frutos (Buriticá, 1999); el ataque se manifiesta inicialmente como diminutas manchas de color marrón claro que posteriormente se tornan más oscuras y aumentan de tamaño formando una costra que puede llegar a cubrir toda la superficie de la epidermis y no permite la maduración del fruto (Mayorga et al., 1969). Es una enfermedad que ha adquirido mucha importancia en los últimos años debido a que ocasiona lesiones en los frutos que reducen su valor económico (Lozano et al., 2002).

En frutales como la feijoa (Acca sellowiana Berg), los hongos Colletotrichum, Alternaria, Pestalotia y Botrytis, se asocian con problemas fitosanitarios relevantes; en efecto, su aparición ha sido frecuentemente relacionada con densidades de siembra, factores climáticos favorables y la capacidad virulenta de dichos microorganismos. La carencia de un manejo adecuado de estas enfermedades, que involucre estrategias oportunas de tipo cultural, biológico y químico, ha hecho que algunos huertos se tornen improductivos y que actualmente se encuentren en total abandono (Blanco, 2003).

El genero *Pestalotia* fue reportado por Noratis en tallos de la vid (*Vitis vinifera*) en Italia y le dio el nombre de *Fortuna-to Pestalozza*. Luego Guba y Linder le dieron la ortografía correcta al género (Durán *et al.*, 1982). Por su parte,

Michelia encontró esta enfermedad en 1884 y Berry-Hill la reporta en 1934 atacando frutos de guayaba en México. Edwards reportó a Pestalotia psiddi Pat. en 1965 en la India como el organismo causante de chancros en el fruto de la guayaba; el mismo investigador anota que los chancros producidos por P. psiddi habían sido reportados en Bombay por Chibber (1932), Narasimhan (1949) y Venkata Krishniah de Mysore (1952) (autores citados por Mayorga et al., 1969). Pestalotia psiddi también ha sido reportado en Australia, Malasia, India, Mozambique, Zambia, Nigeria, Venezuela, Ecuador y Puerto Rico (Snowdon, 1990, citado por Solano, 1999). Lim Tong y Khoo Khay (citados por Solano, 1999) reportan que la enfermedad es causada en Malasia por el insecto Helopeltis (Hemiptera: Teobromae), el cual perfora el fruto para alimentarse y que en dichas lesiones crece y se desarrolla Pestalotia como un hongo secundario.

El primer reporte en Colombia del género *Pestalotia* como agente patógeno de la guayaba lo hicieron Mayorga *et al.* en 1969; la especie *P. versicolor* fue identificada en dicho trabajo por Emil F. Guba quien, además, hace mención de cinco especies del genero *Pestalotia* que atacan la guayaba. Así mismo, se estableció que no existe ninguna variedad de guayaba resistente a *Pestalotia versicolor*.

Rodríguez et al. (1975) realizaron investigaciones sobre el control químico de las costras de la guayaba encontrando que el hidróxido cúprico reduce considerablemente la incidencia de la enfermedad. Durán et al. (1982) reconocieron organismos fungosos en el cultivo de la guayaba e identificaron a Psidium guajava en el municipio de Moniquirá (Boyacá). En esta investigación se menciona que Pestalotia versicolor es uno de los patógenos más limitantes del cultivo

de guayaba. Por su parte, Solano (1999) estudió el efecto del embolsado del fruto sobre la incidencia de *Pestalotia versicolor* Speg y concluyó que disminuye significativamente la incidencia y severidad de la enfermedad.

Buriticá (1999) reporta las especies Pestalotia disseminata Thuem sobre frutos de guayaba lesionados en Antioquia y Boyacá; así mismo, a Pestalotia versicolor Speg, Pestalotia cliftoniae (Tracy y Earle) y Pestalotia coccolobae (Ellis y Everh) atacando hojas y frutos de guayabo en los departamentos de Amazonas, Antioquia, Boyacá, Caldas y Santander.

En razón a que la 'enfermedad de las costras' o 'clavo del fruto de guayaba' ocasionada por *Pestalotia* spp. ha incrementado considerablemente las pérdidas económicas en los cultivos de la Hoya del Río Suárez, el presente trabajo se propuso como objetivos determinar la distribución espacio-temporal y el daño físicoquímico ocasionado por el agente patógeno en los frutos.

MATERIALES Y MÉTODOS

Distribución espacio temporal de Pestalotia spp. en la Hoya del Río Suárez

Determinación de la distribución espacial de Pestalotia spp. Para determinar la distribución espacial de Pestalotia spp. en dicha zona se hicieron muestreos en 104 fincas de 26 veredas en 9 municipios con alta producción de guayaba, durante los meses de enero y febrero, período que corresponde a la época de verano. En cada vereda se seleccionaron cuatro fincas representativas y de cada finca se tomaron al azar tres árboles; de cada

árbol se muestrearon 10 frutos (Solano, 1999), igualmente al azar, para un total de 3.120 frutos (Tabla 1).

Los frutos muestreados se clasificaron en sanos y enfermos para obtener así la incidencia como porcentaje de frutos enfermos (Zúñiga, Vargas y Umaña, 1987). Para ello, a cada uno de los frutos se les determinó la presencia o ausencia de síntomas típicos de la enfermedad. En este caso, la incidencia se refiere a la cantidad de unidades vegetales como plantas, hojas, flores o frutos, que están afectados por una enfermedad y se expresa como porcentaje de la población total evaluada (Solano, 1999) con base en la siguiente fórmula: Incidencia (%I) = número de plantas o partes de plantas enfermas x 100 / número total de plantas o partes de plantas observadas. La incidencia como tal, es una medida exacta y fácil, que resulta simplemente de contar plantas o partes de plantas con síntomas de una enfermedad. Sin embargo, solamente indica si la planta está o no enferma, pero no da indicios de la gravedad del ataque en términos de cuanto tejido de la planta está afectado. Basta que una planta o parte de una planta muestre una pequeña lesión para considerarla como planta con síntomas de la enfermedad.

Determinación de la distribución temporal de Pestalotia spp. Para evaluar la distribución temporal del patógeno a lo largo de un año se muestrearon frutos de guayaba en 16 fincas del municipio de Vélez, en época de verano (enero y febrero), durante la transición de verano a invierno (marzo), en época de invierno (mayo) y durante la transición de invierno a verano (julio). De igual manera, en cada finca se tomaron al azar tres árboles

Tabla 1. Distribución geográfica del muestreo en frutos de guayaba para el estudio espacial de *Pestalotia* spp.

Municipios	Veredas en estudio (No.)	Fincas en estudio (No.)	Árboles monitoreados (No.)	Total frutos muestreados (No.)
Jesús María	3	12	36	360
Pte. Nacional	4	16	48	480
Guavatá	3	12	36	360
Guadalupe	2	8	24	240
Oiba	2	8	24	240
Charalá	2	8	24	240
Vélez	4	16	48	480
Moniquirá	4	16	48	480
Barbosa	2	8	24	240
Total	26	104	312	3.120

y de cada árbol 10 frutos (Solano, 1999) para un total de 1.920 frutos. En cada fruto se determinó la presencia de síntomas de la enfermedad. Para evaluar la distribución espacio-temporal de Pestalotia spp. en las fincas de los diferentes municipios, se realizó una descripción de la presencia/ausencia de síntomas de la enfermedad en cada uno de los frutos; para el análisis de la información se utilizó la prueba de Bartlett (Steell y Torrie, 1980) y un análisis de varianza univariado.

Determinación del daño físico sobre frutos de guayaba

El daño físico causado por el patógeno al fruto de guayaba se determinó según el índice de severidad, el cual se expresa como la cantidad de tejido vegetal (planta, hoja, vaina, fruto, etc.) afectado por la enfermedad con relación al área total evaluada; el índice se valoró en términos porcentuales (Solano, 1999). En cada uno de los 3.120 frutos recolectados para determinar la distribución espacial del patógeno se evaluó el porcentaje de área afectada en la epidermis en una escala comprendida entre 0 y 100%, donde 0 era un indicador de ausencia de síntomas y 100 señalaba daño muy severo (Tabla 2). A su vez, éstos fueron clasificados visualmente como verdes, pintones y maduros según su estado de madurez (Solano, 1999) (Tabla 3).

Además, en las fincas estudiadas se registraron datos sobre: el sistema de producción, la altitud (m.s.n.m.), el número de árboles por unidad de superficie (densidad) y la edad de los árboles, con el fin de saber si la severidad de la enfermedad fue influida por dichos parámetros. Para el análisis de la información se aplicó un análisis de varianza univariado para determinar diferencias en cuanto a la severidad de la enfermedad en cada uno de los parámetros mencionados. En el caso de la altitud, la densidad y la edad, datos que fueron analizados por intervalos, se empleó la fórmula de Sturges para definir la amplitud y números de intervalos (Chao et al., 1996; Wayne, 1999).

Efecto de la enfermedad sobre las características químicas del fruto

Para determinar si Pestalotia spp. causa alteraciones químicas en los frutos de guayaba afectados se tomaron cinco árboles de la variedad 'Regional roja' con síntomas de la enfermedad y de cada árbol se recogieron cinco frutos maduros con daño y cinco sanos. A éstos se les realizaron los siguientes análisis, haciendo tres réplicas por muestra: sólidos solubles totales (°Brix), acidez titulable (como % de ácido cítrico) y porcentaje de azúcares reductores (Whalley, 1971; Honing, 1982; Pearson, 1986 citado por Restrepo, 1997 y por Sociedad Colombiana de Técnicos de la Caña de Azúcar, 1989; Solano, 1999).

Se calculó el análisis de varianza univariado para saber si la presencia de Pestalotia spp. causaba alteraciones químicas en el fruto de guayaba para las tres variables en mención. Este análisis se realizó con el software SPSS para Windows versión 11.0 a un nivel de confianza del 95 %. Se aplicó la prueba de rango múltiple de Duncan para la comparación de promedios, cuando se presentaron diferencias significativas (Camacho, 2003).

RESULTADOS Y DISCUSIÓN

Distribución espacio temporal de Pestalotia spp. en la Hoya del Río Suárez

Distribución espacial de Pestalotia spp. Con relación a la distribución espacial de Pestalotia spp. evaluada en 104 fincas

de nueve municipios de la Hoya del Río Suárez, durante los meses de enero y febrero correspondientes a la época seca de verano, se encontró presencia del hongo en 102 de ellas, equivalente al 98,08% del total de fincas estudiadas (Tabla 4). Vega (1998) reportó un porcentaje de 75 a 100 % de frutos afectados por hongos en fincas de Moniquirá, Puente Nacional, Vélez, Guavatá y Jesús María, mientras que en este estudio, y para estos mismos municipios, se encontraron porcentajes similares de frutos afectados por Pestalotia spp. entre el 70 al 85 % (Figura 1).

Tomando en cuenta el porcentaje de frutos afectados por la enfermedad (incidencia) en cada uno de los municipios y fincas monitoreadas, el área de estudio se subdividió en cuatro regiones (Figura 2): la primera (R1) agrupó un número de frutos afectados que varió entre 80,6 y el 84,6% y está comprendida por los municipios de Puente Nacional, Jesús María y Guavatá, siendo ésta la región más afectada; en la segunda región (R2) estuvieron Vélez, Moniquirá y Barbosa con porcentajes de frutos afectados entre el 70,2 al 75,0%; la tercera región

Tabla 2. Escala internacional de evaluación de enfermedades en plantas.

Grado	Categoría	Ataque	Interpretación	% Severidad
0	Altamente resistente (AR)	Nulo	Muy bueno	0
1	Resistente (R)	Bajo	Bueno	0,1 - 5,9
2	Tolerante (T)	Moderado	Regular	6,0 - 50,0
3	Susceptible (S)	Alto	Malo	50,1 - 75,9
4	Altamente susceptible (AS)	Muy alto	Muy malo	76,0 - 100,0

Tabla 3. Escala de clasificación según el estado de la madurez de los frutos de guayaba.

Escala	Clasificación	Descripción
1	Verde	Amarillamiento epidermal del fruto menor de 40%
2	Pintón	Amarillamiento epidermal del fruto del 40 al 70%
3	Maduro	Amarillamiento epidermal del fruto mayor de 70%

Fuente: Restrepo (1997) citado por Solano (1999).

Tabla 4. Distribución espacial de la enfermedad de las costras de la guayaba (*Pestalotia* spp.) en la Hoya del Río Suárez.

Variable	Número	%	Descripción
Municipios monitoreados	9	100	En toda la región
Veredas monitoreadas	26	100	En toda la región
Fincas monitoreadas por vereda	4	100	En toda la región
Fincas estudiadas en 26 veredas	104	100	En toda la región
Fincas donde se hallaron árboles con frutos afectados	102	98,08	En el porcentaje descrito
Fincas donde no se encontró la enfermedad	2	1,92	Municipio Guadalupe, Vereda Sabaneta, Fincas La Pintadera y El Rito

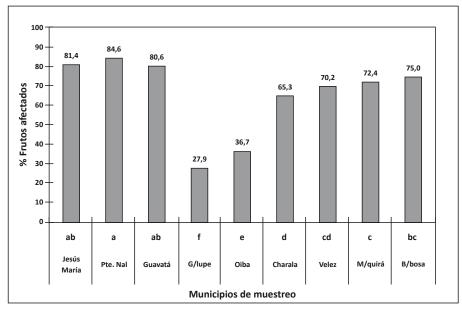


Figura 1. Incidencia de *Pestalotia* spp. en frutos de guayaba de los municipios estudiados.

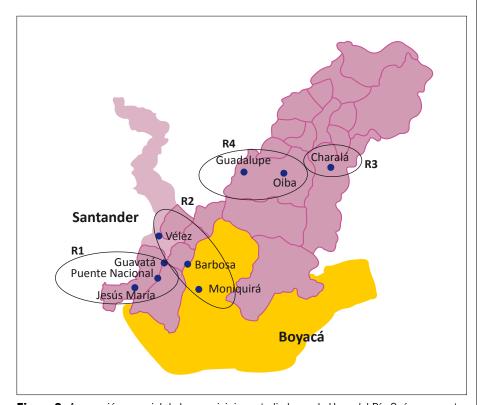


Figura 2. Agrupación espacial de los municipios estudiados en la Hoya del Río Suárez en cuatro regiones (R) según el porcentaje de incidencia de *Pestalotia* spp. en los frutos de guayaba.

(R3) abarcó Charalá con 65,3% siendo ésta la más distante con relación a las otras regiones; finalmente, con menor presencia del patógeno, la cuarta región (R4) se conformó por los municipios de Oiba y Guadalupe, con un porcentaje de frutos enfermos de 36,7 y 27,9 %, respectivamente.

El hecho que Pestalotia spp. presentó porcentajes similares de frutos afectados por la enfermedad entre municipios cercanos hace pensar que su propagación puede estar determinada por condiciones climáticas (temperatura, viento y lluvias) y de manejo de cultivo específicas para cada región.

Respecto de los factores climáticos es importante tener en cuenta el efecto que ejerce el aire para la movilidad de las estructuras reproductivas de los microorganismos, lo cual es válido para Pestalotia spp. En efecto, el transporte

aéreo de esporas es responsable de la dispersión de enfermedades en plantas a través de distancias de 500 km o más (Aylor, 1986 citado por Gaztambide, 2005). En el caso de la 'roña del árbol de manzana', que es causada por el hongo Venturia inaequalis, Aylor y Anagnostakis (1991) citados por Gaztambide (2005) estudiaron la concentración aérea de ascosporas de V. inaequalis en una siembra de manzanas y demostraron que hay un rápido descenso de concentración de ascosporas al aumentar la altura del árbol sobre la tierra, lo cual fue explicado por un cambio rápido en la velocidad del viento y un movimiento turbulento del viento sobre la tierra.

Se han reportado una variedad de patógenos de dispersión aérea sobre plantas de importancia económica. La propagación a través de Europa de Blumeria graminis, patógeno de la cebada, se debe a la dispersión aérea de sus esporas (Limpert et al., 1999 citado por Gaztambide, 2005). Las esporas de especies de Phytophthora, un oomiceto responsable de pérdidas económicas significativas en diversos cultivos, pueden ser dispersadas por el aire (Beagle, 2000 citado por Gaztambide, 2005). Pyricularia grisea y Bipolares oryzae también producen esporas que se dispersan en la baja atmósfera sobre siembras de arroz y afectan el cultivo en diferentes épocas de su crecimiento (Picco y Rodolfi, 2002 citados por Gaztambide, 2005). Las ascosporas y las conidias de Stemphylum vesicarium se liberan en el aire causando 'tizón de la hoja del ajo'; la lluvia está directamente relacionada con la liberación de sus esporas, pero una alta humedad relativa es esencial si no llueve (Prados-Ligero et al., 2003 citados por Gaztambide, 2005). Gibberella zeae causante del 'tizón de las cabezuelas' es una enfermedad que afecta el trigo y otros cereales; sus esporas se dispersan a través del aire y sus eventos de mayor deposición son primordialmente en la noche (Del Ponte et al., 2005 citados por Gaztambide, 2005). Maldonado-Ramírez et al. (2005) citados por Gaztambide (2005) estudiaron la liberación, dispersión y deposición de las ascosporas de G. zeae y encontraron que las esporas viables de este hongo fueron abundantes durante cada hora del día y la noche; además, hallaron que las esporas fueron más abundantes en días nublados. Estas situaciones podrían dilucidar los mecanismos de dispersión de Pestalotia spp.

en los cultivos de guayaba de la zona en estudio.

Por otra parte, el alto porcentaje de frutos afectados por el patógeno en la región 1 (R1) pudo ser consecuencia de la granizada ocurrida en noviembre de 2003, de acuerdo con información suministrada por habitantes de la zona. Para Lozano et al. (2002) las granizadas pueden ocasionar daños considerables en ramas, brotes y frutos. Según Sarasola y Rocca (1975) y Agrios (1998) las heridas causadas por granizo pueden ser usadas por bacterias y hongos para penetrar y ocasionar daños en los frutos; dichas lesiones, que pueden ser antiguas o recientes y con tejidos lacerados o destruidos, permiten un buen desarrollo de los patógenos antes de que lleguen a los tejidos sanos.

Los municipios de la región 1 (R1) se encontraban en plena época de cosecha de guayaba con abundante producción de fruta en el momento de realizarse el muestreo (enero de 2004); mientras que en los municipios de la región 4 (R4), donde se registró la menor incidencia, no ocurrió lo mismo. Esta condición, probablemente afectó en alguna medida la distribución espacial de Pestalotia spp., ya que al existir un elevado número de frutos hospedantes aumenta la posibilidad de diseminación del agente patógeno.

Además de lo anterior, posiblemente en R1 ocurrió una población alta de insectos vectores, los cuales, al alimentarse de los frutos dejan perforaciones sobre las cuales crece y se desarrolla Pestalotia como microorganismo fitopatógeno importante. De acuerdo con reportes realizados por Lim Tong y Khoo Khay (citados por Solano, 1999 y Mayorga et al., 1969) en trabajos realizados en Malasia, afirman que el insecto chupador que causa las heridas al fruto de cacao es el hemíptero Teobromae helopeltis, conocido comúnmente como Mirids, y sobre éstas heridas crece y se desarrolla P. versicolor. Una situación similar pudo ocurrir en los cultivares de guayaba en las tres regiones restantes.

Además, es importante tener en cuenta que las enfermedades de origen patogénico pueden presentar diferentes tipos de comportamiento epidemiológico; en efecto, pueden aparecer nuevos casos en forma aparentemente al azar en la cercanía de una o dos plantas inicialmente afectadas, o bien puede ocurrir un fenómeno de 'salto' desde un foco inicial hasta varios kilómetros de distancia. Esta última forma de diseminación probablemente ocurra con insectos vectores trasladados por corrientes de viento muy fuertes o huracanadas. Tal es el caso específico de la chicharrita pálida (Myndus crudus Van Duzee) agente vector del fitoplasma causante del 'amarillamiento letal del cocotero'. Existe además, la posibilidad de que insectos infestados puedan ser llevados por el hombre de un lugar a otro (Secretaría de Desarrollo Rural del Gobierno del Estado de Colima, 2005).

Por otra parte, también es posible que los sistemas de producción estén incidiendo directa o indirectamente sobre la distribución del patógeno, ya que en los municipios de Jesús María y Guavatá, que hacen parte de la zona más afectada, ocurren sistemas de cultivos en arreglos diferentes como guayaba-café y guayaba-plátano-café, que de acuerdo con los resultados de este estudio, y por las condiciones particulares de microclima al interior de estos arreglos, al parecer están favoreciendo el desarrollo del hongo. Por el contrario en la región 4 (R4) conformada por Oiba y Guadalupe ocurrió una situación contraria, pues allí se presentó una menor incidencia de la enfermedad y los arreglos de cultivo predominantes en dichas fincas fueron guayaba tecnificado y guayaba-yuca, lo cual pudo afectar negativamente el establecimiento del agente patógeno.

Con relación a la ubicación de los cultivos respecto a la altitud, Lozano et al. (2002) afirman que el guayabo se comporta mejor por debajo de 1.600 m.s.n.m.; por tanto, se podría deducir que árboles por encima de esa altitud alcanzarían algún grado de estrés fisiológico. Esta representa una razón adicional que explicaría porque las fincas monitoreadas en los municipios de las regiones 1 y 2 presentaron un mayor porcentaje de frutos afectados por la enfermedad, puesto que éstas se encuentran en promedio a una altitud de 1.720 m.s.n.m.; en las regiones 3 y 4, que presentaron en promedio una altitud de 1.252 m.s.n.m. se observó un porcentaje de frutos enfermos más bajo. Solano (1999) en trabajos realizados en la región y relativos al efecto del embolsamiento de frutos sobre la

incidencia de P. versicolor Speg en dos variedades de guayaba, afirma que el alto porcentaje de incidencia del patógeno en las localidades de Puente Nacional v Vélez estuvo relacionado con las condiciones climáticas como temperatura, humedad relativa v precipitaciones altas, con fluctuaciones significativas entre el día y la noche, siendo estas condiciones favorables para el desarrollo del agente causal de las 'roñas' o 'costras' en altitudes comprendidas entre los 1.650 a los 1.900 m.s.n.m.

Distribución temporal de Pestalotia spp. En cuanto a la distribución temporal de Pestalotia spp. en el municipio de Vélez, los periodos de transición de época lluviosa a verano (julio) y de verano a invierno (marzo) presentaron el porcentaje más alto de frutos afectados por la enfermedad con valores de 93,1 y 90,6 % respectivamente (Figura 3); ello pudo deberse al incremento de la humedad relativa v de la temperatura, pues Agrios (1998) explica que la mayoría de las enfermedades aparecen y muestran un mayor grado de avance durante los días cálidos-húmedos. Lozano et al. (2002) afirman que el desarrollo de Pestalotia spp. es favorecido por condiciones de alta humedad relativa (≥70%).

De los cuatro periodos evaluados, la época de verano en el mes de febrero -con temperaturas ambiente promedio altas (>29°C), humedad relativa baja (<45%) y bajas precipitaciones promedio (<60 mm/mes) (datos pluviométricos E.E. CIMPA) - en comparación con las otras tres épocas, presentó el porcentaje menor de frutos afectados con un 70,2% (Figura 3). No obstante dicho valor se considera alto y de importancia económica para la región, lo cual permite apreciar que la distribución de la enfermedad en función del tiempo es relevante y muy importante para la calidad de la fruta con destino al consumo humano y para los procesos de transformación de pastas de guayaba. En la época de verano durante enero y febrero, en la que históricamente se tienen las mayores temperaturas durante el día (>29°C) y más bajas durante la noche (<14°C) y bajas precipitaciones (registros de 11 años), se esperaba encontrar los índices más bajos de frutos afectados por la enfermedad, situación que resultó contraria después de los resultados obtenidos en este estudio.

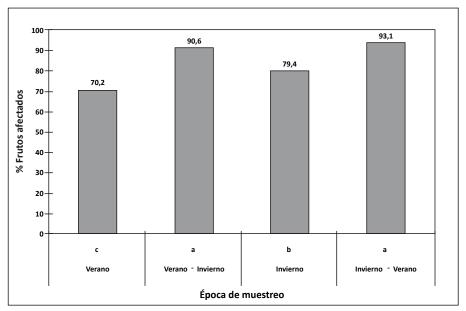


Figura 3. Porcentaje de frutos de guayaba afectados por Pestalotia spp. en cuatro épocas de estudio en 16 fincas del municipio de Vélez (Santander).

Daño físico provocado por Pestalotia spp. en frutos de guayaba

Daño provocado con relación a la madurez del fruto. Durán y Cabeza (1982) reportan que cuando el fruto comienza su proceso de maduración el daño de la enfermedad se atenúa. Contrario a esto, en el presente estudio se encontró que la enfermedad fue significativamente más severa en aquellos frutos en estados 'pintón' (18,41 %) y 'maduro' (18,79 %) que en frutos 'verdes' (10,94 %) (Figura 4). Puede ocurrir que durante el tiempo de maduración, estén llegando permanentemente al fruto esporas que podrían germinar y penetrar a los tejidos del mismo, ocasionando la enfermedad o incrementando lesiones ya adquiridas. Por su parte, Solano (1999) afirma que la incidencia de la enfermedad en los frutos aumenta a través del tiempo, mientras que la severidad del daño puede incrementarse lentamente; así mismo, dice que en la mayoría de los frutos dicho incremento podría detenerse y permanecer constante durante el proceso de maduración hasta el momento de la cosecha.

Daño provocado con relación al sistema de arreglo de cultivos con guayaba. La mayor severidad de la enfermedad en frutos de guayaba se encontró en los sistemas de arreglo guayaba-café con 27,49% y guayaba-plátano-café con 16,77 %; teniendo en cuenta la escala internacional de evaluación de enfermedades (Tabla 2) estaría dentro de un rango moderado; este hecho, probablemente

pudo ser provocado por las condiciones particulares de microclima y por el alto nivel de humedad relativa presente en el cultivo de café. Esta misma razón podría explicar los bajos valores de severidad en los sistemas guayaba-yuca (5,48%) y guayaba tecnificado (4,29%); este último sistema se ve favorecido además por prácticas agroculturales como el embolsado de frutos, las podas, la fertilización y la limpieza de malezas. El sistema guayaba silvopastoril, que en un 95% se presenta en la mayor parte de las fincas de la región, tuvo un porcentaje de severidad moderado en los frutos de guayaba con un valor del 13,01 % (Figura 5).

Daño provocado con relación a la altitud. El comportamiento de la severidad del daño ocasionado por Pestalotia spp. con relación a la variable altitud, se encontraron diferencias altamente significativas (P < F = 0.000**). Los frutos con mayor porcentaje de severidad (27,72%, daño moderado) se encontraron entre 1.901 y 1966 msnm., y la menor severidad (2.0 a 2.79 %: Bajo) en frutos colectados entre los 910 y 1.174 m.s.n.m. Sin embargo, es importante destacar que a partir de los 1.505 m.s.n.m. el porcentaje de severidad de la enfermedad en frutos de guayaba presentó un comportamiento creciente (Figura 6). De igual manera, las interacciones altitud X densidad (árboles/ha) y altitud X edad de árboles, mostraron diferencias altamente significativas.

En términos generales, se puede apreciar que existe una relación directamente proporcional entre la altitud y el porcentaje de severidad de la enfermedad: a mayor altitud el porcentaje de severidad tiende a ser mayor. Lozano et al. (2002) reportan que el guayabo, como cultivo, se comporta mejor por debajo de 1.600 m.s.n.m.; sin embargo, desde el punto de vista fitosanitario, en el presente estudio se encontró una tendencia incremental en la severidad del daño en los frutos de guayaba en altitudes superiores a los 1.505 m.s.n.m. Por tanto, se podría afirmar que aquellos árboles de guayaba que se encuentren cultivados por encima de ésta altitud podrían estar predispuestos a sufrir algún grado de estrés fisioló-

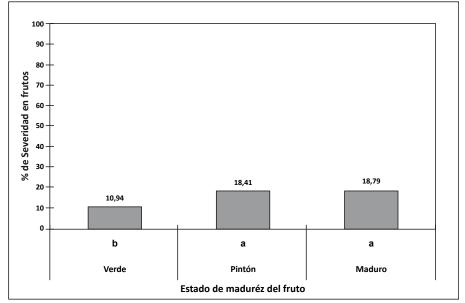


Figura 4. Severidad de la enfermedad según el estado de madurez de los frutos de guayaba.

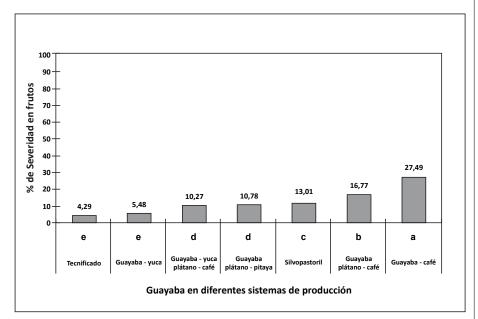


Figura 5. Severidad de la enfermedad en frutos de guayaba según los sistemas de producción regionales con guayaba.

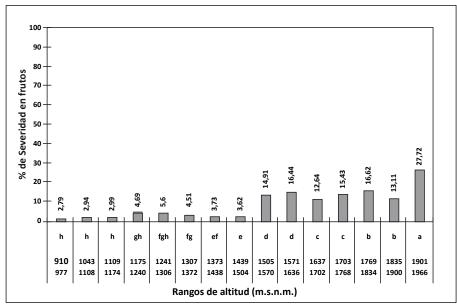


Figura 6. Severidad de la enfermedad en frutos de guayaba respecto de la altitud (m.s.n.m.) en las fincas monitoreadas.

gico, y por ende a ser más susceptibles al ataque de la enfermedad.

Daño provocado con relación a la densidad de árboles. Con relación al número de árboles de guayaba por unidad de superficie (densidad), la mayor severidad de la enfermedad (16,77%, daño moderado) se presentó en los frutos procedentes de fincas con densidades que oscilaron entre 956 a 1.110 árboles por hectárea (Figura 7). En general, se observó una mayor severidad de la enfermedad en los frutos a medida que aumenta la densidad de árboles de guayaba por hectárea; ello probablemente como consecuencia del debilitamiento de las plantas ocasionado por la competencia por nutrientes v luz debido al alto número de árboles por unidad de área. Para el caso particular del intervalo de densidad comprendido entre 2.350 y 2.500 árboles/ha (Figura 8), en donde se debió presentar un mayor porcentaje de severidad en los frutos, no ocurrió así debido quizá a que los árboles presentes tenían alturas superiores a 7.0 m que impedían tomar la muestra en partes representativas del árbol; por esta razón se procedió a colectar la muestra de frutos de otros árboles de porte más bajo y que

estuviesen ubicados en los extremos del cultivo, lo cual sesgó el muestreo y pudo afectar el resultado. Los frutos de estos árboles, en comparación con los demás del mismo terreno, se apreciaban con menor severidad de la enfermedad.

Al igual que sucede con el cultivo de la guayaba en la Hoya del Río Suárez, las pérdidas económicas provocadas por los hongos Colletotrichum, Alternaria, Pestalotia spp. y Botrytis en el cultivo de feijoa (Acca sellowiana) (Familia: Myrtaceae) ocurren cada vez con mayor frecuencia y por lo general se encuentran asociados con densidades de siembra, con factores climáticos favorables y con la virulencia creciente de dichos microorganismos. La carencia de un manejo adecuado de enfermedades, que involucre oportunamente controles culturales, biológicos y químicos, ha hecho que algunos huertos sean improductivos y se encuentren prácticamente abandonados (Rivas y Soto, 2004).

Daño provocado con relación a la edad de los árboles. El análisis estadístico mostró diferencias altamente significativas en la severidad de la enfermedad en los frutos de guayaba con relación a los rangos de edad de los árboles monitoreados, obteniéndose un agrupamiento significativo de los mismos (Duncan 0,05). Sin embargo, no se registró una tendencia muy clara o definida en el comportamiento creciente o decreciente de la variable severidad (%) con relación a un rango de edad determinado; ello significa que la enfermedad afectó indiscriminadamente los frutos de árboles jóvenes y adultos, más o menos en igual proporción, y dicha respuesta osciló en un rango comprendido entre 7,48 y 18,72% de severidad (daño moderado) (Figura 9). Es probable que en este estudio la severidad de la enfermedad en los frutos de guayaba no haya presentado una tendencia clara hacia el incremento o la reducción en plantas jóvenes y adultas; quizá ello se debe a que en la mayor parte de las fincas estudiadas tenían árboles de varias edades lo cual, en cierta manera, dificultó la toma de una muestra más homogénea de los frutos colectados. Así, no fue posible precisar si la edad del árbol influye o no directamente en la evolución de la severidad de la enfermedad; esta situación plantea realizar estudios con mayor detalle en el futuro próximo.

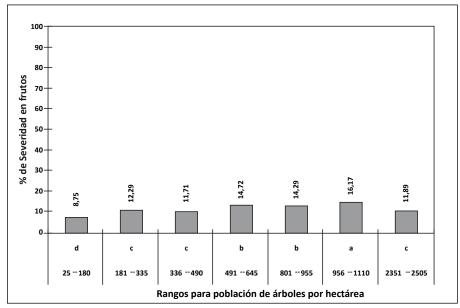


Figura 7. Severidad de la enfermedad en frutos de guayaba según la población de de árboles por unidad de superficie (ha).

Figura 8. Aspecto de la explotación con una densidad de 2.500 árboles/ha.

Valoración del efecto de la enfermedad sobre las características químicas del fruto

Estadísticamente no se obtuvieron diferencias significativas para las variables sólidos solubles totales (°Brix), azúcares reductores (%) y acidez titulable (% de ácido cítrico) entre los frutos afectados por Pestalotia spp y los frutos sanos (Tablas 5 y 6); esta respuesta, quizá pueda deberse al hecho de que la severidad promedio del daño no superó el 21% (daño moderado) y a que el hongo afecta principalmente la epidermis del fruto y no avanza hacia el interior de la pulpa de la fruta. Sin embargo, teniendo en cuenta los rangos normales considerados para los valores

de las tres variables, los cuales deben oscilar entre 9 y 11 °Brix, entre 7 y 8% de azúcares reductores y acidez entre 0,5 y 0,6% para la variedad 'Regional roja' (informe persona de la Ing. L.E. Prada, 2006), los datos alcanzados con los análisis en los frutos sanos y enfermos se encontraron dentro de los rangos de normalidad.

Con relación al comportamiento de las variables químicas en los frutos, en estudios realizados por Solano (1999) se afirma que los mayores valores de sólidos solubles totales podrían estar directamente influidos por el genotipo (variedad) y por condiciones climáticas como la temperatura y humedad relativa que impera en la región.

Con base en estos resultados es importante señalar que en posteriores estudios se debería evaluar con mayor detalle el comportamiento de la dureza de la epidermis (mediante penetrometría) y caracterización química de los sólidos insolubles (%SI) en frutos sanos y afectados por la enfermedad, con el propósito de determinar las variaciones con relación a estas dos variables; debido a que el hongo desarrolla costras sobre la epidermis del fruto, las cuales poseen mayor dureza y son de coloración oscura, pueden ocasionar la presencia de partículas insolubles no deseadas en los productos procesados derivados de la guayaba.

CONCLUSIONES

De 104 fincas monitoreadas en 26 veredas de 9 municipios evaluados, en 102 (98,08%) se constató ataque de Pestalotia spp. a los frutos de guayaba(Psidium guajava L.), por lo que se puede afirmar que existe una amplia distribución del agente patógeno en cultivos de la Hoya del Río Suárez (Santander, Colombia).

En cuanto a la distribución temporal de Pestalotia spp, en el municipio de Vélez, se observó el porcentaje más alto de frutos afectados por la enfermedad en los períodos de transición de verano a invierno (90,6%) y de invierno a verano (93,1%); esta situación se deriva de los altos valores de temperatura y humedad relativa propios del lapso de muestreo. Sin embargo, en las épocas de verano (70,2%) y de invierno (79,4%) también se encontró un alto porcentaje de frutos afectados por Pestalotia spp.

La mayor severidad de la enfermedad en los frutos de guayaba se presentó en los sistemas de cultivo guayaba-café (27,49%, daño moderado) y guayabaplátano-café (16,77%, daño moderado), debido probablemente a la gran humedad relativa típica del cultivo de café. Los sistemas guayaba tecnificado (4,29%, daño bajo) y guayaba-yuca (5,48%, daño bajo), presentaron las menores severidades.

Se observó una reducida severidad de la enfermedad en los frutos de guayaba colectados de árboles sembrados entre 910 y 1.504 m.s.n.m.; por el contrario, los cultivos de guayaba por encima de ese rango de altitud presentaron incremen-

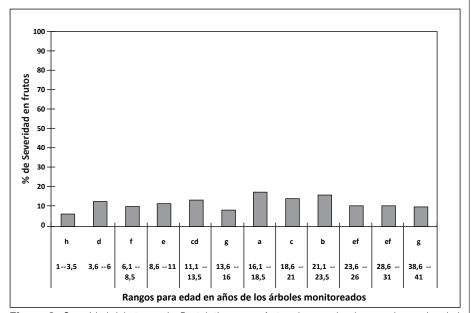


Figura 9. Severidad del ataque de Pestalotia spp. en frutos de guayaba de acuerdo con la edad de los árboles.

Tabla 5. Cuadrados medios del análisis de varianza y su diferenciación estadística para las tres variables en estudio en frutos de guayaba sanos y afectados por la enfermedad.

Fuentes de variación	GL	Sólidos solubles totales (°Brix)	Azúcares reductores (%)	Acidez titulable (%)
Tratamientos	1	0,000275 ns	0,000122 ns	0,000004 ns
Árboles en estudio	4	1,306976 **	5,277054 **	0,007129 **
Interacción	4	0,000351 ns	0,000244 ns	0,000055 ns
Error	20	0,003	0,002313	0,000038
CV %	-	1,66	0,87	1,06

CV%= coeficiente de variación; GL: Grados de libertad; ns: so significativo; **: diferencias altamente significativas (0,01).

Tabla 6. Valores promedio y su diferenciación estadística según Tuckey (0,01) para las tres variables en estudio en frutos de guayaba sanos y afectados por la enfermedad.

Tratamiento	Sólidos solubles totales (°Brix*)	Azúcares reductores (%)	Acidez titulable (%)
Frutos sanos	3,29 a	5,52 a	0,583 a
Frutos enfermos	3,30 a	5,52 a	0,583 a
Media	3,30	5,52	0,583
CV %	1,66	0,87	1,060
P>F	0,863 ns	0,815 ns	0,752 ns

Valores promedio con la misma letra no son estadísticamente diferentes; ns: No significativo estadísticamente; * ºBrix: expresados con relación a

tos en el grado de severidad, asociado posiblemente al estrés fisiológico que pueden sufrir las plantas bajo esas condiciones de altitud.

Densidades superiores a 490 árboles por hectárea mostraron los mayores porcentajes de severidad de la enfermedad en frutos de guayaba; ello probablemente como consecuencia del debilitamiento de los árboles ocasionado por competencia por luz y nutrientes.

No se evidenciaron cambios químicos en las variables sólidos solubles totales (º Brix), azúcares reductores (%) y acidez titulable (%) en frutos de guayaba con presencia de Pestalotia spp, con relación a los frutos sanos, lo cual se explica por el moderado porcentaje de lesión (21%) que presentaronn y a que el hongo ocasiona daño principalmente en la epidermis.

AGRADECIMIENTOS

Los autores del trabajo expresan un agradecimiento muy especial a Fontagro por el aporte de los recursos con los cuales se cofinanciaron las diferentes actividades experimentales y para el logro de los resultados alcanzados; así mismo, a todos y cada uno de los compañeros que formaron parte integral del equipo de trabajo de la E. E. Cimpa de CORPOICA en Barbosa (Santander).

BIBLIOGRAFÍA CITADA

Agrios, G. 1995. Fitopatología. 2a ed. Uteha, México, 838 p.

Blanco, J.O. 2003. Manejo de enfermedades en la feijoa. En: cultivo, poscosecha y exportación de la feijoa (Acca sellowiana Berg). Universidad Nacional de Colombia, Fondo Nacional de Fomento Hortofrutícola. Asociación Hortofrutícola de Colombia. 152 p.. En: http://agronomía.unal.edu.co/ feijoa.htm 5; consulta: noviembre 2004.

Buriticá, P. 1999. Directorio de patógenos y enfermedades de las plantas de importancia económica en Colombia. Bogotá. 329 p. Universidad Nacional de Colombia Sede Medellín e Instituto Colombiano Agropecuario - ICA.

Camacho, Juan. Estadística con SPSS versión 11 para Windows. México: Editorial Alfaomega. 2003. s.p.

Chao, L., J. Castaño y G. Caballero. 1996. Estadística para las ciencias administrativas. Santa Fe de Bogotá, Colombia: 3 ed. Mc Graw - Hill interamericana. s.p.

Corporación Colombiana de Investigación Agropecuaria. 1996. Manejo agrario de la guayaba (Psidium guajava L.) y su agroindustria. Barbosa, Santander. s.p. Corpoica, E. E. CIMPA.

Corporación Colombiana de Investigación Agropecuaria. 1997. Plan nacional para el desarrollo tecnológico y agroindustrial de la guayaba en Colombia. Barbosa, Santander. s.p.

Corporación Colombiana de Investigación Agropecuaria. 1998. Plan nacional para el desarrollo tecnológico y agroindustrial de la guayaba en Colombia. Barbosa, Santander. 1998. s.p.

Durán, H. y Cabeza, S. 1982. dentificación y reconocimiento de organismos fungosos en el cultivo de la guayaba Psidium guajava en el municipio de Moniquirá Boyacá. Tunja, Colombia. 125 p. Trabajo de grado (Ingeniero Agrónomo). Universidad Pedagógica y Tecnológica de Colombia - UPTC. Facultad de Ciencias Agropecuarias. Escuela de Ingeniería Agronómica.

Gaztambide A.I. 2005. Distribución vertical y temporal de Glomerella Cingulata (Colletotrichum gloeosporioides) sobre una siembra comercial de gandul (Cajanus cajan 1.). Puerto Rico. Trabajo de grado (Maestría en Ciencias en Biología). Universidad de Puerto Rico. Recinto Universitario de Mayagüez. 105 p.

- Honing, P. Principios básicos de la industria azucarera. 1982. Editorial Continental, México DF. s.p.
- Lozano, C. *et al.* 2002. Manual sobre el cultivo del guayabo en Colombia. En: Fruticultura Colombiana. Cali, Colombia: Editorial Lavalle, s.p. Corporación Autónoma del Valle.
- Mayorga, M., F. Barrero y G. Rodríguez. 1969. Las costras de la guayaba: Identificación, comportamiento y control del microorganismo que las causa. Tunja, Colombia. Trabajo de grado (Ingeniero Agrónomo). Universidad Pedagógica y Tecnológica de Colombia – UPTC. Facultad de Ciencias Agropecuarias. Escuela de Ingeniería Agronómica. 74 p.
- Secretaría de Desarrollo Rural del Gobierno del Estado de Colima, México. 2005. Paquete tecnológico para el cultivo del cocotero en el estado de Colima. Serie de publicación No. 002. 50 p.
- Pimiento, H.A. 1994. Determinación del grado de madurez de la guayaba *Psidium guajava* L. y medición de los efectos en el bocadillo como producto terminado. Tunja, Colombia. Trabajo de grado (Ingeniero Agrónomo). Universidad Pedagógica y Tecnológica de Colombia UPTC. Facultad de Ciencias Agropecuarias. Escuela de Ingeniería Agronómica. 35 p.
- Restrepo, J.E. 1997. Caracterización del comportamiento en poscosecha de materiales genéticos de guayaba *Psidium guajava* L. y su relación con la elaboración del bocadillo. Tunja, Colombia. Trabajo de grado (Ingeniero Agrónomo), Universidad Pedagógica y Tecnológica de Colombia –UPTC. Facultad de Ciencias Agropecuarias. Escuela de Ingeniería Agronómica. 122 p.
- Rivas, A. y Soto, A. 2004. El cultivo de la feijoa (*Feijoa sellowiana* Berg). Universidad de Caldas, Facultad de Ciencias Agropecuarias. Programa de Agronomía. 48 p.
- Rodríguez, J. y M. González. 1975. Control químico de las costras de la guayaba. Tunja, Colombia. Trabajo de grado (Ingeniero Agrónomo). Universidad Pedagógica y Tecnológica de Colombia –UPTC. Facultad de Ciencias Agropecuarias. Escuela de Ingeniería Agronómica. 85 p.
- Sarasola, A. y Rocca, M. 1975. Fitopatología curso moderno: Enfermedades fisiogénicas - Prácticas en fitopatología. Tomo IV. Ed. Hemisferio Sur, Buenos Aires, s.p.
- Sociedad Colombiana de Técnicos de la Caña de Azúcar. 1989. Manual de laboratorio para la industria azucarera, Cali. 89 p.
- Solano, LA. 1999. Efecto del embolsado del fruto sobre la incidencia de *Pestalotia ver*sicolor Speg. Producción y calidad en dos variedades de guayaba *Psidium guajava* L. Tunja, Colombia. Trabajo de grado (Ingeniero Agrónomo). Universidad Pedagógica y Tecnológica de Colombia – UPTC. Facultad de Ciencias Agropecuarias. Escuela de Ingeniería Agronómica. 91 p.

- Steell, R. y Torrie, J. 1980. Bioestadística: principios y procedimientos. McGraw-Hill-Interamericana, 385 p.
- Vega, F.J. 1998. Determinación de las pérdidas poscosecha y los puntos críticos del manejo de la guayaba *Psidium guajaba* L. Como fruta fresca. Tunja, Colombia. Trabajo de grado (Ingeniero Agrónomo). Universidad Pedagógica y tecnológica de Colombia –UPTC. Facultad de Ciencias Agropecuarias. Escuela de Ingeniería Agronómica. 107 p.
- Wayne, D. 1999. 1999. Bioestadística base para el análisis de las ciencias de la salud. 3 ed. Editorial Limusa, México DF. 782 p.
- Whalley, H. 1971. Métodos ICUMSA de análisis de azúcar. Editorial Continental, México. 182 p.
- Zúñiga, D., E. Vargas y G. Umaña. 1987. Diagnóstico y aspectos preliminares de la epmemiología de las pudriciones del fruto de la macadamia (*Macadamia integrifolia*) en Turrialba. Agronomía Costarricense. San José de Costa Rica. 12(1): 45-51.