

Corpoica. Ciencia y Tecnología Agropecuaria

ISSN: 0122-8706

revista_corpoica@corpoica.org.co

Corporación Colombiana de Investigación Agropecuaria Colombia

Caicedo R., Luis; Varón Devia, Edgar; Bacca, Tito; Carabali, Arturo
Daños ocasionados por el perforador del aguacate Heilipus lauri Boheman (Coleoptera:

Curculionidae) en Tolima (Colombia)

Corpoica. Ciencia y Tecnología Agropecuaria, vol. 11, núm. 2, julio-diciembre, 2010, pp. 129-136

Corporación Colombiana de Investigación Agropecuaria Cundinamarca, Colombia

Disponible en: http://www.redalyc.org/articulo.oa?id=449945029004

Número completo

Más información del artículo

Página de la revista en redalyc.org

ARTÍCULO CIENTÍFICO

Damage caused by the avocado borer *Heilipus* lauri Boheman (Coleoptera: Curculionidae) in Tolima (Colombia)

ABSTRACT

Avocado 'Hass' is a product with export potential, but damage caused by boring insects restricts its cultivation in the north of Tolima (Colombia). In order to promote its management, we established the breeding of the species with individually affected fruit. We determined the number of days in the pupal stage in order to observe the morphology and determine the extent of damage to the fruit at harvest. Tub breeding chambers and butter boxes were the most suitable for breeding ($P \le 0.05$) with sterile soil or absorbent towels and disinfection of the fruit with sodium hypochlorite 2%. The observed borer had external morphological characteristics consistent with the specie Heilipus lauri Boheman (Coleoptera: Curculionidae). The insects pupate at 65.3±1.42 days, with the pupal stage at 15.14±0.33 days and emergence at 80.1±1.36 days. Damage to fruit caused a perforation in the epidermis with the presence of a black circular crust, and presence of whitish excreta and boring of the larva in the pulp and seed. Evaluation of 12 trees on eight farms in the municipalities of Fresno and Herveo recorded 0.03 and 3.21% fruit damage (weight) respectively. The multiple regression analysis (stepwise) showed that the amount of plating/year is correlated with the percentage of infested trees (P \leq 0.05 and r^2 = 0.73).

Keywords: fruit, morphological description, farm management, farm altitude.

Fecha de recepción 2010-05-12

Daños ocasionados por el perforador del aguacate *Heilipus lauri* Boheman (Coleoptera: Curculionidae) en Tolima (Colombia)

Luis Caicedo R.¹, Edgar Varón Devia², Tito Bacca¹, Arturo Carabali³

RESUMEN

El aguacate 'Hass' es un producto con potencial de exportación pero los daños presentados por insectos perforadores lo restringen para el norte del Tolima (Colombia). Para plantear su manejo se estableció la cría de la especie involucrada con frutos afectados individualmente. Se determinó el número de días en estado pupal para observar su morfología y determinar la magnitud de daño en el fruto y en la cosecha. Las cámaras de cría tipo tarrina o cajas tipo mantequillero fueron las más convenientes para la cría (P≤0,05) con suelo estéril o toalla absorbente y la desinfección del fruto con hipoclorito de sodio al 2%. La observación y confrontación de las características morfológicas externas de los especímenes con claves taxonómicas se encontró como Heilipus lauri Boheman (Coleoptera: Curculionidae). El insecto empupó a los 65,3±1,42 días, el estado pupal 15,14±0,33 días y la emergencia del 80,1±1,36 días. El daño en el fruto ocasionó una perforación en la epidermis con presencia de una costra circular negra, presencia de excretas blanquecinas y barrenación de la larva en pulpa y semilla. La evaluación en 12 árboles en producción para ocho fincas diferentes de Fresno y Herveo, registró el 0,03% y el 3,21% de daño (peso), respectivamente. El análisis de regresión múltiple (Stepwise) mostró que la cantidad de plateos/ año se correlaciona con el porcentaje de árboles infestados $(P \le 0.05 \text{ y } r^2 = 0.73).$

Palabras clave: fruto, descripción morfológica, manejo de la finca, altitud de finca.

INTRODUCCIÓN

En Colombia la variedad Hass del aguacate (*Persea americana* Mill.) se ha identificado como un producto de exportación, debido a su perfil exótico y cualidades nutritivas. Se registran aproximadamente 21.700 ha dedicadas a la explotación de aguacate, con una producción de 225.375 t en el 2009. El departamento del Tolima ocupa el tercer lugar de importancia con un área sembrada de 4.000 ha (Neira, 2009).

Son varias las limitaciones para la exportación del aguacate como las barreras arancelarias y los problemas entomológicos, por cuanto generan restricciones y son

¹ Facultad de Ciencias Agrícolas, Universidad de Nariño. Pasto, Colombia. lcaicedo@hotmail.com/ titobacca@gmail.com

² Centro de Investigación Nataima, Corporacion Colombiana de Investigación Agropecuaria – Corpoica. Espinal, Colombia. evaron@corpoica.org.co

³ Centro de Investigación Palmira, Corporacion Colombiana de Investigación Agropecuaria – Corpoica. Palmira, Colombia. acarabali@corpoica.org.co

varias las normas cuarentenarias (Díaz, 2007). En Colombia se han registrado la presencia de insectos perforadores como la polilla de la semilla del aguacate, Stenoma catenifer Walsingham (Lepidoptera: Elachistidae) y los picudos Heilipus lauri Boheman y Conotrachelus sp. (Coleoptera: Curculionidae), insectos que conforman un complejo de plagas que se alimentan de la pulpa y la semilla de distintos materiales de aguacate y están ampliamente distribuidos en las diferentes zonas productoras del país como Valle del Cauca, Caldas, Risaralda, Quindío y Tolima (Hoyos y Giraldo, 1984), generando pérdidas significativas de frutos. En el caso de S. catenifer se reportan pérdidas en cosecha entre 25,6 y 60,0% (Alvarez, 2003). El género Conotrachelus y la especie *H. lauri* se han reportado en varias zonas del país, sin que se posea información sobre su bioecología ni su nivel de infestación en el Tolima. Sin embargo, los reportes de éstas especies en otros países afectan hasta el 80% de los frutos (Waite y Martínez, 2002). Medina (2005) documentó que en el estado de Morelos en México, H. lauri tuvo preferencia por frutos de aguacate criollo mexicano (var. Drymifolia) y por los cultivares Choquette, Fuerte y Hass, donde causó 33,30; 39,21 y 59,57% de daño, respectivamente.

García (1962), publicó el primer estudio sobre la biología de H. lauri, registró un período de incubación del estado de huevo entre 12 a 14 días; la duración del estado de larva 54 a 63 días, con cinco posibles instares larvarios; la pupa entre 14 a 16 días, en tanto que la longevidad del adulto de 3,5 a 4,0 meses, sin embargo, el trabajo de laboratorio no menciona las variables temperatura, humedad relativa y fotoperiodo. De acuerdo a Castañeda (2008), en condiciones de laboratorio de 26±2°C, 60-70% HR y fotoperiodo 12:12, la duración para huevo 10,87±0,45 días, larva 48,51±2,30 días y pupa 15,32±1,58 días. El adulto presentó una longevidad 309,55±86,72 días. A su vez, Del Ángel-Coronel (2006), reporta que el ciclo biológico completo de H. lauri a partir de frutos perforados como medios de cría de 80 días.

El daño causado por *H. lauri* se presenta por los adultos en las hojas, brotes y botones, la hembra oviposita el fruto con una perforación en forma de media luna (Rodríguez, 1992); deposita entre uno a dos huevos por fruto para un total de 36 huevos/mes. Emergen las larvas ápodas, éstas barrenan la pulpa de un lado al otro y se introducen en la semilla, de la cual se alimentan, debilitando el fruto el cual cae al suelo (Wysoki et al., 2002). Posteriormente, al finalizar el estado larval, el insecto empupa en la semilla del fruto hasta la emergencia del adulto, el cual sale por un orificio que hace con el pico o rostrum (Medina, 2005).

Teniendo en cuenta que el perforador del aguacate es una limitante que impide una óptima producción y restringe la comercialización del fruto, es indispensable describir la especie, conocer aspectos de su biología, caracterizar y cuantificar el daño directo, con el fin de contribuir a la reducción del riesgo asociado con la especie y evitar tratamientos cuarentenarios. Por tal motivo se realizó el presente trabajo, el cual reporta una metodología para la cría del insecto, el tiempo de desarrollo del estado de pupa, características morfológicas del estado adulto, además de caracterizar los daños causados por la larva y el adulto; asimismo para condiciones de campo se estimó el nivel de daño en cosecha por estos perforadores.

MATERIALES Y MÉTODOS

Esta investigación se llevó a cabo en condiciones de casa de malla y campo abierto. La ubicación de la casa de malla 5° 09′ 7,0" N y 75° 01′ 19,6" W, Fresno (Tolima), altitud 1.358 msnm, temperatura 26,12±0,33°C y 71% de HR. La fase de campo se realizó en fincas de los municipios de Fresno y Herveo, al norte del Tolima (tabla 1).

Tabla 1. Monitoreo de *H. lauri* en Fresno y Herveo (Tolima, Colombia)

M/pio	Vereda	Finca	msnm	Coordenadas
Fresno	Campeón	Sta. Coloma	1.861	N 5°09' 08,80" W 75°05' 13,67"
	La Florida	La Esmeralda	1.680	N 5°09' 31,92" W 75°03' 12,81"
	Campeón	La 24	1.653	N 5°08' 23,93" W 75°04' 09,48"
	Mireya	Soacol	1.406	N 5°10' 02,79" W 75°01' 38,40"
Herveo	El placer	Peñoles	2.055	N 5°05' 52,05" W 75°11' 51,65"
	Tesoritos	Arrayanes	2.008	N 5°02' 50,06" W 75°12' 29,44"
	Cristalina	El Edén	1.970	N 5°04' 41,08" W 75°12' 01,10"
	Damas Bajas	La Floresta	1.893	N 5°03' 01,37" W 75°11' 55,86"

Cría y descripción morfológica del insecto

Se recolectaron 202 frutos infestados por el perforador. El criterio de selección de los frutos consistió en la presencia de una costra circular oscura en la epidermis, excretas en forma de resina o presencia de una perforación (Medina, 2005). Posteriormente estos frutos se llevaron a la casa de malla y se individualizaron como fuente de alimento para el perforador del aguacate. Se utilizaron dos tipos de cámaras de cría: tarrinas cónicas transparentes plásticas con fondo plano y cajas cúbicas trasparentes plásticas de tipo mantequillero con o sin substratos (toalla absorbente o suelo estéril) introducidos al fondo de las cámaras de cría. Se utilizó hipoclorito de sodio al 2% para desinfectar algunos frutos (de acuerdo a los tratamientos establecidos) y todas las cámaras de cría se cubrieron con una muselina. A los 55 días, se disectó cada uno de los frutos hasta llegar a la semilla, teniendo en cuenta que la ocurrencia de la pupa se presenta entre 66 a 78 días según Wysoki et al. (2002) y de 54 a 68 días para Castañeda (2008).

Se utilizó la metodología modificada de Acevedo et al. (1972) para las larvas vivas que se reintrodujeron en semillas nuevas provistas de un orificio para observación del cambio sucesivo de pupa en adulto. Las cámaras se acondicionaron con arena húmeda, con el fin de que éstas se conservaran como alimento fresco para las larvas.

Se registró la temperatura y humedad relativa de casa de malla hasta la ocurrencia de pupas y/o emergencia de adultos. Mediante observaciones al estereoscopio se determinó la posible presencia de entomopatógenos de larvas, pupas y adultos. Se determinó el número de adultos por cada cámara y el tiempo en días acumulados hasta la formación de pupa y emergencia del adulto.

Una vez se obtuvieron los adultos en las cámaras de cría, sólo se describieron estructuras morfológicas externas del perforador que pueden facilitar la identificación del insecto de acuerdo a claves propuestas por Barber (1912), confrontando con las descripciones propuestos por García (1962) y Castañeda et al. (2009), y se enviaron los adultos al Centro de Investigación de Palmira -Corpoica, para comparar con especies de perforadores de su colección.

Caracterización del daño

Se tomaron 100 frutos de aguacate perforados de diferentes tamaños. El criterio de selección de estos frutos fue el mismo al descrito en la cría de pupas y adultos. Se registró la longitud polar, el número de perforaciones por fruto, el diámetro, forma de la perforación y los signos externos del fruto; una vez los frutos llegaron a su madurez plena (la epidermis de color verde oscuro), se destruyó el fruto para establecer el porcentaje de daño en la epidermis, pulpa y semilla.

Estimación del daño en cosecha

Se seleccionaron cuatro fincas por municipio con diferentes altitudes (tabla 1). La unidad de muestreo consistió en una parcela de 30 árboles de la variedad Hass (densidades entre 156, 123 y 100 árboles/ha) seleccionando los 12 árboles centrales (Sagarpa, 2002). Se revisó el 10% de árboles/ha y 50 árboles/ha cuando son cultivos de exportación. En cada cosecha, se contabilizó el número de frutos infestados por perforadores y el peso de los mismos, para determinar el porcentaje de daño. Las evaluaciones se realizaron en cinco y siete cosechas anuales.

Finalmente, se realizaron encuestas a los productores con el fin de conocer el manejo de las fincas y se correlacionó con el porcentaje de daño. Se tuvo en cuenta la edad del cultivo, densidad de siembra, cantidad de podas/año,

cantidad de plateos/año, número de recolecciones y entierre de frutos/año, insecticida aplicados (ingredientes activos y categoría toxicológica), además de dos variables de condición geográfica como altitud e identidad de finca. Para estimar este daño se utilizaron las fórmulas propuestas y adaptadas por Malavasi (1984).

Para estimar el porcentaje de árboles infestados cada 15 días se seleccionaron 15 árboles en forma de equis (x) por cada una de las fincas de estudio, la evaluación se realizó con la técnica de conteo visual de 10 frutos al azar de cada árbol y la presencia de un solo fruto perforado definió al árbol como infestado.

Análisis estadístico

Para determinar el mejor tipo de cámara de cría de pupas y adultos, se realizó un análisis de varianza con el programa SAS (SAS Institute, 2001), mediante un diseño completamente al azar y la prueba de comparación de medias de Duncan al 0,05%.

Además, mediante una tabla de frecuencias se registraron variables como días transcurridos desde la colocación del fruto hasta aparición de pupa, días de duración del estado pupal y días transcurridos desde colocación de fruto hasta la emergencia del adulto.

Para la caracterización del daño de los perforadores, se analizó a través de la descripción de los síntomas externos e internos de los frutos afectados, mediante una tabla de frecuencias con el número promedio de perforaciones de acuerdo a la longitud polar del fruto y calculando los porcentajes de epidermis, pulpa y semilla afectados.

Una vez definido el daño en cada una de las fincas se correlacionó con las prácticas de manejo y la altitud mediante un análisis de regresión múltiple utilizando el método de Stepwise en el programa SAS (SAS Institute, 2001). Se tomaron como variables significativas para el modelo, aquellas que presentaron un nivel de significancia igual o menor al 10%.

RESULTADOS Y DISCUSIÓN

Cría del perforador

El porcentaje de adultos con características morfológicas típicas de H. lauri (Castañeda, 2008) que emergieron en las diferentes cámaras de cría fue amplio, entre 0 y 50%. El análisis de varianza para el tipo de cámara de cría mostró diferencias significativas, la cámara tipo mantequillera, toalla absorbente al fondo y desinfección de la epidermis del fruto con hipoclorito de sodio al 2%, fue superior a los demás excepto la cámara de tipo tarrina, suelo estéril introducido al fondo y desinfectando del fruto con hipoclorito de sodio al 2%. Al parecer no importando el tipo de recipiente y la introducción de suelo estéril o toalla absorbente, permite la retención de la humedad en el recipiente, logrando mantener el fruto hidratado. Además, la desinfección con hipoclorito de sodio del fruto infestado por el perforador permitió que el fruto mantuviera su epidermis libre de hongos y la pulpa sana como alimento para las larvas.

Por tanto, éstas dos cámaras representaron un método recomendable para la obtención de adultos perforadores de frutos de aguacate a diferencia de Acevedo *et al.* (1972) que alimentaron con dietas artificiales al perforador *S. catenifer* en jaulas entomológicas; esto no es posible para *H. lauri* por ser un insecto de tipo monófago (Salgado y Bautista, 1993) que se alimenta exclusivamente de frutos de aguacate variedad Fuerte, Choquette y Hass. El uso de frutos trae como consecuencia la oxidación o pudrimiento al contacto con el aire, como menciona Castañeda (2008), quien alimentó las larvas del perforador con rodajas de aguacate Hass y posteriormente recurrió a frutos de variedad Colín V-33, ya que los frutos de Hass se descomponían por el efecto de hongos y bacterias. Esta metodología permitió mantener vivo al insecto para la comparación morfológica.

Descripción morfológica del insecto adulto

Se obtuvieron de 31 pupas y de éstas emergieron 29 adultos, los cuales presentaron una coloración negra o café brillante con dos pares de manchas en sus élitros formadas por escamas ovales de color amarillo ocre de forma alargada en cada uno de sus élitros, que se extendían de lado a lado si se tiene en cuenta el ancho del élitro, observadas en vista dorsal y pleural. El primer par, es el más grande y se aleja de la base de los élitros y se localiza a 2/5 de la base de los mismos y el segundo se acerca al ápice de los élitros a 1/5 del ápice, ubicado casi sobre el cayo periapical; esta descripción fue confrontada con las claves de Barber (1912), quien mencionó que H. lauri es de color café, con dos manchas conspicuas en cada élitro en posición anteromedia y subapical, el rostrum de la hembra es 1,5 veces más grande que el pronoto y es ligeramente más grande que en los machos.

De acuerdo a Barber (1912), García (1962) y Castañeda et al. (2009), éstas manchas caracterizan a la especie de perforador de aguacate H. lauri, y lo diferencian de otras especies como H. pittieri y H. trifasciatus por cuanto H. trifasciatus posee además de dos manchas en sus élitros otras dos manchas en su tórax, mientras que H. pittieri no presenta estas manchas (Castañeda et al., 2009). Por las

características morfológicas externas muy posiblemente la especie de perforador encontrada sea *H. lauri*.

Las hembras presentaron un pico más curvo, largo y grueso que los machos. El dimorfismo sexual de *H. lauri* y *H. pittieri* puede auxiliar en la separación de estas dos especies; en *H. lauri* el rostrum de las hembras es más grande que el de los machos; en *H. trifasciatus* se requieren observaciones más detalladas para la separación de sexos (Castañeda *et al.*, 2009).

En la longitud, medida excluyendo el rostro, los adultos presentaron dimorfismo sexual siendo las hembras más grandes (14,5±0,5 mm) que los machos (12,5±0,6 mm) y concuerda con Castañeda (2008) que encontró rangos para hembras de 13,03 - 15,91 mm y machos 12,50 -15,15 mm.

La descripción original de este insecto, la realizó el entomólogo Carl Henrik Boheman en 1854 a partir de especímenes colectados en México. Posteriormente Champion (1902), describió someramente H. lauri, mencionando como caracteres distintivos el rostrum largo; protórax cónico, estrecho y transverso; élitros amplios en su base y angostos en el ápice con dos manchas de color ocre en cada élitro. García (1962) afirmó que las hembras presentan un pico más largo y grueso que los machos. Ambos presentaron color rojizo y sobre sus élitros presentaban cuatro manchas color amarillo que son diagnósticas de la especie. Los especímenes enviados al Centro de investigación de Palmira (Corpoica), donde se compararon y se confrontaron por el entomólogo Arturo Carabalí con insectos que evaluó el especialista Jens Prena del Servicio de Investigación Agrícola del Departamento de Agricultura de los Estados Unidos, confirmó como la especie Heilipus lauri Boheman.

Desarrollo del estado de pupa

Al registrase el número de días desde la colocación de frutos en la casa de mallas hasta la emergencia de adultos, la duración del estado de pupa fue de alrededor de 15,14±0,33 días (tabla 2). El resultado obtenido es muy similar por García (1962) quien encontró una duración de 15 días pero difirió en el rango, pues en este estudio fue de 11 a 18 días comparado con 14 a 16 días en ese estudio. Asimismo, es similar al presentado por Castañeda (2008) reportando un promedio de 15,32±0,19 días y rango 11 a 18 días. En la figura 1 se muestran los diferentes estados biológicos del perforador obtenidos y observados en casa de malla.

De los frutos colectados (202) y llevados a la casa de malla, no se observó en estereoscopio la presencia de entomopatógenos en ninguno de los estadíos biológicos larva, pupa y adulto; a diferencia del trabajo de García (1962) quien realizó monitoreo en fase de campo (México),

y reportó la presencia (10%) del parasitoide Bracon sp. (Hymenoptera: Braconidae) sobre larvas de H. lauri.

Tabla 2. Días transcurridos desde la colección de frutos infestados hasta la obtención de pupa y adulto de H. lauri en casa de malla

Días	Promedio (días)±ES	Rango (días)	n
Recolección de fruto hasta obtención de pupa	65,35±1,42	55 a 83	29
Duración del estado de pupa	15,14±0,33	11 a 18	29
Recolección de fruto hasta obtención de adulto	80,14±1,36	65 a 97	29

Caracterización del daño

Los adultos del perforador H. lauri perforaron los frutos cuando alcanzaron una longitud polar entre 3 a 12 cm en un periodo aproximado de 3,5 meses desde el amarre del fruto; este valor es similar al estimado por Hoyos y Giraldo (1984) quienes afirmaron que frutos con más de 100 días (3,7 meses) de formados son los más atacados por el perforador, de manera que a los 3,5 meses se debe intensificar el control del perforador.

Se observó que la forma de la perforación en la epidermis es oval con un diámetro de 4,4±0,8 mm (n = 20, rango 3-6) (figura 2b), el número de perforaciones por fruto de diferentes tamaños 1,41±0,1 (n = 100 y rango de 1 a 5). Este último resultado difiere de lo afirmado por Salgado y Bautista (1993) en el sentido que el máximo de perforaciones causadas por H. lauri no fue mayor de tres y siendo uno la moda.

La sintomatología externa del daño en el fruto, figura 2, coincidió con Medina (2005), quien hizo observaciones visuales externas del fruto con daño, encontrando una

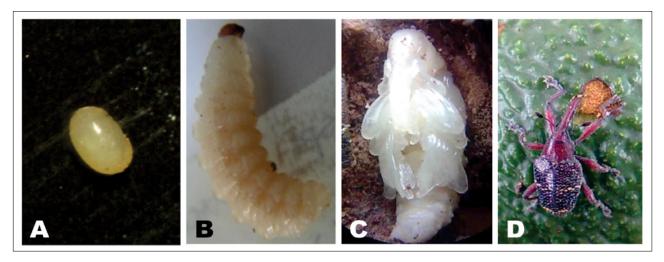


Figura 1. Estados biológicos de H. lauri a) huevo b) larva c) pupa d) adulto

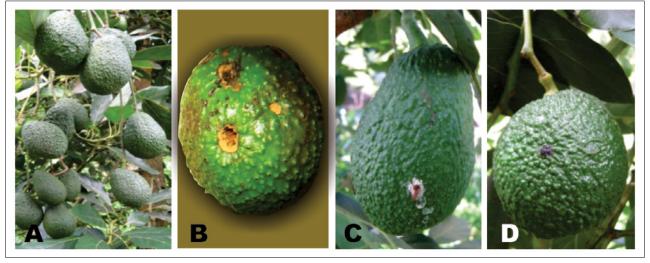
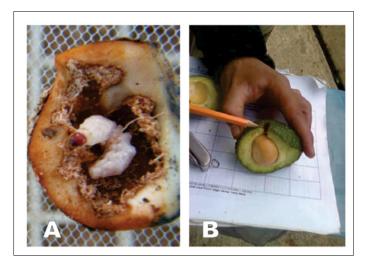



Figura 2. Sintomatología externa del daño en el fruto de aguacate 'Hass' causado por el estado adulto de H. lauri a) fruto sin daño b) perforación de la epidermis c) presencia de resina d) presencia de costra

costra circular, presencia de excretas en forma de resina o presencia de una abertura o perforación. Se encontró en algunas perforaciones de la epidermis, un huevo característico de *H. lauri* tal como lo describió Ebeling, (1959) citado por Wysoki *et al.* (2002). Esta evaluación permitió definir que la perforación en la epidermis lo causa específicamente el adulto del perforador tanto para ovipositar como para alimentarse del fruto.

Al observar la pulpa se encontró que el 46% de los frutos no presentaron daño y sugiere que el adulto se alimenta casi exclusivamente de la epidermis. Sin embargo, aquellos en

Figura 3. Características internas del daño en el fruto de aguacate 'Hass' causado por el estado larval de *H. lauri* a) pulpa barrenada b) galería en la semilla

que se observó el daño (54% de los frutos) se caracterizaron por albergar una barrenación con rastros de excrementos (hecha por la larva) con dirección hacia la semilla (Figura 3a), tal como lo confirmaron Salgado y Bautista (1993) quienes reportaron que los estados inmaduros se internan en el fruto hasta llegar a la semilla, donde se alimentan. De 100 semillas disectadas, se encontró que el 31% estaba infestada por larvas de *H. lauri* en diferentes ínstares, una por cotiledón; la larva continúa barrenando la semilla haciendo una galería y se aloja en un cotiledón donde se alimentará hasta completar todo su estado larval (Figura 3b) como lo confirmó Castañeda (2008).

Estimación del daño en cosecha

Los muestreos de cosecha revelaron que sólo el 0,039% de peso de los frutos cosechados, resultó con daño en el Municipio de Fresno siendo afectadas las fincas la Esmeralda y Santa Coloma (tabla 3). En el municipio de Herveo el daño promedio alcanzó el 3,21% de peso de los frutos cosechados y con daño en todas las fincas evaluadas, siendo la finca la Floresta la más afectada con un 7,58% (tabla 4). Estos porcentajes de daño no presentaron niveles significativos para los dos municipios, si se comparan con otros países donde se reporta hasta el 80% de los frutos afectados (Waite y Martínez, 2002); para la variedad Hass, Medina (2005) reportó el 59,57% de daño por este insecto en el estado de Morelos (México).

La variable dependiente, porcentaje de árboles infestados, se ajustó a un modelo de regresión múltiple *Stepwise* y se

Tabla 3. Daño en cosecha anual de aguacate por *H. lauri* en fincas del municipio de Fresno (Tolima)

Finca	No. de frutos	No. frutos con daño	Frutos con daño (%)	Frutos muestra (Kg)	Frutos con daño (Kg)	Peso de frutos con daño (%)	Árboles infestados (%)
Coloma	1.010 (2 Ch)	3	0,29	265,35	0,63	0,23	5,00
Esmeralda	5.011 (2 Ch)	2	0,04	951,59	0,34	0,03	5,00
La 24	5.043 (2 Ch)	0	0,00	668,74	0,00	0,00	0,00
Soacol	2.644 (1 Ch)	0	0,00	564,00	0,00	0,00	0,00
Total	13.708 (7 Ch)	5	0,09 (X)	2.449,68	0,97	0,065 (X)	2,50 (X)

Ch: Número de cosechas realizadas. (X): promedio

Tabla 4. Daño en cosecha anual de aquacate por *H. lauri* en fincas del municipio de Herveo (Tolima)

					Peso		
Finca	No. de frutos	No. frutos con daño	Frutos con daño (%)	Frutos muestra (Kg)	Frutos con daño (Kg)	de frutos con daño (%)	Árboles infestados (%)
Peñoles	599 (1 Ch)	35	5,80	90,78	4,40	4,80	60,00
Arrayanes	912 (1 Ch)	6	0,65	217,91	1,17	0,53	35,00
El Edén	1.798 (1 Ch)	6	0,33	318,00	1,10	0,34	20,00
Floresta	1.655 (2 Ch)	115	6,94	309,31	23,45	7,58	95,00
Total	4.964 (5 Ch)	162	3,43 (X)	936,01	30,12	3,31 (X)	52,50 (X)

Ch: Número de cosechas realizadas. (X): Promedio

obtuvo un modelo en función de 7 variables que fueron significativas a un nivel igual o menor al 10% y altamente significativo ($P \le 0.0090$) con un r^2 parcial entre 0.0009 a 0,73; es decir que la variabilidad del porcentaje de árboles infestados en cada una de las fincas evaluadas es explicado por las variables independientes (tabla 5), presentándose el modelo matemático:

Porcentaje de árboles infestados = -94,55133 - 2,8172 In Podas/año - 2,8365 In Finca + 0,0340 In Altitud + 0,0011 In Dosis insecticida ha/año + 14,2335 In Edad cultivo + 0,3086 In Densidad siembra árboles/ha - 11,5334 In Número de Plateos/año

Tabla 5. Variables seleccionadas en el modelo de regresión (Stepwise)

Variable	Parámetro estimado	r² parcial	Pr > F
Intercepto	-94,5513		0,0165
Podas/año	-2,8172	0,0009	0,0933
Finca	- 2,8365	0,0025	0,0503
Altitud	0,0340	0,0110	0,0321
Dosis insecticida ha/año	0,0011	0,0260	0,0363
Edad cultivo	14,2335	0,0877	0,0123
Densidad siembra árboles/ha	0,3086	0,1391	0,0083
Número de plateos/año	-11,5334	0,7327	0,0056

r2: Coeficientes de regresión parcial

De acuerdo con los resultados obtenidos, las variable con mayor contribución al modelo fue el número de plateos/ año (r^2 = 0,7327). De acuerdo a Martínez (1994) el plateo es una de las prácticas de manejo más determinantes para reducir poblaciones de perforadores y recomendó remover el suelo para exponer las pupas a condiciones ambientales adversas y a sus depredadores, como medida de control. De lo anterior se planteó que el productor de aguacate debe enfocar más su atención en esta variable para reducir niveles de infestación al presentarse el perforador de aguacate.

En cuanto a la densidad de árboles/ha (r^2 = 0,1391), Medina (2005) al respecto concluyó que los mayores porcentajes de daño se presentaron en fincas evaluadas con mayores número de árboles debido a la mayor cantidad de frutos disponibles como fuente de alimento. La variable edad del cultivo presentó un parámetro de relación positivo explicado por que el aguacate es un cultivo perenne que inicia su producción a partir del 3er año de establecido y en la medida de su producción, los frutos son susceptibles al daño. La variable podas/año concuerdan con los resultados de Medina (2005) quien concluyó que entre mayor sea la labor de podas sanitarias, ésto contribuye a una disminución paulatina del daño por el perforador, al determinar que en copas cerradas el perforador consigue un hábitat propicio para sobrevivir, al no estar expuesto a condiciones adversas del ambiente.

La variable altitud presentó a partir de 1.680 msnm un incremento del porcentaje de árboles infestados, al no encontrarse árboles infestados a alturas menores (Fincas La 24 y Soacol). Asimismo Hoyos y Giraldo (1984) reportaron la presencia de H. lauri en los municipios de Anserma y Palestina (Caldas) a alturas de 1.765 msnm y 1.600 msnm, respectivamente. Finalmente, la variable cantidad de insecticida/ha al año, a pesar de que los productores realizan control químico principalmente con clorpirifos, cipermetrinas y carbaryl, en dosis de 4,5 a 9 L insecticida/ha por año, posiblemente estas aplicaciones no causan efectos significativos sobre la incidencia del perforador.

CONCLUSIONES

La cría del insecto en frutos de aguacate confinados en cajas plásticas tipo tarrina o mantequillera con sustrato en la base de suelo ésteril o toalla absorbente, con previa desinfección del fruto con hipoclorito de sodio al 2%, demostró ser una técnica eficiente.

El perforador de aguacate obtenido en cámaras de cría fue identificado como H. lauri, del cual no se detectaron biocontroladores potenciales

El daño causado por el perforador del fruto de aguacate *H*. lauri, se caracterizó por una costra circular, presencia de excretas en forma de resina o presencia de una abertura o perforación, aunque no presentó niveles significativos que afecten hasta el momento la producción del cultivo en la zona de estudio.

La práctica de manejo que más se relacionó con el porcentaje de daño en cosecha fue el número de plateos; por tanto, esta práctica debe intensificarse a los 3,5 meses después del amarre del los frutos en los árboles de aguacate.

El porcentaje de árboles infestados se atribuye a variables de manejo de las fincas principalmente y en menor medida por la ubicación geográfica.

Debido a la presencia del perforador del aguacate en los municipios de Fresno y Herveo en el norte del Tolima, se requiere continuar con muestreos y evaluaciones que permitan prevenir a futuro, mayores niveles de infestación.

AGRADECIMIENTOS

Al Ministerio de Agricultura y Desarrollo Rural – MADR. A los Centro de Investigación de Nataima y Palmira de la Corporación Colombiana de Investigación Agropecuaria Corpoica. A la Facultad de Ciencias Agrícolas de la Universidad de Nariño y a la Asociación de Productores de Frutas y Hortalizas de Herveo - ASFRUHER.

REFERENCIAS BIBLIOGRÁFICAS

- Acevedo EJ, Vásquez JT, Moss CS. 1972. Estudios sobre el barrenador del hueso y pulpa del aguacate *Stenoma catenifer* Walsingham (Lepidoptera: Stenomidae). Agrociencia 9:17-24.
- Álvarez EJ. 2003. Conceptos básicos de fruticultura. En: http://es.scribd.com/doc/11531003/fruticultura. Consulta: diciembre de 2010.
- Barber HS. 1912. Note on the avocado weevil (*Heilipus lauri* Boheman). Proceedings of the Entomological Society of Washington 14:181-183.
- Castañeda V.A. 2008. Bioecología del barrenador grande de la semilla del aguacate *Heilipus lauri* Boheman (Coleóptera: Curculionidae) en la región central de México, (tesis de doctorado), Montecillo, Institución de Enseñanza e Investigación en Ciencias Agrícolas, Colegio de Postgraduados, 95 p.
- Castañeda VA, Del Ángel CO, Cruz GJ, Váldez CJ. 2009. Persea schiedeana (Lauraceae), nuevo hospedero de Heilipus lauri Boheman (Coleoptera: Curculionidae) en Veracruz México. Neotropical Entomology 6(38):871-872.
- Champion GC. 1902. Biología Centrali-Americana, Insecta. Coleoptera. Rhynchophora. Curculionidae. Curculioninae 4(4):1-144.
- Del Ángel-Coronel OA. 2006. Fisiología del desarrollo, plagas de campo y patología postcosecha de frutos de chinene (*Persea scheideana* Ness), (tesis de maestría), Chapingo, Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo.
- Díaz AE. 2007. Manejo sostenible de dos limitantes entomológicas importantes para la producción competitiva del aguacate en Colombia. Sistema integral de gestión de proyectos. Corporación Colombiana de Investigación Agropecuaria Corpoica. Moquera, Colombia. 51 p.
- García AP. 1962. Heilipus lauri Boheman un barrenador de la semilla del aguacate en México, (tesis), Chapingo, Escuela Nacional de Agricultura, Universidad Autónoma Chapingo. 107 p.
- Hoyos GLF, Giraldo VJ. 1984. Reconocimiento de los insectos barrenadores del fruto en el aguacate (*Persea americana* Mill.) y evaluación económica de su daño, en tres huertos de los

- departamentos de Caldas y Risaralda, (tesis), Manizales, Facultad de Agronomía, Universidad de Caldas. 98 p.
- Malavasi A. 1984. Estudio de duas especies cripticas do genero *Anastrepha* (DIP: Tephritidae), (tesis), São Paulo, Instituto de Biociências, Universidade São Paulo. 140 p.
- Martínez BR. 1994. Manual del profesionista probado en el manejo fitosanitario del aguacate. Facultad de Agrobiología "Presidente Juárez", SARH-UMSNH. Uruapan, México.
- Medina QF. 2005. Incidencia del barrenador grande del hueso del aguacate *Heilipus lauri* Boheman (Coleoptera: Curculionidae) en Tepoztlan, Morelos, (tesis), Cuernavaca, Facultad de Ciencias Agropecuarias, Universidad Autónoma de Morelos. 39 p.
- Neira A. 2009. El aguacate colombiano gana terreno entre los consumidores de la UE. Boletín de Prensa. En: Instituto Colombiano Agropecuario - ICA, http://www.ica.gov.co/Noticias/Agricola/2010/ El-aguacate-colombiano-gana-terreno-entre-los-cons.aspx. Consulta: diciembre de 2010.
- Rodríguez SF. 1992. El aguacate. AGT Editor. México DF. 167 p.
- Sagarpa. 2002. Norma Oficial Mexicana NOM-066-FITO-2002: especificaciones para el manejo fitosanitario y movilización del aguacate. Diario Oficial. México DF.
- Salgado ML, Bautista N. 1993. El barrenador grande del hueso del aguacate en Ixtapan de la sal, México. En: Memorias del Centro de investigaciones científicas y tecnológicas del aguacate en el estado de México. Fundación Salvador Sánchez Colín. Coatepec Harinas, México. pp. 225-231.
- SAS Institute. 2001. SAS user guide: statistical analysis system. Version 8.2. Cary, USA.
- Waite GK, Martínez R. 2002. Insect and mite pest. En: Whiley AW, Schaffer B, Wolstenholme BN (eds.). Avocado: botany, productions and uses. CAB International. Wallingford, UK.
- Wysoki M, Van Den Berg MA, ISH-AM G, Gazit S, Pena JE, Waite GK. 2002. Pests and pollinators of avocado. En: Pena JE, Sharp JL, Wysoki M. (eds). Tropical fruit pests and pollinators. CAB Publishing, Wallingford, UK. pp. 223-293.