Dorokhov, Alexander E.
Distribution Amplitudes of Light Mesons and the Photon in the Instanton Model
Sociedade Brasileira de Física
São Paulo, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=46437537
Distribution Amplitudes of Light Mesons and the Photon in the Instanton Model

Alexander E. Dorokhov
Bogoliubov Laboratory of Theoretical Physics,
Joint Institute for Nuclear Research, 141980 Dubna, Russia

Received on 30 October, 2006; revised version received on 17 February, 2007

The leading- and higher-twist distribution amplitudes of the pion, the ρ-meson and real and virtual photons are analyzed in the instanton liquid model.

Keywords: QCD; Instanton; High energy; Quark; Pion; Photon; Distribution amplitude

I. INTRODUCTION

The investigations of hard exclusive processes are essential for our understanding of the internal quark-gluon dynamics of hadrons. Theoretically, such studies are based on the assumption of factorization of dynamics at long and short distances. The short-distance physics is well elaborated by perturbative methods of QCD and depends in particular on the hard subprocesses. The long-distance dynamics is essentially nonperturbative and within the factorization formalism becomes parametrized in terms of hadronic distribution amplitudes (DAs). These nonperturbative quantities are universal and are defined as vacuum-to-hadron matrix elements of particular nonlocal light-cone quark or quark-gluon operators. The evolution of DAs at sufficiently large virtuality is controlled by the renormalization scale dependence of the quark bilinear operators within QCD perturbation theory. For the leading-order DAs this dependence is governed by the QCD evolution equations. When the normalization scale goes to infinity the DAs reach an ultraviolet fixed point and are uniquely determined by perturbative QCD. However, the derivation of the DAs themselves at an initial scale μ_0 from first principles is a nonperturbative problem and remains a serious challenge.

Here we present the results [1, 2] of the study of the pion, ρ-meson and photon DAs in the leading and higher twists at a low-momentum renormalization scale in the gauged non-local chiral quark model [3–5] based on the instanton picture of the QCD vacuum.

II. DEFINITIONS AND NOTATIONS

The distribution amplitudes of the mesons or the photon are defined via the matrix elements of quark-antiquark bilinear operators taken between the vacuum and the hadronic state $|h(q)\rangle$ of momentum q. It is assumed that the quark and antiquark are separated by the distance z and the light-like limit $z^2 \rightarrow 0$ is taken at a fixed scalar product $q \cdot z$. We use the light-cone expansion of the matrix elements in order to define the DAs1 (only leading twist terms are presented)

$$
\langle 0|\overline{u}(z)\gamma_\mu\gamma_5[z, -z]u(-z)|\pi^+(q)\rangle = i\sqrt{2}\int dx dq_0 \int_0^1 dx e^{i q_0 z} \phi_\pi^{0*}(x),
$$

(1)

1 Our definitions of the photon and ρ-meson DAs follow closely the works of Braun, Ball and coauthors [6, 7].
and Γ_J is the projection operator corresponding to a definite twist. Here and below, the notation

$$M^{(1)}(k, k') = \frac{M(k) - M(k')}{k^2 - k'^2}$$

is used. The nonlocal functions are chosen in the Gaussian form

$$f(p) = f_v(p) = \exp \left(-\frac{p^2}{\Lambda^2} \right),$$

with ρ denoting the Euclidean momentum, resembling the fact that the instanton field is convenient to express in the axial gauge. As the model parameters we take the values fixed in [10]

$$M_0 = 240 \text{ MeV}, \quad \Lambda = 1110 \text{ MeV}. \quad (8)$$

The distribution amplitudes of the pion and the real photon calculated in the instanton model in the chiral limit may be cast in a closed form. It is convenient to introduce notations for the integration variables ($\bar{\tau} = 1 - x$)

$$u_+ = u - i\bar{\tau}x, \quad u_- = u + i\bar{\tau}x, \quad M_{\pm} = M(u_{\pm}),$$

$$D(u) = u + M^2(u), \quad D_{\pm} = D(u_{\pm}).$$

Then one gets the expressions

$$\phi_{\pm}^I(x) = \frac{1}{f^2} \frac{N_c}{4\pi^2} \int_0^\infty du \int_{-\infty}^\infty d\lambda \frac{f_\pm f_{\bar{\tau}}}{2\pi D_{\pm} D_{\bar{\tau}}} (xM_{\pm} + \bar{\tau}M_{\bar{\tau}}), \quad (9)$$

$$\phi_{\perp}^I(x, q^2 = 0) = \frac{1}{|\langle \bar{q}q \rangle|} \frac{N_c}{4\pi^2} \left[\Theta(\bar{\tau}x) \int_0^\infty du \frac{M(u)}{D(u)} - \int_0^\infty du \int_{-\infty}^\infty d\lambda M_{\pm} M_{\bar{\tau}} M^{(1)}(u_+, u_-) \right]. \quad (10)$$

$$\phi_{\parallel}^I(x, q^2 = 0) = \Theta(\bar{\tau}x). \quad (11)$$

The DAs are scale dependent quantities and the above expressions correspond to the low momentum scale μ_0 typical for the instanton model. For the instanton model it is estimated to be $\mu_0 = 530$ MeV [11]. The parameters entering the normalization coefficients are given by

$$\langle \bar{q}q \rangle_{0\text{GeV}} = -(0.24 \text{ GeV})^3, \quad \chi_{\text{inst}} = 2.73 \text{ GeV}^{-2}. \quad (12)$$

FIG. 1: Pion distribution amplitudes: twist-2 axial-vector (solid line), twist-3 pseudoscalar (short-dashed) and tensor (dotted) projections, given at the quark model scale.

FIG. 2: ρ-meson twist-2 distribution amplitudes: transverse (solid line) and longitudinal (dashed) projections. The third line is distribution amplitude at asymptotic scale.

FIG. 3: Dependence of the twist-2 tensor component of the photon DA on transverse momentum squared ($q^2 = 0.25 \text{ GeV}^2$ solid line, $q^2 = 0 \text{ GeV}^2$ dashed line, $q^2 = -0.09 \text{ GeV}^2$ short-dashed line, asymptotic DA - dotted line) given at the quark model scale.

The results of calculations are shown in Figs. 1-4. They correspond to the low momentum scale μ_0 and need to be evolved to higher momenta scales in order to compare with the experimentally available information. The DA at asymptotic scales $\mu_\infty = \infty$ is also presented.

IV. DISCUSSION

Within the instanton model the leading twist pion DA has been found in [12–14], the twist-3 and twist-4 DAs in [12] and [1], respectively, and the photon DAs up to twist-4 expansion in [2]. Recently there have been published several papers [15–18], where in nonlocal models, similar to the one
The corresponding values of the evolution ratio r for the initial scale Q_0 are evaluated in the non-local quark model at the initial scale Q_0. Initial conditions, indicated by dotted lines, are evaluated in the non-local quark model at the initial scale $Q_0 = 530$ MeV. The solid lines correspond to evolved DA at scales $Q = 1, 2.4, 10,$ and 1000 GeV. The corresponding values of the evolution ratio r are given in the figures.

V. CONCLUSIONS

The instanton model of QCD vacuum is a realistic tool to obtain the nonperturbative properties of hadrons in terms of parameters characterizing the vacuum. All hadron DAs are suppressed at the bound of the kinematical interval, due to the nonlocality of the wave function of the hadrons, while the photon DAs are non-vanishing there. By applying the QCD evolution, the photon DAs become immediately zero at the edge points of the x-interval. Nevertheless, the photon DAs are always wider than the asymptotic distribution. The first experimental results on the direct measurements of the pion and photon DAs are discussed in [19, 20].

Acknowledgements

The author thanks the organizers for the very fruitful meeting and the Russian Foundation for Basic Researcher projects No. 04-02-16445, Scient. School grant 4476.2006.2 and the JINR Heisenberg-Landau program for partial support.