Castillo, René Erlín

The Nemytskii operator on bounded p-variation in the mean spaces

Matemáticas: Enseñanza Universitaria, vol. XIX, núm. 1, junio, 2011, pp. 31-41

Escuela Regional de Matemáticas

Cali, Colombia

Available in: http://www.redalyc.org/articulo.oa?id=46818606003
The Nemytskii operator on bounded \(p \)-variation in the mean spaces

René Erlín Castillo
Universidad Nacional de Colombia

Received Aug. 20, 2010 Accepted Nov. 22, 2010

Abstract
We introduce the notion of bounded \(p \)-variation in the sense of \(L_p \)-norm. We obtain a Riesz type result for functions of bounded \(p \)-variation in the mean. We show that if the Nemytskii operator map the bounded \(p \)-variation in the mean spaces into itself and satisfy some Lipschitz condition there exist two functions \(g \) and \(h \) belonging to the bounded \(p \)-variation in the mean space such that
\[
f(t, y) = g(t)y + h(t), \quad t \in [0, 2\pi], \quad y \in \mathbb{R}.
\]

Keywords: Nemytskii’s Operator.

1 Introduction
Two centuries ago, around 1880, C. Jordan (see [2]) introduced the notion of a function of bounded variation and established the relation between these functions and monotonic ones; since then a number of authors such as, Yu Medved’ev (see [5]), N Merentes (see [3] and [4]), D Waterman (see [9]), M Schramm (see [8]) and recently Castillo and Trousselot had been study different spaces with same type of variation (see [1]). The circle group \(T \) is defined as the quotient \(\mathbb{R}/2\pi\mathbb{Z} \), where, as indicated by the notation, \(2\pi\mathbb{Z} \) is the group of integral multiples of \(2\pi \). There is a natural identification between functions on \(T \) and \(2\pi \)-periodic functions on \(\mathbb{R} \), which allows an implicit introduction of notions such as continuity, differentiability, etc for functions on \(T \). The Lebesgue measure on \(T \) also can be defined by means of the preceding identification: a function \(f \) is integrable on \(T \) if the corresponding \(2\pi \)-periodic function, which we denote again by \(f \), is integrable on \([0, 2\pi] \), and we set
\[
\int_T f(t)dt = \int_0^{2\pi} f(x)dx.
\]

Let \(f \) be a real-value function in \(L_1 \) on the circle group \(T \). We define the corresponding interval function by \(f(I) = f(b) - f(a) \), where \(I \) denotes the interval \([a, b] \). Let \(0 = t_0 < t_1 < \cdots < t_n = 2\pi \) be a partition of \([0, 2\pi] \) and \(I_{kx} = [x + t_{k-1}, x + t_k] \), if
\[
V_m (f, T) = \sup \left\{ \int_T \sum_{k=1}^n |f(I_{kx})| \, dx \right\} < \infty
\]
where the supremum is taken over all partition of $[0, 2\pi]$, then f is said to be of variation in the mean (or bounded variation in L_1-norm).

We denote the class of all functions which are of bounded variation in the mean by BVM. This concept was introduce by Móricz and Siddiqi [6], who investigated the convergence in the mean of the partial sums of $S[f]$, the Fourier series of f.

If f is of bounded variation ($f \in BV$) with variation $V(f, T)$, then

$$\int_T \sum_{k=1}^n |f(I_{kx})| \, dx \leq 2\pi V(f, T),$$

and so it is clear that $BV \subset BVM$. A straightforward calculation shows that BVM is a Banach space with norm

$$\|f\|_{BVM} = \|f\|_1 + V_m(f, T).$$

In the present paper we introduce the concept of bounded p-variation in the mean in the sense of $L_p[0, 2\pi]$ norm (see Definition 2.1) and prove a characterization of the class BV_pM in terms of this concept.

In 1910 in [7], F. Riesz defined the concept of bounded p-variation ($1 \leq p < \infty$) and proved that for $1 < p < \infty$ this class coincides with the class of functions f, absolutely continuous with derivative $f' \in L_p[a, b]$. Moreover, the p-variation of a function f on $[a, b]$ is given by $\|f'\|_{L_p[a, b]}$, that is

$$V_p(f; [a, b]) = \|f'\|_{L_p[a, b]} \quad (1)$$

In this paper we obtain an analogous result for the class BV_pM. More precisely we show that if $f \in BV_pM$ is such that f' is continuous on $[0, 2\pi]$, then $f' \in L_p[0, 2\pi]$ and

$$V_p^m(f) = 2\pi \|f'\|_{L_p}^p$$

(See theorem 2.9).

2 Bounded p-variation in the mean

Definition 2.1. let $f \in L_p[0, 2\pi]$ with $1 < p < \infty$. Let $P : 0 = t_0 < t_1 < \cdots < t_n = 2\pi$ be a partition of $[0, 2\pi]$ if

$$V_p^m(f, T) = \sup \left\{ \sum_{k=1}^n \int_T \frac{|f(x + t_k) - f(x + t_{k-1})|^p}{|t_k - t_{k-1}|^{p-1}} \, dx \right\} < \infty, \quad (2)$$

where the supremum is taken over all partitions P of $[0, 2\pi]$, then f is said to be of bounded p-variation in the mean.
We denote the class of all functions which are of bounded p-variation in the mean by $BV_p M$, that is
\[BV_p M = \{ f \in L_p [0, 2\pi] : V^m_p (f, T) < \infty \} \] (3)

Remark 2.2. For $1 < p < \infty$, it is not hard to prove that
\[\| f \|_{BV_p M} = \| f \|_{L_p} + \{ V^m_p (f, T) \}^{1/p} \] (4)
defines a norm on $BV_p M$.

Proposition 2.3. Let f and g be two functions in $BV_p M$, then
i) $f + g \in BV_p M$,
ii) $kf \in BV_p M$, for any $k \in \mathbb{R}$.

In order words, $BV_p M$ is a vector space.
Moreover
\[V^m_p (f + g, T) \leq 2^{p-1} [V^m_p (f, T) + V^m_p (g, T)] , \]
and
\[V^m_p (kf, T) = |k|^p V^m_p (f, T) . \]

Theorem 2.4. For $1 < p < \infty$, $BV_p M \subset BVM$ and
\[V_m (f, T) \leq (2\pi)^{2 - \frac{2}{p}} [V^m_p (f, T)]^{\frac{1}{p}} . \] (5)

Demostración. Let $P : 0 = t_0 < t_1 < \cdots < t_n = 2\pi$ be a partition of $[0, 2\pi]$ and consider $f \in BV_p M$, then by Hőlder’s inequality we obtain
\[\sum_{k=1}^{n} \int_{0}^{2\pi} |f (x + t_k) - f (x + t_{k-1})| \, dx \]
\[\leq \left(\sum_{k=1}^{n} \int_{0}^{2\pi} |t_k - t_{k-1}| \, dx \right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} \int_{0}^{2\pi} \frac{|f (x + t_k) - f (x + t_{k-1})|^p}{|t_k - t_{k-1}|^{p-1}} \, dx \right)^{\frac{1}{p}} \]
\[\leq (2\pi)^{2 - \frac{2}{p}} [V^m_p (f, T)]^{\frac{1}{p}} . \] (6)

Thus $f \in BVM$, therefore $BV_p M \subset BVM$. By (6) we obtain (5). This completes the proof of Theorem 2.4.

Theorem 2.5. $\text{Lip} [0, 2\pi] \subset BV_p M$, where $\text{Lip} [0, 2\pi]$ denotes the class of all functions which are Lipschitz on $[0, 2\pi]$. \qed
Demostración.\ Let \(f \in \text{Lip} [0, 2\pi] \), then there exists a positive constant \(M > 0 \) such that
\[
|f(x) - f(y)| \leq M |x - y|,
\]
for all \(x, y \in [0, 2\pi] \).
Let \(P : 0 = t_0 < t_1 < \cdots < t_n = 2\pi \) be a partition of \([0, 2\pi]\), thus
\[
|f(x + t_k) - f(x + t_{k-1})| \leq M |t_k - t_{k-1}|,
\]
from (7) we have
\[
\sum_{k=1}^{n} \int_{0}^{2\pi} \frac{|f(x + t_k) - f(x + t_{k-1})|^p}{|t_k - t_{k-1}|^{p-1}} dx \leq 4\pi M^p
\]
by (8) we get \(f \in \text{BV}_{p,M} \). This completes the proof of the Theorem 2.5.

Remark 2.6. By Theorem 2.4 and 2.5, we can observe the following embedding:
\[
\text{Lip} [0, 2\pi] \subset \text{BV}_{p,M} \subset \text{BV}_{M}.
\]

Theorem 2.7. Let \(f \in \text{Lip} [0, 2\pi] \) and \(g \in \text{BV}_{p,M} \). Then \(f \circ g \in \text{BV}_{p,M} \).

Demostración.\ Let \(P : 0 = t_0 < t_1 < \cdots < t_n = 2\pi \) be a partition of \([0, 2\pi]\) then
\[
\sum_{k=1}^{n} \int_{0}^{2\pi} \frac{|f(g(x + t_k)) - f(g(x + t_{k-1}))|^p}{|t_k - t_{k-1}|^{p-1}} dx
\]
\[
\leq M^p \sum_{k=1}^{n} \int_{0}^{2\pi} \frac{|g(x + t_k) - g(x + t_{k-1})|^p}{|t_k - t_{k-1}|^{p-1}} dx.
\]
Thus
\[
\sum_{k=1}^{n} \int_{0}^{2\pi} \frac{|f(g(x + t_k)) - f(g(x + t_{k-1}))|^p}{|t_k - t_{k-1}|^{p-1}} dx \leq M^p V^m_p (g, T)
\]
for all partitions of \([0, 2\pi]\). By (9) we obtain
\[
V^m_p (f \circ g, T) \leq M^p V^m_p (g, T).
\]
Hence \(f \circ g \in \text{BV}_{p,M} \).

Theorem 2.8. \(\text{BV}_{p,M} \), equipped with the norm defined in Remark 2.1, is a Banach space.

Demostración.\ Let \(\{f_n\} \) be a Cauchy sequence in \(\text{BV}_{p,M} \). Then for any \(\epsilon > 0 \) there exists a positive integer no such that
\[
\|f_n - f_m\|_{\text{BV}_{p,M}} < \epsilon \quad \text{whenever} \quad n, m \geq n_0,
\]
for all partitions of \([0, 2\pi]\). By (10) we obtain
\[
V^m_p (f_n \circ g, T) \leq M^p V^m_p (g, T).
\]
Hence \(f_n \circ g \in \text{BV}_{p,M} \).

Hence \(f_n \circ g \in \text{BV}_{p,M} \).

Theorem 2.9. \(\text{BV}_{p,M} \), equipped with the norm defined in Remark 2.1, is a Banach space.

Demostración.\ Let \(\{f_n\} \) be a Cauchy sequence in \(\text{BV}_{p,M} \). Then for any \(\epsilon > 0 \) there exists a positive integer no such that
\[
\|f_n - f_m\|_{\text{BV}_{p,M}} < \epsilon \quad \text{whenever} \quad n, m \geq n_0,
\]
for all partitions of \([0, 2\pi]\). By (10) we obtain
\[
V^m_p (f_n \circ g, T) \leq M^p V^m_p (g, T).
\]
Hence \(f_n \circ g \in \text{BV}_{p,M} \).
From (3) and (9) we have
\[\|f_n - f_m\|_{L^p} \leq \|f_n - f_m\|_{BV^p_M} < \epsilon \]
Whenever \(n, m \geq n_0 \), this implies that \(\{f_n\}_{n \in \mathbb{N}} \) is Cauchy sequence in \(L^p \) since this space is complete, thus \(\lim_{n \to \infty} f_n \) exits, call it \(f \). By Fatou's lemma and (3) we obtain
\[\|f_n - f_m\|_{BV^p_M} \leq \liminf_{m \to \infty} \|f_n - f_m\|_{L^p} + \liminf_{m \to \infty} \{V^m_p(f_n - f_m, T)\}^{1/p} < \epsilon \]
whenever \(n \geq n_0 \).

Finally we need to prove that \(f \in BV^p_M \). In other to do that we invoke Fatou's lemma again.
\[\|f\|_{BV^p_M} \leq \liminf_{n \to \infty} \|f_n\|_{L^p} + \liminf_{m \to \infty} \{V^m_p(f_n, T)\}^{1/p} < \infty. \]
Thus \(f \in BV^p_M \).

This completes the proof of Theorem 2.8.

Theorem 2.9. Let \(f \in BV^p_M \) such that \(f' \) is continuous on \([0, 2\pi] \), then \(f' \in L^p[0, 2\pi] \) and
\[V^m_p(f) = 2\pi\|f'\|_{L^p}^{p} \] (11)

Demostración. Let \(P : 0 = t_0 < t_1 < \ldots < t_n = 2\pi \) be a partition of \([0, 2\pi] \). By the Mean value theorem there exists \(\epsilon_k \in (x + t_{k-1}, x + t_k) \) for any \(x \in [0, 2\pi] \) such that for \(1 < p < \infty \)
\[\frac{|f(x + t_k) - f(x + t_{k-1})|^p}{|t_k - t_{k-1}|^{p-1}} = |f'(\epsilon_k)|^p(t_k - t_{k-1}) \] (12)
by (12) we obtain
\[2\pi \lim_{|p| \to 0} \sum_{k=1}^{n} |f'(\epsilon_k)|^p(t_k - t_{k-1}) \leq \sum_{k=1}^{n} \int_{0}^{2\pi} \frac{|f(x + t_k) - f(x + t_{k-1})|^p}{|t_k - t_{k-1}|^{p-1}} dx \] (13)
from (13) we have
\[2\pi \int_{0}^{2\pi} |f'(x)|^p dx \leq V^m_p(f). \] (14)
Thus (14) implies that \(f' \in L^p[0, 2\pi] \) and also we have
\[2\pi\|f'\|_{L^p}^{p} \leq V^m_p(f) \] (15)
on the other hand
\[f(x + t_k) - f(x + t_{k-1}) = \int_{x+t_{k-1}}^{x+t_k} f'(t) dt \] (16)
by Hölder’s inequality we obtain
\[
\left| \int_{x+tk-1}^{x+tk} f'(t) dt \right|^p \leq \left(\int_{x+tk-1}^{x+tk} |f'(t)|^p dt \right) |t_k - tk_{k-1}|^{p-1},
\]
hence by (16) we get
\[
\left| f(x + tk) - f(x + tk_{k-1}) \right|^p \leq \int_{x+tk-1}^{x+tk} |f'(t)|, dt
\]
then
\[
\sum_{k=1}^{n} \int_{0}^{2\pi} \frac{|f(x + tk) - f(x + tk_{k-1})|^p}{|t_k - tk_{k-1}|^{p-1}} \leq 2\pi \int_{0}^{2\pi} |f'(x)|^p dx.
\]
From (17) we finally have
\[
V_{p}^{m}(f) \leq 2\pi \left\| f' \right\|_{L_{p}}^p
\]
Combining (15) and (16) we obtain (11)

3 Substitution Operators
Let \(\Omega \subset \mathbb{R} \) be a bounded open set. A function \(f : \Omega \times \mathbb{R} \to \mathbb{R} \) is said to satisfy the Carathéodory conditions if

i) For every \(t \in \mathbb{R} \), the function \(f(\cdot, t) : \Omega \to \mathbb{R} \) is Lebesgue measurable

ii) For a.e. \(x \in \Omega \), the function \(f(x, \cdot) : \mathbb{R} \to \mathbb{R} \) is continuous.

Set
\[
\mathcal{M} = \{ \varphi : \Omega \to \mathbb{R} : \varphi \text{ is Lebesgue measurable} \}
\]
for each \(\varphi \in \mathcal{M} \) define the operator
\[
(Nf\varphi)(t) = f(t, \varphi(t))
\]
The operator \(Nf \) is said to be the substitution or Nemytskii operator generated by the function \(f \).

The purpose of this section is to present one condition under which the operator \(Nf \) maps \(BV_pM \) into itself. Also if \(Nf \) satisfy the hypothesis condition from Lemma 3.1 below we will show that these exist two functions \(g \) and \(h \) which belong to the bounded \(p-variation \) in the mean space such that
\[
f(t, y) = g(t)y + h(t), \quad t \in [0, 2\pi], y \in \mathbb{R}.
\]
Lemma 3.1. \(N_f : BV_p M \to BV_p M \) if there exits a constant \(L > 0 \) such that \(|f(s, \varphi(s)) - f(t, \varphi(t))| \leq L|\varphi(s) - \varphi(t)| \) for every \(\varphi \in \mathcal{M} \).

Demostración. Let \(\varphi \in BV_p M \), then
\[
\sup \left\{ \sum_{k=1}^{n} \int_{\Gamma} \frac{|(N_f \varphi)(x + t_k) - (N_f \varphi)(x + t_{k-1})|^p}{|t_k - t_{k-1}|^{p-1}} \, dx \right\} = \sup \left\{ \sum_{k=1}^{n} \int_{\Gamma} \frac{|f(x + t_k, \varphi(x + t_k)) - f(x + t_{k-1}, \varphi(x + t_{k-1}))|^p}{|t_k - t_{k-1}|^{p-1}} \, dx \right\}
\]
\[
\leq L \sup \left\{ \sum_{k=1}^{n} \int_{\Gamma} \frac{|\varphi(x + t_k) - \varphi(x + t_{k-1})|^p}{|t_k - t_{k-1}|^{p-1}} \, dx \right\} < \infty.
\]
Thus \(N_f \in BV_p M \).

Theorem 3.2. Let \(f : [0, 2\pi] \times \mathbb{R} \to \mathbb{R} \) and the Nemytskii operator \(N_f \) generated by \(f \) and defined by
\[
N_f : BV_p M \to BV_p M
\]
\[
u \to N_f \nu,
\]
with \((N_f \nu)(t) = f(t, \nu(t)), t \in [0, 2\pi] \). If there exists a constant \(K > 0 \) such that
\[
||N_f u_1 - N_f u_2||_{BV_p M} \leq K ||u_1 - u_2||_{BV_p M}
\]
(19) for \(u_1, u_2 \in BV_p M \). Then there exist \(g, h \in BV_p M \) such that
\[
f(t, y) = g(t)y + h(t), \quad t \in [0, 2\pi],
\]
y \(\in \mathbb{R} \).

Demostración. Let \(y \in \mathbb{R} \), define
\[
u_0 : [0, 2\pi] \to \mathbb{R}
\]
\[
t \to \nu_0(t) = y, \quad \text{(a constant function)}
\]
and
\[
N_f : BV_p M \to BV_p M
\]
\[
u_0 \to N_f \nu_0
\]
with \((N_f \nu_0)(t) = f(t, \nu_0(t)) = f(t, y) \). Note that \(f(t, y) \in BV_p M, \forall y \in \mathbb{R} \), by hypothesis.
Next, let \(t, t' \in [0, 2\pi] \), \(t < t' \); \(y_1, y_2, y'_1, y'_2 \in \mathbb{R} \). Now, we define \(u_1, u_2 \) by
\[
\begin{align*}
s \to u_i(s) &= \begin{cases}
y_i, & 0 \leq s < t,
y'_i - y_i (s - t), & t \leq s \leq t',
y'_i, & t' < s \leq 2\pi.
\end{cases}
\end{align*}
\]
Note that each \(u_i \) belong to \(Lip[0, 2\pi] \), thus \(u_1 - u_2 \in Lip[0, 2\pi] \). Then
\[
(u_1 - u_2)(s) = \begin{cases}
y_1 - y_2, & 0 \leq s < t,
y'_1 - y'_2 (s - t) + y_1 - y_2, & t \leq s \leq t',
y'_1 - y'_2, & t' < s \leq 2\pi.
\end{cases}
\]
Observe that
\[
(u_1 - u_2)'(s) = \begin{cases}
0, & 0 \leq s < t,
y'_1 - y'_2 - (y'_2 - y_2), & t \leq s \leq t',
0, & t' < s \leq 2\pi.
\end{cases}
\]
and also that \((u_1 - u_2)' \) is a continuous function on \([0, 2\pi]\). Now, we can apply Theorem 2.5, obtaining
\[
2\pi \|(u_1 - u_2)'\|^p_{L_p} = 2\pi \int_0^{2\pi} \|(u_1 - u_2)'(s)\|^p ds
\]
\[
= 2\pi \int_t^{t'} \left| \frac{y'_1 - y'_2 + y_2 - y_1}{t' - t} \right|^p ds
\]
\[
= 2\pi \frac{|y'_1 - y'_2 + y_2 - y_1|^p}{|t' - t|^{p-1}} < \infty,
\]
hence
\[
V^m_p (u_1 - u_2) = 2\pi \frac{|y'_1 - y'_2 + y_2 - y_1|^p}{|t' - t|^{p-1}}.
\]
Therefore
\[
\|u_1 - u_2\|_{BV_p M} = \|u_1 - u_2\|_{L_p} + \left(V^m_p (u_1 - u_2) \right)^{\frac{1}{p}}
\]
\[
= \|u_1 - u_2\|_{L_p} + \left(2\pi \frac{|y'_1 - y'_2 + y_2 - y_1|^p}{|t' - t|^{p-1}} \right)^{\frac{1}{p}}.
\]
By hypothesis \(N_f u_1, N_f u_2 \) belong to \(BV_p M \) and thus \(N_f u_1 - N_f u_2 \in BV_p M \) with
\[
N_f u_i : [0, 2\pi] \to \mathbb{R}
\]
\[
s \to (N_f u_i)(s) = f(s, u_i(s)),
\]
where
\[
f(s, u_i(s)) = \begin{cases}
 f(s, y_i), & 0 \leq s < t, \\
 f(s, \frac{y_i - y_i(s - t) + y_i}{t - s}), & t \leq s \leq t', \\
 f(s, y_i'), & t' < s \leq 2\pi.
\end{cases}
\]

Next, let us consider the partition $\Pi : 0 < t < t' < 2\pi$, then
\[
\left(\frac{|(N_f u_1 - N_f u_2)(t') - (N_f u_1 - N_f u_2)(t)|^p}{|t' - t|^{p-1}}\right)^{\frac{1}{p}}
\leq \left(V_p^m (N_f u_1 - N_f u_2, T) \right)^{\frac{1}{p}}.
\leq \| N_f u_1 - N_f u_2 \|_{L^p} + \left(V_p^m (N_f u_1 - N_f u_2) \right)^{\frac{1}{p}}.
\leq \| N_f u_1 - N_f u_2 \|_{BV_p, M} \leq K \| u_1 - u_2 \|_{BV_p, M}.
\]

Hence, by hypothesis we have
\[
\left(\frac{|f(t', y'_1) - f(t', y'_2) - f(t, y_1) + f(t, y_2)|^p}{|t' - t|^{p-1}}\right)^{\frac{1}{p}}
\leq K \left[\| u_1 - u_2 \|_{L^p} + \left(2\pi \frac{|y'_1 - y'_2 + y_2 - y_1|^p}{|t' - t|^{p-1}} \right)^{\frac{1}{p}} \right].
\]
(20)

Then
\[
\frac{|f(t', y'_1) - f(t', y'_2) - f(t, y_1) + f(t, y_2)|^p}{|t' - t|^{p-1}}
\leq K^p \left[\| u_1 - u_2 \|_{L^p} + \left(2\pi \frac{|y'_1 - y'_2 + y_2 - y_1|^p}{|t' - t|^{p-1}} \right)^{\frac{1}{p}} \right]^p,
\]
since $(A + B)^p \leq 2^p (A^p + B^p)$ for $A, B \geq 0$, we obtain
\[
\frac{|f(t', y'_1) - f(t', y'_2) - f(t, y_1) + f(t, y_2)|^p}{|t' - t|^{p-1}}
\leq 2^p K^p \left[\| u_1 - u_2 \|_{L^p} + 2\pi \frac{|y'_1 - y'_2 + y_2 - y_1|^p}{|t' - t|^{p-1}} \right],
\]
and
\[
\frac{|f(t', y'_1) - f(t', y'_2) - f(t, y_1) + f(t, y_2)|^p}{|t' - t|^{p-1}}
\leq (2K)^p \left[\| u_1 - u_2 \|_{L^p} |t' - t|^{p-1} + 2\pi |y'_1 - y'_2 + y_2 - y_1|^p \right].
\]

Since $f(\cdot, y)$ is continuous, if we let $t' \to t$, then we have
\[
|f(t', y'_1) - f(t', y'_2) - f(t, y_1) + f(t, y_2)| \leq 2\pi K |y'_1 - y'_2 + y_2 - y_1|.
\]
(21)
Next, we make the following substitution:

\[
\begin{cases}
 y_1' = w + z, \\
 y_2' = w, \\
 y_1 = z, \\
 y_2 = 0.
\end{cases}
\]

(22)

Putting (22) into (21) we get

\[
|f(t, w + z) - f(t, w) + f(t, 0) - f(t, z)| \leq 2\pi K |w + z - w - z| = 0,
\]

thus

\[
f(t, w + z) - f(t, w) + f(t, 0) - f(t, z) = 0,
\]

from this latter equation we have

\[
f(t, w + z) - f(t, 0) = (f(t, w) - f(t, 0)) + (f(t, z) - f(t, 0)).
\]

Writing \(P_t(\cdot) = f(t, \cdot) - f(t, 0) \), then

\[
P_t(w + z) = P_t(w) + P_t(z),
\]

which means that \(P_t \) is additive and also \(P_t(\cdot) = f(t, \cdot) - f(t, 0) \) is a continuous function thus \(P_t(\cdot) \) satisfy the functional Cauchy equation and its unique solution is given by

\[
P_t(y) = g(t)y,
\]

with \(g : [0, 2\pi] \to \mathbb{R}, \ y \in \mathbb{R} \). Let

\[
h : [0, 2\pi] \to \mathbb{R}, \quad t \to h(t) = f(t, 0),
\]

then \(h \in BV_pM \) and \(P_t(y) = f(t, y) - f(t, 0) \) can be reduce to

\[
g(t)y = f(t, y) - h(t),
\]

where \(f(t, y) = g(t)y + h(t) \).

Finally, since

\[
f(t, 1) - f(t, 0) = (P_t(1) + f(t, 0)) - f(t, 0) = g(t)
\]

for \(t \in [0, 2\pi] \), we conclude that \(g \in BV_pM \). Now the proof of Theorem 3.2 is complete.

Remark 3.3. The converse of Theorem 3.2 does not hold because \(L_p \) is not a Banach algebra.
References

Author’s address
René Erlín Castillo — Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá-Colombia
e-mail: recastillo@unal.edu.co