We propose the local density approximation (LDA) plus an on-site Coulomb self-interaction-like correction (SIC) potential for describing sp-hybridized bonds in semiconductors and insulators. We motivate the present LDA+USIC scheme by comparing the exact exchange (EXX) hole with the LDA exchange hole. The LDA+USIC method yields good band-gap energies E_g and dielectric constants $\varepsilon(\omega=0)$ of Si, Ge, GaAs, and ZnSe. We also show that LDA consistently underestimates the G-point effective electron m_e and light-hole m_{lh} masses, and the underlying reason for this is a too strong light-hole electron coupling within LDA. The advantages of the LDA+USIC approach are a computational time of the same order as the ordinary LDA, the orbital dependent LDA+USIC exchange-correlation interaction is asymmetric analogously to the EXX potential, and the method can be used for materials and compounds involving localized d- and f-orbitals.

Keywords

Electronic structure; Optical properties; LDA+USIC