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Abstract A general stability study of equatorial circular
orbits in static axially symmetric gravitating systems is
presented. We investigate the motion of neutral test par-
ticles in circular geodesics such as the marginally stable
orbit, the marginally bounded orbit, and the photon orbit
are analyzed. We find general expressions for the radius,
specific energy, specific angular momentum, and the radius
of the marginally stable orbit, both for null and timelike
circular geodesics. Different solutions are expressed in dif-
ferent coordinates systems: cylindrical coordinates, oblate
spheroidal coordinates, and prolate spheroidal coordinates
are considered. We show that all null circular trajectories
are unstable, and that there aren’t marginally stable null
geodesics, whereas for timelike geodesics the motion can be
unbounded, bounded, or circular.

Keywords Newtonian gravity · Weyl spacetimes · Exact
solutions · Equations of motion

1 Introduction

A problem of great importance in the general relativity the-
ory is obtaining the solutions of Einstein’s equations. The
Einstein field equations or Einstein’s equations are a set
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of ten equations in Einstein’s general theory of relativity,
which describe the fundamental interaction of gravitation as
a result of spacetime being curved by matter and energy.
Once the solution is obtained, another important problem
is the solution of geodesic equations, whose solutions rep-
resent the behavior of test particles that fall freely. The
properties of gravitational fields have been studied through
of kinematics of test particles, from the point of view of
Newtonian gravity [1, 2] and general relativity theory [3].
Since one of the most fundamental characteristics of iso-
lated systems in the universe in a first approximations is
axial symmetry, static or stationary axially symmetric exact
solutions are of great astrophysical relevance [4]. Conse-
quently, through the years, a great amount of work has been
dedicated to theoretical study of this type of exact solutions
[5, 6].

Therefore, the solutions of field equations are closely
related to the above study, i.e., with the motion analy-
sis of test particles in the gravitational field generated by
such distributions of matter. Indeed, the motion study of
test particles provides valuable information about the struc-
ture and behavior of such gravitational fields. In addition,
the study of trajectories in the equatorial plane is of clear
astrophysical relevance due to its relation with the dynam-
ics of intergalactic stellar motion or the flow of particles
in accretion disks around black holes [4]. In particular,
the marginally stable orbit is assumed to roughly repre-
sent the inner edge of the accretion disc, the marginally
bound orbit bounds the region from where the particles
perturbed away from free equatorial circular motion can
escape to infinity, and the circular photon trajectory is the
limiting orbit below which circular motion is impossible
[7].

In the general context, the range of works related to
the kinematics of test particles is very large; at present,
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the motion of free-falling particles remains a topic of
great interest and search in astrophysics, even for the
more known and studied solutions, such as the solution
of a Schrwarzchild black-hole [8–12] and the Reissner-
Nordström solution, which corresponds to the gravitational
field of a charged, non-rotating, spherically symmetric body
of mass M , [13–15], the exact solution for an uncharged,
rotating black hole (Kerr metric) [16–18], the Kerr-Newman
black-hole solution (mass, charged, and rotating) [19,
22], and solutions including the cosmological constant
[23, 24].

The motion of test particles in axially symmetric space-
times has been studied by different authors through the
years, both for static and stationary spacetimes with dif-
ferent source configurations (see, for instance, references
[29] to [33] for Newtonian gravity, and [34] to [45] for
general relativity). Now, the purpose of the present work
is a general stability study of circular orbits in the equato-
rial plane in different gravitating systems formed by axially
symmetric structures. In particular, we will analyze some
important circular geodesics as the marginally stable orbit,
the marginally bounded orbit, and the photon orbit. The
analysis of the circular trajectory of test particles in the
equatorial plane is associated with the study of circular
velocity in models of disk galaxies (works of potential-
density pairs). In turn in these models, the circular velocity
is related to the mass density of the galaxy. Specifically in
a diagram of circular velocity, the maximum of the curve
represents the region where the density of the galaxy is
greatest. This is one of the reasons why we are interested
in studying the circular orbit, because the radius of the cir-
cular orbit defines the separation between the two regions
of different densities. For some density-potential pairs of
galaxy models in the Newtonian gravity see Ref. [1] for
details.

The paper is organized as follows. Section 2 is devoted
to deriving the geodesic equations, the effective potential
and general expressions for the main characteristics of cir-
cular orbits: the radius, specific energy, specific angular
momentum, and the radius of marginally stable orbit, both
for null and timelike geodesics. In the following sections,
we particularize these expressions for solutions written in
cylindrical coordinates, oblate spheroidal coordinates, and
prolate spheroidal coordinates.

In Section 3, we concluded that all null circular orbits
are unstable, for solutions expressed in cylindrical coor-
dinates, as illustrated by considering the Chazy–Curzon
field. In Section 4, we present the oblate spheroidal coordi-
nates, and some members of the family of Morgan–Morgan
disks are analyzed. Later, in Section 5, we consider pro-
late spheroidal coordinates, and the range of stability of
the Erez–Rosen solution is obtained. Finally, results are
discussed in Section 6.

2 Test Particle Motion

The metric for a static axisymmetric spacetime can be writ-
ten in quasicylindrical coordinates (r, ϕ, z) as the Weyl line
element [5, 6, 46, 47]

ds2 = −e2�dt2 + e−2�[R2dϕ2 + e2�(dρ2 + dz2)], (1)

where �, �, R are functions of ρ and z only. The ranges
of the coordinates (ρ, ϕ, z) are the standards for cylindrical
coordinates (Weyl coordinates) and −∞ ≤ t < ∞. The
Einstein vacuum equations for this metric are

R,ρρ + R,zz = 0, (2a)

(R�,ρ),ρ + (R�,z),z = 0, (2b)

R,z�ρ + R,ρ�z − 2R�,ρ�,z − R,ρz = 0 (2c)

R,ρ�,ρ − R,z�,z − R(�2
,ρ −�2

,z)+ R,zz = 0. (2d)

wherein ( ),α = ∂/∂xα . The first equation is the bidimen-
sional Laplace equation for the function R; in order to do,
we can consider that R is the real part of the one function
W(ω) = R(ρ, z) + iZ(ρ, z). Thus, to find field equations,
we consider a transformation [48]

ρ −→ R(ρ, z), z −→ Z(ρ, z), (3)

this is reduced to

� −→ � = ψ, � −→ γ = �− ln |dW/dω|, (4)

here W = ω ± α
√
ω2 − 1, and where α is a positive con-

stant. Hence, the equation (Eq. 1) becomes [5, 6, 46, 47]

ds2 = −e2ψdt2 + e−2ψ [ρ2dϕ2 + e2γ (dρ2 + dz2)], (5)

where γ and ψ are functions of ρ and z only. The Einstein
vacuum equations reduce to the system of Weyl equations
[5, 6, 46, 47]

ψ,ρρ + 1

ρ
ψ,ρ + ψ,zz = 0, (6)

γ,ρ = ρ
(
ψ2
,ρ − ψ2

,z

)
, (7)

γ,z = 2ρ ψ,ρψ,z, (8)
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wherein Eq. (6) is the well-known Laplace’s equation (lin-
ear differential equation) in cylindrical coordinates with
axial symmetry, which is the integrability condition of the
overdetermined system Eqs. (7–8). Due to the linearity of
Laplace’s equation, several authors study the superposition
of Weyl fields using the principle of superposition of linear
differential equations. The authors superposed two solutions
of the function ψ to obtain one new solution that could rep-
resent, e.g., the superposition of one black hole and one
thin disk (galaxy) [7]. Nevertheless, in spite of their obvious
and simple symmetry properties, the physical interpretation
of these solutions is generally far from trivial. For static
axisymmetric vacuum solutions, the regularity condition on
the axis of symmetry means γ = 0 in the limit ρ → 0.
If this condition is not satisfied for some value or range of
z, then some kind of singularity occurs at these points, see
[5, 6].

The solutions of Laplace’s equation for the metric func-
tion ψ are similar to the expressions of multipolar expansion
of gravitational potential in Newtonian gravity (or in the
Euclidean 3-space), but unfortunately the physical meaning
of the solutions is not the same in general relativity, e.g., the
monopolar term in the multipolar expansion corresponding
to gravitational field of a point mass in Newtonian gravity
(ψ = −Gm/r , being m the mass of the source, G the grav-
itational constant, and r the radial coordinate of spherical
coordinates), which is not in general relativity the correct
physical interpretation of the spacetimes. In fact, in general
relativity, the metric functions do not represent the gravi-
tational potential, although in this case they keep a special
similarity through Laplace’s equation.

The corresponding Lagrangian for this line element
Eq. (5) is given by:

2L = −e2ψ ṫ2 + e−2ψ [ρ2ϕ̇2 + e2γ (ρ̇2 + ż2)], (9)

where the dot represents the derivative with respect to
the affine parameter along the geodesic, λ. Now, as the
Lagrangian is independent of t and ϕ,

−E = ∂L/∂ṫ, � = ∂L/∂ϕ̇, (10)

are conserved quantities, where � is the specific angular
momentum and E is the specific energy with respect to
infinity. From the Lagrangian Eq. (9), we can derive the
system of equations of motion

ρ̈ + (ρ̇2 − ż2)(γ,ρ − ψ,ρ)+ 2ρ̇ż(γ,z − ψ,z)

+e−2γ
[
E2ψ,ρ + (ρψ,ρ − 1)

�2e4ψ

ρ3

]
= 0, (11)

z̈− (ρ̇2 − ż2)(γ,z − ψ,z)+ 2ρ̇ż(γ,ρ − ψ,ρ)

+e−2γ ψ,z

[
E2+ �2e4ψ

ρ2

]
= 0. (12)

This autonomous system has a unique solution when con-
ditions xa0 = xa(λ0) and ua0 = ẋa(λ0) are given, with
xa = ρ, z. The initial condition for the velocity of particle
can be obtained by using Eq. (10) in the form

ṫ = Ee−2ψ, ϕ̇ = �e2ψ/ρ2,

then our equation Eq. (9) becomes

ż2 = e−2γ
[
E2 − e2ψ

(
2L+ �2

ρ2
e2ψ

)]
− ρ̇2.

Therefore, we have only one free parameter (ρ̇(0) = ρ̇0):
the initial positions are chosen according to the graph of
the effective potential, whereas the initial speed z can be
obtained using (2) and including a value of ρ̇0.

Now, if we confine the motion of the particle to the equa-
torial plane z = 0, from Eq. (9), we obtain for the radial
coordinate ρ, the equation

ρ̇2 = e−2γ
[
E2 − e2ψε2 − �2

ρ2
e4ψ

]
, (13)

with ε = 1 for timelike geodesics and ε = 0 for null
geodesics. The orbit of particle in the equatorial plane can
be obtained by solving together the above equation and the
equation

ϕ̇ − �e2ψρ−2 = 0, (14)

that follows from Eq. (10). For purely radial motion, we
have that ϕ = ϕ0 = constant , so that � = 0 in the above
expressions.

The behavior of trajectories in the equatorial plane is
determined by the equation Eq. (9), that can be conveniently
expressed as:

ρ̇2e2γ

2
+ e2ψ

2

[
ε2 + �2

ρ2
e2ψ

]
= E2

2
, (15)

so that we can define an effective potential through the
equality

V (ρ) = e2ψ
[
ε2 + �2

ρ2 e
2ψ

]
, (16)
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which only depends on ρ and the metric function ψ . On the
other hand, for the metric in Eq. (5) to be asymptotically
flat, the functions ψ and γ must vanish at infinity. So, we
can obtain the general condition

lim
ρ→∞V = ε2, (17)

for all the effective potentials of the form Eq. (16).
Now, for circular orbits, we have that ρ = ρc =

constant and so ρ̇ = ρ̈ = 0. Accordingly, from Eq. (15) it
follows that

E2 = V (ρ), (18)

with V (ρ) given by Eq. (16). Furthermore, the minima of
V (ρ) correspond to stable circular orbits, whereas the max-
ima of V (ρ) correspond to unstable circular orbits. Hence,
by computing the derivative of V (ρ), we obtain the equa-
tion for the critical points of effective potential, which can
be written as:

�2e2ψ(2ρψ,ρ − 1)+ ρ3ε2ψ,ρ = 0 (19)

and, for the case of null circular orbits (ε = 0), as [7]

2ρψ,ρ − 1 = 0. (20)

So, the radius of the timelike and null circular orbits
are given by the roots of the two previous equations,
respectively.

The specific angular momentum � for massive particles
in circular orbits can be obtained from Eq. (19), and is given
by [7]

�2 = ρ3ψ,ρe
−2ψ

1 − 2ρψ,ρ

, (21)

with the condition 0 ≤ ρψ,ρ < 1/2. Accordingly, we can
see that the radius of the circular orbits depends on �. Now,
by replacing Eq. (21) into Eq. (18), we obtain the other
constant of motion, E, for a particle moving in a circular
trajectory

E2 = e2ψ(1 − ρψ,ρ)

(1 − 2ρψ,ρ)
, (22)

where, again, 0 ≤ ρψ,ρ < 1/2.
The stability condition for circular orbits is given by

V ′′(ρc) > 0. Therefore, for massless particles, the stability
condition reduces to

ψ,ρ + ρψ,ρρ > 0, (23)

whereas that for massive particles with specific angular
momentum given by Eq. (21), the stability condition is given
by [7]

ρψ,ρρ + 3ψ,ρ + 2ρψ 2
,ρ(2ρψ,ρ − 3) > 0, (24)

with 0 ≤ ρψ,ρ < 1/2.
Now, it can be shown that the expressions

V ′′(ρ) = 0 (25)

and [7]

d�2

dρ
= 0 (26)

are equivalent for massive particles. Accordingly, the radius
of the marginally stable circular orbit can be obtained
through the two simultaneous equations V ′(ρ) = 0 and
V ′′(ρ) = 0 or by means of equation d�2/dρ = 0, provided
that there exists two critical points for the effective potential,
one of them corresponding to the stable circular orbit and
the other one to the unstable circular orbit, i.e., according
to the criterion of the first derivative, if there is a position
where d�2/dρ = 0 (zero slope in the curve �2 = �2(ρ)),
this implies that there is a region where the slope is posi-
tive d�2/dρ > 0 (stable region, there is a minimum) and
another where d�2/dρ < 0 (unstable region, there is a
maximum).

The angular-momentum Eq. (21) is commonly used by
several authors in disk-shaped galaxies models to determine
the criteria of stability of a fluid at rest in a gravitational
field both in Newtonian gravity [1] and in general relativ-
ity (see, references [40] to [42]). In this case is known as
the Rayleigh criteria [49]. The condition for a stable orbit
is

�
d�

dρ
> 0.

The above expression is fully equivalent to our equation

d�2

dρ
≥ 0 (27)

where the inequality defines stability of circular orbits to
radial perturbations (Rayleigh criteria) and the equality
determines the radius of the orbit.

Thus, the minimum value of the specific angular momen-
tum as a function of radius of the circular orbit Eq. (21)
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represents the last circular orbit, which is well-known as the
marginally stable circular orbit [4, 50]. For null geodesics,
the expression is

ψ,ρ + ρ ψ,ρρ = 0, (28)

and for timelike geodesic is

ρ ψ,ρρ + 3ψ,ρ + 2ρ ψ 2
,ρ(2ρ ψ,ρ − 3) = 0, (29)

where 0 ≤ ρ ψ,ρ < 1/2 again. It is important to remark that
there are spacetimes that admit more than one marginally
stable circular orbit, as well as more than one photon orbit,
see reference [7].

It is essential to mention that the equation to determine
the stability of photon circular orbit Eq. (23) or the formula
to find the radius of marginally stable circular orbit Eq. (28)
can be rewritten using the expression Eq. (20) as:

d

dρ

(
ρψ,ρ

) ≥ 0 . (30)

This last expression in accordance with Eq. (20) is always
equal to zero, because the function inside the parentheses
is constant, and therefore, the derivative with respect to
ρ would always be zero. By the same reasoning, for the
inequality (>), a solution cannot be found. In summary,
all circular photon orbits are unstable in these solutions.
In addition, for the considered Weyl fields, there are no
marginally stable circular photon orbits.

Finally, we also find an expression for the angular
velocity,

ω = dϕ

dt
= ϕ̇

ṫ
, (31)

where ṫ = E e−2ψ and ϕ̇ = � e2ψρ−2. For timelike
geodesics, we obtain [7]

ω2
T = �2e8ψ

E2ρ4
c

, (32)

where ρc are the roots of Eq. (19), whereas for null
geodesics we have [7]

ωN = e2ψ

ρc
, (33)

where the ρc are the solutions of Eq. (20). The above equa-
tions only depend on the metric function ψ , in such a way
that the potential γ is not needed for a qualitative analysis
of the particle trajectories in Weyl spacetimes. However, the
function γ is necessary for solving the differential equations
of particle motion.

3 Solutions in Cylindrical Coordinates

In spherical coordinates (r, θ), the asymptotically flat solu-
tions of the equations system Eqs. (6–8) [6] are

ψk = −
k∑

n=0

Cn Pn

rn+1
, (34)

γk = −
k∑

l,m=0

ClCm(l + 1)(m+ 1)

(l +m+ 2)rl+m+2

× (PlPm − Pl+1Pm+1), (35)

wherein Pn = Pn(cos θ) are the usual Legendre polynomi-
als and the Cn are constants. Now, in the equatorial plane,
z = 0, so that we get

ψk = −
k∑

n=0

C2n
P2n(0)

ρ2n+1
, (36)

γk = −
k∑

l,m=0

C2lC2m(2l + 1)(2m+ 1)

(2l + 2m+ 2)ρ(l+m)/2+1

× (P2lP2m − P2l+1P2m+1). (37)

Where (ρ, z) are the usual cylindrical coordinates, with

ρ = r sin θ, z = r cos θ.

We can find the radius of a circular null orbit by solving
Eq. (20), which in these coordinates reduces to

k∑
n=0

2C2nP2n(0)(2n+ 1)

ρ2n+1
= 1. (38)

So we obtain

ρ2k+1 −
k∑

n=0

a2nρ
2n = 0, (39)

where the constants a2n are greater than zero, which are
related to the constants C2n and P2n(0). This polynomial in
ρ is of odd order and so has, at least one real root. Moreover,
since there is only one change in sign, there is a positive
root. Accordingly, we can say that there exist null circular
orbits. On the other hand, it is easy to see that the stability
condition is not satisfied, since

ρ ψk,ρρ + ψk,ρ = −
k∑

n=0

C2nP2n(0)(2n+ 1)2

ρ2n+2
< 0 (40)

and so all the circular orbits are unstable. Finally, we can
ask for the existence of a marginally stable circular orbit,
which must satisfy ρ ψ,ρρ +ψ,ρ = 0, but we find that there
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are no positive roots because the corresponding polynomial
no change of sign. Therefore, there is no marginally stable
orbit.

Now, in order to illustrate the above considerations, we
consider the simplest case of the family Eq. (34), the Chazy–
Curzon solution [51, 52],

ψ0 = −m

r
, γ0 = −m2 sin2 θ

2r2 , (41)

which can be obtained by choosing k = 0 and C0 = m > 0
in Eq. (34). As it can be seen, although the metric function
ψ0 is spherically symmetric, the full solution Eq. (41) is not.
In the equatorial plane, the metric functions reduce to

ψ0 = −m

ρ
, γ0 = − m2

2ρ2
. (42)

This expression is commonly associated to the Newto-
nian potential of a point mass located at ρ = 0, z = 0.
However, it can be seen that the resulting spacetimes is not
spherically symmetric. Moreover, there is a curvature sin-
gularity at ρ = 0, z = 0 that is not surrounded by a horizon
and is therefore naked. Nevertheless, any light emitted from
it becomes infinitely red-shifted, so that it is effectively
invisible, see [6].

So, according to Eq. (38), for this solution the radius of
the unstable circular orbit is ρ = 2m for photons. Then, with
ρ = 2m, the values of the specific energy and the angular
velocity of the particle are

ωN = (2me)−1, EN = �ωN, (43)

where � is an arbitrary constant and e is the base of natural
logarithms.

In Fig. 1, we show the effective potential for lightlike
geodesics in the Chazy–Curzon solution. A maximum can
be seen at ρ = 2m with a value of (2me)−2�2. Trajecto-
ries are described using the horizontal lines (V = E2) to
different values of the quantities m and �. When 0 < E1 <

Fig. 1 The effective potential for the massless particle in the Chazy–
Curzon field. Here, we take � = 4me

(2me)−2�2, the motion corresponds to a particle with
specific energy E1 coming from infinity until it reaches the
turning point B and then goes back to infinity. There is
also a potential well, when the motion is confined to 0 <

ρ/m < A, and a not allowed region, for A < ρ/m < B .
On the other hand, when the specific energy is greater than
(2me)−2�2 as in the horizontal line E2, there are no turning
points, and the particle moves only in one direction. Now,
although we do not consider here solutions with other val-
ues of k in Eq. (36), it can be shown that in general all the
effective potentials behave as depicted in Fig. 1, whenever
the condition C2nP2n(0) > 0 be assumed in this family.

On the other hand, for timelike geodesics, the specific
energy and specific angular momentum of a particle in a
circular orbit are, respectively,

�2 = ρ2me2m/ρ

ρ − 2m
, E2 = e−2m/ρ, (44)

wherein ρ > 2m, so that

ω2
T = e−4m/ρm

(ρ − 2m)ρ2
. (45)

The radius of the marginally stable circular orbit obtained
by solving the equation Eq. (29), and we find the cor-
responding specific angular momentum by replacing this
radius into Eq. (21). For the Chazy–Curzon field, we find

ρ = 5.23m, � = 3.52m, (46)

E = 0.826, ω2
T = 0.00525

m2 , (47)

for the marginally stable circular orbit.
The graphics of the effective potential Eq. (16) for time-

like geodesics in the Chazy–Curzon spacetime are presented
in Figs. 2 and 3. In Fig. 2, we see that the shape of the

Fig. 2 Effective potential as a function of ρ/m for timelike geodesics,
with different values of �/m, for the Chazy–Curzon field. For the
curves from top to bottom, we take �/m = 4.1, 3.8, 3.65 and � =
3.52m, respectively. The point in the dotted curve corresponds to
ρ/m = 5.23, which is the radius of the marginally stable orbit with
�/m = 3.52
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Fig. 3 Effective potential for timelike geodesic with � = 4.5m in the
Chazy–Curzon spacetimes

effective potential curve depends only on the angular
momentum � and that all the curves have two circular orbits,
except the doted curve. In this graph, the dotted curve has
a value of � = 3.52m and represents the marginally stable
circular orbit. Figure 3 shows the potential with � = 4.5m
and, with dotted lines, different values of the energy E2 in
order to analyze the possible orbits. Thus, for E1, we have
three different radiuses as the horizontal line cuts the poten-
tial in three points. For the smallest radius A, the particle is
confined in the potential well as in Fig. 1, 0 < ρ/m < A.
Whereas for the others radius, C and D, we obtain a bounded
orbit between them, i.e., if we take E1 = 0.975, we find a
bounded orbit between C = ρ/m ≈ 7.66 (periastron) and
D = ρ/m ≈ 67.52 (apastron), Fig. 4. When the energy is
E2, a turning point is found, so for E2 = 1.02, the turn-
ing point is B = ρ/m ≈ 5.45, and we show in Fig. 5 the
corresponding the trajectory. For the point F with energy
E2 = 1.02, the particle within confined in the potential well,
as in A. Whereas for an energy E3, greater than the max-
imum of the potential, there are no turning points and the
particle moves only in one direction. Finally, Fig. 6 presents
the range of stability for particles moving in a circular orbit
by plotting the specific angular momentum, Eq. (44) as a
function of the radius of the circular trajectory. The range

Fig. 4 Orbit of the particle corresponding to the effective potential of
the Fig. 3 with E1 = 0.975. This orbit is bounded between C ≈ 7.66
and D ≈ 67.52. The initial conditions are ρ̇(t = 0) ≈ 0.17, ϕ(t =
0) = π/6 and ρ(t = 0) = 20

Fig. 5 Orbit of the particle corresponding to the effective potential of
the Fig. 3 with E2 = 1.02. The initial conditions used ρ̇(t = 0) ≈
0.17, ϕ = π/6 and ρ = 20

of stability is 3.52m ≤ � < ∞ and 5.23m ≤ ρ < ∞.
The point has coordinates (�/m, ρ/m) = (3.52, 5.23) and
corresponds to the radius of the marginally stable circular
orbit.

4 Solutions in Oblate Spheroidal Coordinates

In the oblate spheroidal coordinates, the solution of the
Laplace Eq. (6) is

ψn = −
n∑

k=0

C2kP2k(η)i
2k+1Q2k(iξ), (48)

where C2k are constants, Pk are the Legendre polynomi-
als, and Qk are the Legendre functions of second kind [53].
This solution represents the exterior Newtonian potential
for an infinite family of axially symmetric finite thin disks,
recently studied by González and Reina [54], and whose
first term, n = 0, is the well-known Kalnajs disk [55]. We
also studied in another paper [56] the kinematics around the
first four members of this family by means of the Poincaré
surfaces of section and Lyapunov characteristic numbers,

Fig. 6 The specific angular momentum, �/m, as a function of the
radius of the circular orbit, ρ/m, for timelike geodesic in the Chazy–
Curzon field. The point has coordinates (�/m, ρ/m) = (3.52, 5.23).
The range of stability is 3.52m ≤ � < ∞ and 5.23m ≤ ρ < ∞
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and found indeed chaos in the case of disk-crossing orbits
and completely regular motion in other cases.

The constants C2k appearing in Eq. (48) are given by:

C2k = mG

2a

[
π1/2(4k + 1)(2n+ 1)!

22n(2k + 1)(n− k)!�(n + k + 3
2 )q2k+1(0)

]
,

where q2k(ξ) = i2k+1Q2k(iξ), m is the mass of the disk
and G is the gravitational constant. Now, due to the pres-
ence of the term (n − k)! at the denominator, all the C2k

constants vanish for k > n. The variables η and ξ are the
oblate coordinates related to the cylindrical coordinates by:

ρ2 = a2(1 + ξ2)(1 − η2), z = aξη, (49)

where a is a constant, −1 ≤ η ≤ 1 and 0 ≤ ξ < ∞.
In Eq. (49), a is the radius of the thin disk, henceforth, we
chose a = 1. Studying the circular motion of test particles in
disk-like solutions is equivalent to analyzing the behavior of
rotation curves in the models of galactic disks. In the plane
z = 0, there are two regions: if ξ = 0 then η = √

1 − ρ2,
whereas if η = 0 then ξ = √

ρ2 − 1. These two regions
correspond to the regions inside and outside of the disk,
respectively.

We now write the different equations for these two
regions in the simple case of null geodesics. So, from
Eq. (20), the radius of the circular orbits inside the source is

n∑
k=1

4kC2kq2k(0)
[
P2k−1(η)− ηP2k(η)

] = η, (50)

being η = √
1 − ρ2. The stability condition in oblate

spheroidal coordinates, inside the disk, take the form

η(1 − η2)ψn, ηη − (1 + η2)ψn, η ≤ 0, (51)

that for the solution Eq. (48) can be written as:

m∑
k=1

2kq2k(0)
[
2kηP2k(η)+ P2k−1(η)

]
> 0. (52)

Now, for null geodesics outside the disk, the radius of the
circular orbit can be obtained from the expression

n∑
k=0

2C2kP2k(0)
[
ξq2k(ξ)+ q2k+1(ξ)

] + ξ = 0, (53)

where ξ = √
ρ2 − 1. The corresponding stability

condition is

ξ(1 + ξ2)ψ,ξξ + (ξ2 − 1)ψ,ξ ≤ 0, (54)

then using Eq. 48 becomes

−
n∑

k=0

C2k(2k + 1)
[
2ξq2k(ξ)+ q2k+1(ξ)

]
> 0. (55)

The first solution of Eq. (48), when n = 0, was obtained
independently by Zipoy [57] and Vorhees [58], and inter-
preted by Bonnor and Sackfield [59] as the gravitational
field of a pressureless static thin disk, which is singular at
the rim. The function ψ for the first three family members
of disks Eq. (48) is given by [54, 56]

ψ1 = −μ[cot−1 ξ + A(3η2 − 1)], (56)

ψ2 = −μ[cot−1 ξ + 10A

7
(3η2 − 1)

+ B(35η4 − 30η2 + 3)], (57)

ψ3 = −μ[cot−1 ξ + 10A

6
(3η2 − 1)

+ 21B

11
(35η4 − 30η2 + 3)

+ C(231η6 − 315η4 + 105η2 − 5)], (58)

with

A = 1

4
[(3ξ2 + 1) cot−1 ξ − 3ξ ],

B = 3

448
[(35ξ4 + 30ξ2 + 3) cot−1 ξ − 35ξ3 − 55

3
ξ ],

C = 5

8448
[(231ξ6 + 315ξ4 + 105ξ2 + 5) cot−1 ξ

−231ξ5 − 238ξ3 − 231

5
ξ ],

being μ = m/a.
For n = 1, the other metric function is [5, 60, 61]

γ1 = 9μ2(η2 − 1)
[
9ξ2η2 − ξ2 + 4η2 + 4

+(ξ2 + 1)(9ξ2η2 − ξ2 + η2 − 1)(cot−1 ξ)2

−2ξ(9ξ2η2 − ξ2 + 7η2 + 1) cot−1 ξ
]
/16. (59)
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This disk is also singular at the rim [62]. For n = 2, the
metric function γ is given by:

γ2 = 25μ2(η2 − 1)
{

9ξ6
(

1225η6 − 1275η4 + 315η2 − 9
)

+3η4
(

5050η6 − 3630η4 + 366η2 + 6
)
ξ4

+
(

4945η6 − 723 − 45η2 − 81
)
ξ2

−6
[
375η6 + 113η4 + 15η2 + 27

+3
(

1225η6 − 1275η4 + 315η2 − 9
)
ξ6

+
(

6275η6 − 4905η4 + 681η2 − 3
)
ξ4

+
(

3005η6 − 1111η4 − 105η2 + 3
)
ξ2

]
ξ cot−1 ξ

+9(ξ2 + 1)
[
9η6 + 5η4 − 5η2 − 9

+ξ6
(

1225η6 − 1275η4 + 315η2 − 9
)

+ξ4
(

1275η6 − 785η4 + 17η2 + 5
)

+ξ2(315η6 − 17η4 − 47η2 + 5)
]
(cot−1 ξ)2

+256
(
η6 + η4 + η2 + 1

)}
/2048. (60)

For n ≥ 2, although the metric function γ can be easily
obtained by integrating Eqs. (7–8) properly written in oblate
spheroidal coordinates. They are not explicitly presented
here due to their highly complex expressions.

Now, we analyze some examples. If we take n =
1, the second member of family of disks, we obtain
for the radius of circular trajectory, the angular veloc-
ity, and specific energy corresponding to this radius, the
relations

ρ2 = 2

3πμ
, ω2

N = E2

�2 = 3πμ

2
e1−3πμ, (61)

Fig. 7 Effective potential inside and outside of the source for massive
particles for the second member of the family of Morgan and Morgan
disks, n = 1, with μ = 1

Fig. 8 Effective potential outside of source for the third member of
the family of Morgan and Morgan disks, n = 2, for a timelike geodesic
with μ = 1

where μ ≥ 2/3π (due to 0 ≤ ρψ,ρ < 1/2), �

is an arbitrary constant, and the radius corresponds to
a stable equilibrium of the effective potential for a null
geodesic. Now, outside of the source, the effective poten-
tial increases until a maximum value, corresponding to the
unstable circular orbit, and then diminishes until 0 when ρ

increases, according to Eq. (17). Again, we cannot find the
marginally stable circular orbit in this disk for the massless
particles.

The behavior of the effective potential for different
parameter values is similar to those displayed in Fig. 7,
corresponding to the timelike geodesic. In the effective
potential of Fig. 7, we choose � = 8, 6 (gray curve) and
3.56 (dotted curve). The behavior for different parameter
values is similar, so we take μ = 1 as an example. In the
exterior case, we consider the third member of the family,
n = 2, see Fig. 8. In this graph, the point B corresponds to
the radius of the marginally stable circular orbit, which has
� ≈ 3.688. The points C and D have angular momentum
� = 4.2 and effective potential 0.935, the motion is bounded
between the radius 7.61 and 19.14, Fig. 9. In this graph, we
choose μ = 1.

Fig. 9 Orbit of a particle with E = 0.935. The initial conditions are
ρ̇(0) = 0.0903, ϕ(0) = π/6, and ρ(0) = 10. The trajectory is between
C ≤ ρ ≤ D
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5 Solutions in Prolate Spheroidal Coordinates

The general static axisymmetric vacuum solution for ψ in
prolate spheroidal coordinates (u, v) is given by [63]

ψl =
l∑

n=0

(−1)n+1dnQn(u)Pn(v), (62)

wherein u ≥ 1, −1 ≤ v ≤ 1 and the dn are constants
related with the multipole moments [63–65].Pn are the Leg-
endre polynomials and Qn are Legendre functions of second
kind. These coordinates are related with Weyl’s canonical
coordinates by:

ρ2 = m2(1 − v2)(u2 − 1), z = muv, (63)

where m is the mass of the source that produces the field.
The asymptotically flat solution for γ was found by

Quevedo [63]. The monopolar solution, l = 0, with d0 = 1
corresponds to the Schwarzschild spacetimes. The solution
of Eq. (20), for the monopolar term, is u = 2, that is the
unstable radius of a null circular orbit in the Schwarzschild
field. For a complete study of motion in Schwarzschild solu-
tion in the equatorial plane, see [3]. The solution of Eq. (62)
for l = 2 is the Erez–Rosen metric [66],

ψ1 = d0

2
ln

u− 1

u+ 1
(64)

+d2

2
(3v2 − 1)

[
1

4
(3u2 − 1) ln

u− 1

u+ 1
+ 3

2
u

]
.

In this case, d0 and d2 are related with the monopole and
arbitrary quadrupole moment, respectively, [65]. The study
of orbits in this solution was developed by different authors
[26–28, 34, 35].

Now, in this section, we expose the expressions for the
different quantities corresponding to the motion of a parti-
cle in a circular orbit in prolate spheroidal coordinates. That
is, the specific energy, the angular velocity, and the radius
of the marginally stable circular orbit, which are obtained
through of the effective potential in the equatorial plane,

V = e2ψl

(
ε2 + e2ψl�2

(
u2 − 1

)
m2

)
.

We begin with the equations corresponding to null
geodesics, when ε = 0. So, the radius of the circular

trajectories can be found by

2(u2 − 1)ψl, u = u, (65)

in terms, Eq. (62) takes the form

l∑
n=0

2d2nP2n(0)(u
2 − 1)Q′

2n(u) = u, (66)

with the stability condition

u(u2 − 1)ψ,uu + (u2 + 1)ψ,u ≥ 0, (67)

from Eq. (62), we get

l∑
n=0

d2nP2n(0)
[
(u2 − 1)Q′

2n(u)− 2nu(2n+ 1)Q2n(u)
]
≥ 0. (68)

In the above expression, the equal sign corresponds to the
equation for the radius of marginally stable circular orbit.
Finally, the other formulas are found by means of Eqs. (18)
and (33).

Similarly, for the massive particle, we obtain the
expressions

�2 = e−2ψ
(
u2 − 1

)2
m2ψ,u

u− 2
(
u2 − 1

)
ψ,u

, (69)

E2 = e2ψ
[
u− (u2 − 1)ψ,u

]

u− 2
(
u2 − 1

)
ψ,u

, (70)

where u − 2
(
u2 − 1

)
ψ,u > 0, in order that the energy

per mass unit and the angular momentum per mass aren’t
imaginary quantities.

The stability condition and the radius of the marginally
stable circular orbit can be obtained, as it was done before
in the cylindrical or oblate spheroidal coordinates, by solv-
ing the system of equations V ′(u) = 0 and V ′′(u) = 0.

Fig. 10 Specific angular momentum, �/m, as a function of u for the
circular orbit in the Erez–Rosen field with d0 = 1 and d2 = 1.5.
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According to this, with the expressions Eqs. (64 and 69),
we find

ψ,u

{
3u2 + 2 + 2(u2 − 1)ψ,u

[
2(u2 − 1)ψ,u − 3u

]}

+ u(u2 − 1)ψ,uu ≥ 0, (71)

with u− 2
(
u2 − 1

)
ψ,u > 0.

Finally, we show in Fig. 10, the region of stability
by means of a graph of the specific angular momentum
Eq. (69). In particular, we choose d0 = 1 and d2 = 1.5 for
values of the parameters in the Erez–Rosen solution, it can
be seen that the range is

0 ≤ u ≤ 4.77, 4.77 ≤ u < ∞,

and 11.62 ≤ � < ∞ for stable orbits. Here, the
marginally stable circular orbit has coordinates (�/m, u) =
(11.62, 4.77). In the Newtonian gravity, d2 usually repre-
sents the major deviation from the spherical symmetry, the
quadrupolar moment. The case d2 > 0, on which we focus
here, corresponds to bodies with prolate deformation (d2 <

0 represents oblate deformation).
In addition, for spherical coordinates, if we consider

deviations from spherical symmetry in these solutions of
Weyl family, without perturbing directly the Schwarzschild
metric, we must consider the transformation [7]

ρ2 = r(r − 2M) sin2 θ, z = (r −M) cos θ, (72)

wherein M is the mass of Schwarzschild, and r and θ are
Schwarzschild coordinates. The simplest type of Weyl solu-
tion represents a homogeneous rod of mass M and length
2M placed around the origin (Chazy–Curzon field in cylin-
drical coordinates). Note that in these coordinates the event
horizon is now at ρ = 0. This can be seen from the angu-
lar momentum plots in Figs. 6 and 10. The graphs show that
as ρ approaches 0 from the right, the values of �2 increase
without bound, i.e., the motion is more chaotic as particle
approaches the horizon, as we might have expected from
Israel’s theorem [67]. This was already mentioned in [68]
for gamma spacetime and for M-Q solution in [43].

6 Concluding Remarks

We analyzed the behavior of free-test particles in the equato-
rial plane of static axisymmetric spacetimes. Different solu-
tions were expressed in different coordinates systems: cylin-
drical coordinates, oblate spheroidal coordinates, and pro-
late spheroidal coordinates were considered. We presented
several general expressions for the circular orbit in null and

timelike geodesics: radius, specific energy, specific angu-
lar momentum, angular, and radius of the marginally stable
circular orbit, all of them obtained through an effective
potential. The specific angular momentum was presented
for the timelike geodesic and was used to find the range of
stability of the orbit of the particle, so the minimum value
represents the marginally stable circular motion.

In order to obtain the particle trajectory, we analyzed the
resulting analytical results. The character of the motion is
determined essentially by means of the behavior of effective
potential. Thus, we displayed different graphs of effective
potential before solving the differential equations of motion
of the particle. Then, we began with the Chazy–Curzon
field in the case of cylindrical coordinates, as discussed in
Section 3. The motion of particles around oblate deformed
bodies was developed in Section 4, by means of the analysis
of the properties of some member of the family disks Eq.
(48). On the other hand, the prolate case was presented in
Section 5, where we found the range of stability of the
Erez–Rosen solution in the special case of massive particles.

In summary, we concluded that for these solutions all
the circular orbits are only unstable in the case of null
geodesic, whereas there do not exist marginally stable cir-
cular orbits for null godesics. In particular, in cylindrical
coordinates, this is fulfilled for the C2nP2n(0) > 0 con-
dition. In contrast, we found that for massive particles the
orbits can be unbounded, bounded, or circular. This behav-
ior can be seen by means of the effective potential and
verified by solving the equations of motion numerically.
Moreover, for the timelike geodesic, we found the radius of
the marginally stable circular orbit in different coordinate
systems, cylindrical, prolate, and oblate.
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