Valenzuela-Madrigal, Ismael E.; Valenzuela-Quiñónez, Wenceslao; Esparza-Leal, Héctor M.; Rodríguez-Quiroz, Gerardo; Aragón-Noriega, E. Alberto
Effects of ionic composition on growth and survival of white shrimp Litopenaeus vannamei culture at low-salinity well water
Revista de Biología Marina y Oceanografía, vol. 52, núm. 1, abril, 2017, pp. 103-112
Universidad de Valparaíso
Viña del Mar, Chile

Available in: http://www.redalyc.org/articulo.oa?id=47950143008
Effects of ionic composition on growth and survival of white shrimp *Litopenaeus vannamei* culture at low-salinity well water

Ismael E. Valenzuela-Madrigal1, Wenceslao Valenzuela-Quiñónez*, Héctor M. Esparza-Leal2, Gerardo Rodríguez-Quiruz3 and E. Alberto Aragón-Noriega4

2Instituto Politécnico Nacional-CIIDIR Unidad Sinaloa, Departamento de Acuicultura, Boulevard Juan de Dios Batis Paredes # 250, Guasave, Sinaloa 81101, México, wvalenzuela@ipn.mx
3Centro de Investigaciones Biológicas del Noroeste, Unidad Sonora. Km 2.35 Camino al Tular, Estero Bachibampo, Guaymas, Sonora 85454, México

Abstract. The culture of white shrimp *Litopenaeus vannamei* in low salinity waters (1.2 ± 0.5 g L\(^{-1}\)) presents challenges, the deviation of the ionic composition of water is known that influences the overall condition of the cultured organisms. The effect of water of low salinity with different ion content on the growth and survival of shrimp was determined. First, water was extracted from 4 wells with a depth of 5 to 7 m, located in Sinaloa River Basin in Guasave, Mexico at: (T\(_1\)) 25.43\(^\circ\)N, 108.44\(^\circ\)W; (T\(_2\)) 25.48\(^\circ\)N, 108.37\(^\circ\)W; (T\(_3\)) 25.60\(^\circ\)N, 108.40\(^\circ\)W and (T\(_4\)) 25.64\(^\circ\)N, 108.51\(^\circ\)W. The design experimental was 4 treatments with 3 replicates. Shrimp were grown in sea water (T\(_m\) = 34 ± 1.4 g L\(^{-1}\)) as control. Shrimp grown in T\(_1\) and T\(_2\) had averaged weight (over 12 ± 0.61 g) and survival rates (78%), with statistical differences to others low salinity water treatments. The condition factor obtained with low-salinity water (T\(_m\) = 0.654) was like that recorded for T\(_m\) (0.670), where ionic ratios (Na/K and Mg/K) were similar to that of seawater. This observation strongly suggests that the ratios of the major ions (Na\(^+\), K\(^+\), Mg\(^{2+}\) and Ca\(^{2+}\)) play a relevant role for development of organisms under cultivation. Shrimp cultured in water of low salinity with an ionic ratio similar to that of sea water were organisms with the best development under cultivation, therefore indicating that the proportion of major ions were important for shrimp.

Key words: *Litopenaeus vannamei*, ionic composition, low-salinity well water

INTRODUCTION

In order to optimize the shrimp culture with water of low salinity is necessary to assess the impact of the variability in the ionic composition of water on the general condition of the organisms (Gong et al. 2004, Gullian et al. 2010). The shrimp industry in the United States of America (Roy et al. 2010), Brazil (Nunes & Lopez 2001), Thailand (Soud et al. 2003, Roy et al. 2007), China (Cheng et al. 2005) and Mexico (Godinez-Siordia et al. 2011), advanced the cultivation of *Litopenaeus vannamei* (Boone, 1931) in water with salinities less than 5 g L\(^{-1}\). However, still lack of information regarding the condition and survival of...
the shrimp *L. vannamei* in a full cycle culture, in response to growing with well water or surface water with low salinity and different ion profile (Gullian et al. 2010). Shrimp aquaculture presents challenges such as determining how water ionic conditions limit productive potential of shrimp species in each farm regions.

The ionic composition and salinity of water can vary widely between sites, so in some regions, natural sources of low-salinity water cannot be used directly for shrimp culture (Davis et al. 2002, Saoud et al. 2003, Zhu et al. 2006). In some cases, there are low levels of potassium, magnesium and other ions, or deviations in the proportions of the ionic compositions, which limit the development of shrimp crops. The ions (calcium, sodium, potassium and chloride) play a basic role in the osmoregulatory process and intervene on the maintenance of membrane potentials (Mantel & Farmer 1983, Pequeux 1995). Shrimp require minerals to maintain basal metabolism and growth. Soluble minerals are constituents of tissues, enzymatic cofactors and play a role in metabolism of lipids, proteins and carbohydrates (Davis & Lawrence 1997) and, the same authors, suggested to add as dietary supplements in shrimp reared in low salinity water.

It has been experimentally determined that when there is a deviation in the concentration of essential ions in relation to those found in seawater, such as K⁺ and Mg²⁺, growth and survival of *L. vannamei* in both acclimation (Saoud et al. 2003) and growing (Samocha et al. 2004) conditions are limited. Boyd (1989) reported that salinities between 15 and 25 g L⁻¹ are ideal for growing white shrimp *L. vannamei*, whilst Samocha et al. (2004) reported that cultivating this species in low salinity water (<3 g L⁻¹) could support growths up to 14 g.

Condition factor resultant of the potential equation parameters (Araneda et al. 2008) provide an evaluation of the specific conditions under which organisms are developing and can be valuable to culture system management because differently factors can affect isometry. Last, interpreted like equality of growth rates in two parts in the growth stage organisms (Chow & Sandifer 1991). The condition factor (CF) determined from Fulton’s equation (Ricker 1979, Chow & Sandifer 1991) to evaluate the effect on a specific characteristic in which shrimp farming developed. The proportionality of length (cm) and weight (g) were tested in the juvenile growing shrimp. Alteration in the expected relationship of isometric growth (b=3) may be usually considered as an indicator of change in the physical or physiological well-being of the individuals under study. When this relationship is diverted to the allometric growth (b < 3), the physiological status could be interpreted as negative (Pauly 1984), because that population is tend to maintain a slower growth, smaller size, lower survival and hence low productive performance. Positive allometric (b > 3) organisms have the added advantage of growing more in weight than in length (Araneda et al. 2008).

The objective of this research was to determine the effect of 4 sources of well water of low salinity with different ionic composition on growth, survival and condition factor (CF) of juvenile marine shrimp *L. vannamei* cultured at high density.

Materials and methods

Origin of water used in the experimental work

The experimental work was performed using 4 sources of well water with low salinity and different ionic composition. The water was extracted from 4 wells with a depth of 5 to 7 m, which were located in Sinaloa River Basin (25.3-26.5°N, 106.7-108.5°W) in Guasave, Mexico. The wells are located at the following coordinates (i) 1 to 4 (Ti): (T₁) 25.43°N, 108.44°W; (T₂) 25.48°N, 108.37°W; (T₃) 25.60°N, 108.40°W and (T₄) 25.64°N, 108.51°W.

Experimental design

The experimental work was designed to compare the effect of the ionic composition of different sources of well water on productive parameters and condition factor (CF) of juvenile marine shrimp *Litopenaeus vannamei*, stocked at a density of 150 organism m⁻². The culture was conducted in a greenhouse in 15 fiberglass containers (1 m x 1m x 1m). Treatments (T₁, T₂, T₃ and T₄) and the control group (T_w) each with 3 replicates operated as separate systems. In the T_w shrimp was grown using seawater (34.0 ± 0.5 g L⁻¹) under the same conditions of treatment with well water. To maintain the water quality each experimental unit received a daily water exchange of 10%. The shrimp are grown in natural photoperiods (14 h light/10 h dark). Each of the containers was maintained with constant aeration to meet dissolved oxygen (DO) requirements (4-5 mg L⁻¹).

Maintenance, stocking and rearing of experimental organisms

A single batch of shrimp postlarvae *L. vannamei* (PLₚₚ) was obtained from a commercial laboratory and stocked in a fiberglass tank (2,600 L); they remained for 3 days at a salinity of 34 ± 0.5 g L⁻¹, with constant water flow (0.6 L min⁻¹) and aeration. Prior to the start of the experiment, shrimp were acclimated from seawater (34.0 ± 0.5 g L⁻¹) until to reach to the salinity of each of the respective wells (Fig. 1, Table 1) with a rate of change of 0.25 g L⁻¹ h⁻¹ (McGraw & Scarpa 2004, Esparza-Leal et al. 2010). Subsequently, the shrimp postlarvae (0.012 ± 0.004 g) were stocked into tanks.
Table 1. Mean (± SD) concentrations of major ions and ratios of different sources of low salinity well water (T₁-T₄) and seawater (T₀) throughout culture period

<table>
<thead>
<tr>
<th>Ions (mg L⁻¹)</th>
<th>Water source (Treatments)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T₁</td>
</tr>
<tr>
<td>Anions</td>
<td></td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>303.4±50.8</td>
</tr>
<tr>
<td>Chloride</td>
<td>27.0±7.2</td>
</tr>
<tr>
<td>Sulfate</td>
<td>65.4±13.1</td>
</tr>
<tr>
<td>Cations</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>56.8±17.4</td>
</tr>
<tr>
<td>Magnesium</td>
<td>14.7±4.4</td>
</tr>
<tr>
<td>Sodium</td>
<td>142.2±31.9</td>
</tr>
<tr>
<td>Potassium</td>
<td>4.7±2.2</td>
</tr>
<tr>
<td>Ratios</td>
<td></td>
</tr>
<tr>
<td>Na/K</td>
<td>30.9:1</td>
</tr>
<tr>
<td>Ca/K</td>
<td>12.3:1</td>
</tr>
<tr>
<td>Mg/Ca</td>
<td>0.26:1</td>
</tr>
<tr>
<td>Mg/K</td>
<td>3.1:1</td>
</tr>
</tbody>
</table>

Different superscripts letters in row indicate significant differences (P < 0.05)

Water Source: (T₁) 25.43°N, 108.44°W; (T₂) 25.48°N, 108.37°W; (T₃) 25.60°N, 108.40°W; (T₄) 25.64°N, 108.51°W and T₀, seawater at 25.303°N, 108.533°W

* Goldberg, 1963
During both the acclimation and study (150 organism m⁻²), organisms were fed with commercial food (35% protein, Ralston Purina ration) 3 times a day (08:00, 12:00 and 16:00 h). The feeding rates for each group of organisms were weekly adjusted in relation to the amount of uneaten food (Cuadros & Beltrame 1998). The feeding rates started at 18% of the biomass estimated of PL and progressively reduced to 2% when the organism has reached an average weight of about 12 g.

WATER QUALITY AND MAJOR ION ANALYSES

Temperature (°C), dissolved oxygen (DO, mg L⁻¹), and pH were recorded daily at 08:00 and 16:00 h using a standard mercury thermometer, a YSI 55 oxygen meter (Yellow Springs Instrument, Yellow Springs, OH, USA) and a potentiometer Hanna 213, respectively. Salinity was measured using a YSI 556 multi-parameter equipped with a conductivity-salinity probe (YSI ProDSS Multiparameter, Yellow Springs, Ohio, USA); additionally, it was corroborated using the criteria of Boyd et al. (2002). Every two weeks water samples were taken from each of the experimental units to analyze the concentration of nitrite (N-NO₂⁻), nitrate (N-NO₃⁻), total ammonia-N (N-NH₃), and phosphate (PO₄⁻P) with the methods described by Arredondo-Figueroa & Ponce-Palafoux (1998).

Twice a monthly 500 ml of water of each treatment were transported to a certified laboratory by the Mexican Federal Authorities (CNA Reg. No. CAN-GSCA-440), to analyze the concentration of major ions: bicarbonate (HCO₃⁻), chloride (Cl⁻), sulfate (SO₄²⁻), calcium (Ca²⁺), magnesium (Mg²⁺), potassium (K⁺) and sodium (Na⁺), using standard protocols described by Clesceri et al. (1998).

GROWTH, LENGTH-WEIGHT RELATIONSHIP, CONDITION FACTOR AND SURVIVAL

Weekly, 50 shrimp were collected randomly from each treatment, to record length (mm) and weight (g). Total length of shrimp (rostrum to telson distance) was measured by means of an ichthyometer (±1 mm, Aquatic FMB2, Aquatic Eco-Systems FL, USA) and weight was recorded using a digital scale (± 0.01 g, Ohaus IL, USA).

The information obtained was used to calculate the length-weight relationship of the organisms from each treatment, using a potential model (\(W_i = aT_i^b \)), where \(i = \text{treatment}, W_i = \text{weight (g)}, T_i = \text{total length (mm), a} = \text{proportionality constant and b} = \text{exponent of the equation.} \)

The Fulton’s equation (Ricker 1979, Chow & Sandifer 1991) was used to determine the condition factor of each group:

\[
\text{CF}_i = \frac{\bar{W}_i}{\bar{T}_i^3} \times 10^5
\]

where \(\text{CF}_i = \text{condition factor for treatment } i, \bar{W}_i = \text{average weight (g)} \) and \(\bar{T}_i = \text{average total length (mm)} \).

The experiment concluded after 133 days at which time all shrimp from each tank were harvested, measured (length and weight), and counted to calculate survival, growth (g), production (kg m⁻²) and feed conversion rate (FCR) were estimated.

STATISTICAL ANALYSIS

Data was analyzed to determine whether there were significant differences between the treatments in growth, survival, production, water quality, and concentration of major ions. They were analyzed using a one-way variance test. Comparisons were made between treatments using Student-Newman-Keuls test. Data are expressed as mean ± standard deviation.

A non-linear regression analysis was used to determine the length-weight relationship. The curves potential resulting from each treatment were compared with one-way analysis of covariance (ANCOVA) and a posteriori Tukey test. The statistical significance of the exponent from equation (b) was analyzed using the function proposed by Pauly (1984):

\[
\hat{t} = \frac{s. d. (x) |b_i - 3|}{s. d. (y) \sqrt{\frac{1}{n_i} - \frac{1}{n}}}\sqrt{n - 2}
\]

where \(\hat{t} \) is the t-student statistic, s.d. (x) and (y) are the standard deviation for TL and W of each treatment, \(n_i \) is the number of recorded organisms, \(b_i \) is the fitted value of b for treatment, and \(r^2 \) is the coefficient of determination. Statistical significance was \(\alpha \leq 0.05 \).

RESULTS

WATER QUALITY

During the experimental work, there were no significant differences between water quality variables, except for salinity \((P > 0.05, \text{Fig. 1}) \). The average temperature, DO and pH were 28.5°C, 5.9 mg L⁻¹ and 8.0, respectively (Fig. 1). The minimum and maximum concentrations of total N-NH₃ ranged from 0.26 to 0.31 mg L⁻¹, N-NO₂ (0.28 to 0.32 mg L⁻¹), N-NO₃ (0.73 to 0.77 mg L⁻¹) and PO₄-P (1.5 to 1.7 mg L⁻¹), respectively (Fig. 2). The salinity of each treatment of the different well water source ranged from 1.1 to 1.5 g L⁻¹, while the control group (\(T_n \)) remained at an average of 34.0 g L⁻¹, presenting significant differences between treatments: \(T_i - T_n \) with \(T_j - T_n \), and both with \(T_m \) \((P < 0.05; \text{Fig. 1d}) \).
All treatments of low salinity well water had values of bicarbonate (HCO_3^-) over 296.0 ± 30.5 mg L$^{-1}$ (T$_1$) and were higher than in the control group (sea water, T_m = 142 mg L$^{-1}$) (Table 1). Chloride concentration (Cl^-) was between 27.0 ± 7.3 (T$_1$) to 122.5 ± 26.1 mg L$^{-1}$ (T$_2$), all water source was different (Table 1). In all the following cases: Calcium (Ca^{2+}), magnesium (Mg^{2+}), sodium (Na^+), potassium (K^+) and sulfate (SO_4^{2-}) (Table 1) the concentrations were lower than T_m, all showing significant statistically differences ($P < 0.05$).

The ionic ratios for Na/K at T$_1$, T$_3$ and T$_4$ were highest that T_m. Ratios of Mg/K and Ca/K were higher in all treatment of well water; conversely, T_m showed higher ratios of Mg/Ca than the others (Table 1).

Higher values of weight (13.3 ± 0.61 g), survival (84.6 ± 4.1%) and production (1.70 ± 0.18 kg m$^{-2}$) were recorded in T_m, followed for T$_1$ for the same zootechnical parameters (Table 2). The lowest values of weight ($T_i = 10.8 ± 1.05$ g), survival ($T_i = 76.35 ± 3.69$%) and production (T_i and $T_j = 1.25$ kg m$^{-2}$) occurred in different well water treatments (Table 2). There were significant differences between the final weight (F$^{(4,1841)} = 4.28 ; P < 0.05$) and production (F$^{(4,14)} = 7.28 ; P < 0.05$) of treatments T_2, T_3 and T_4 in relation to T_1 and T_m (Table 2).

The coefficients of determination (R^2) obtained in this study ranged between 0.95 and 0.99, indicating that the potential model used was adequate for the length-weight relationship (Fig. 3, Table 3). The greater exponent (b) appeared in T_1 (3.151), followed by T_m (3.046) and T_1 (3.012). ANCOVA analysis determined that the slopes of the potential models for the length-weight relationship were significantly different between treatments (F$= 21.2 ; P < 0.05$). The highest condition factor occurred in farmed shrimp with T_1 (0.711) and T_m (0.700), both were isometric and based on 3 ($t = 1.96 ; P < 0.05$, Table 3). Condition factor values at treatments T_2, T_3 and T_4 were the lowest for shrimp culture; the slopes differed from 3, regarding the statistic (Table 3), and were consequently allometric.

The water quality variables (T, DO, pH, N-NO_2^-, N-NO_3^-, N-NH_3 and PO$_4^-$P) remained at levels appropriate for the shrimp *Litopenaeus vannamei*, as reported by other authors (Arredondo-Figueroa & Ponce-Palafox 1998, Atwood et al. 2003, Saoud et al. 2003) and the temperature (28°C, Fig. 1) was on the thermal preferendum of 27-30°C for juvenile shrimps (Ponce-Palafox et al. 1997, Hernández et al. 2006).
Table 2. Mean (± SD) values of the indicators of *L. vannamei* reared in 4 different sources of low salinity well water and seawater (control) using PL₂₅ stocked at density of 150 shrimp m⁻² for 133 days / Media (± DE) de los indicadores de *L. vannamei* cultivados en 4 diferentes fuentes de agua de baja salinidad y agua de mar (control) utilizando PL₂₅ a una densidad de 150 camarones m⁻² por 133 días de cultivo

<table>
<thead>
<tr>
<th>Treatment (Water source)</th>
<th>Initial weight (g)</th>
<th>Final weight (g)</th>
<th>FCR</th>
<th>Survival (%)</th>
<th>Crop (Kg m<sup>-2</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>1</sub></td>
<td>0.013 ± 0.0013</td>
<td>12.8<sup>a</sup> ± 0.93</td>
<td>1.55 ± 0.24</td>
<td>78.4<sup>a</sup> ± 3.7</td>
<td>1.50<sup>a</sup> ± 0.18</td>
</tr>
<tr>
<td>T<sub>2</sub></td>
<td>0.014 ± 0.0012</td>
<td>11.6<sup>a</sup> ± 1.10</td>
<td>1.71 ± 0.23</td>
<td>77.6<sup>a</sup> ± 3.4</td>
<td>1.31<sup>a</sup> ± 0.20</td>
</tr>
<tr>
<td>T<sub>3</sub></td>
<td>0.012 ± 0.0013</td>
<td>10.8<sup>a</sup> ± 1.05</td>
<td>1.78 ± 0.15</td>
<td>78.6<sup>a</sup> ± 4.3</td>
<td>1.25<sup>a</sup> ± 0.10</td>
</tr>
<tr>
<td>T<sub>4</sub></td>
<td>0.013 ± 0.0011</td>
<td>11.2<sup>a</sup> ± 0.91</td>
<td>1.68 ± 0.19</td>
<td>76.4<sup>a</sup> ± 3.7</td>
<td>1.25<sup>a</sup> ± 0.21</td>
</tr>
<tr>
<td>T<sub>m</sub></td>
<td>0.012 ± 0.0012</td>
<td>13.3<sup>a</sup> ± 0.61</td>
<td>1.58 ± 0.10</td>
<td>84.6<sup>a</sup> ± 4.1</td>
<td>1.70<sup>a</sup> ± 0.18</td>
</tr>
</tbody>
</table>

FCR. Feed Conversion Rate
Different superscripts letters within rows indicate significant differences (P < 0.05)
Water source: (T₁) 25.43°N, 108.44°W; (T₂) 25.48°N, 108.37°W; (T₃) 25.60°N, 108.40°W and (T₄) at 25.64°N, 108.51°W and seawater (T_m) 25.303°N, 108.533°W

Figure 3. Length-weight relationship for white shrimp grown, using PL₂₅ stocked at density of 150 shrimp m⁻² by 133 days. Water source: (T₁) 25.43°N, 108.44°W; (T₂) 25.48°N, 108.37°W; (T₃) 25.60°N, 108.40°W; (T₄) 25.64°N, 108.51°W and (T_m) seawater at 25.303°N, 108.533°W. Each circle represents an observation / Relación talla-peso para camarón blanco cultivado, usando PL₂₅ y sembrado a densidad de 150 camarones m⁻² durante 133 días. Los pozos de agua se localizan: (T₁) 25.43°N, 108.44°O; (T₂) 25.48°N, 108.37°O; (T₃) 25.60°N, 108.40°O; (T₄) 25.64°N, 108.51°O y (T_m) agua de mar en 25.303°N, 108.533°O. Cada círculo representa una observación
Temperature is an important factor that influence growth rates of penaeid shrimp (Tuzuki et al. 2000). In addition, the nitrogen compounds, for juvenile L. vannamei grown in water of 2 g L\(^{-1}\) of salinity (Gross et al. 2004) suggest a safe concentration for shrimp production in ponds less than 0.45 mg L\(^{-1}\) NO\(_3\)-N. In this work, shrimp exposed to nitrite and ammonia concentration of 3 mg L\(^{-1}\) combined with low chloride for long time could reduce their growth and affect their survival.

Growth, survival and production

Growth rates of 0.61 g week\(^{-1}\) at a stocked density of 150 organism m\(^{-2}\) were recorded for the groups, while T\(_m\) reached a growth rate of 0.67 g week\(^{-1}\). In nature, this species is able to grow at 1.4 g week\(^{-1}\) at densities of 2-3 shrimp m\(^{-2}\) (Menz & Blake 1980 *fide* Wyban & Sweeney 1989). There were significant differences in growth rates of farmed shrimp in T\(_1\) with the other different ionic profile treatments. The slower growth in T\(_1\) was obtained (0.57 g week\(^{-1}\)) where concentrations of potassium (0.58 mg L\(^{-1}\)) and calcium (28.00 mg L\(^{-1}\)) were lower than other treatments. A trend of greater shrimp growth was observed within the ratio values of Na/K (T\(_1\): 30.9) and Mg/K (T\(_1\): 3.1), which were similar to that of seawater (T\(_m\): Na/K= 28.1 and Mg/K= 3.6). The water ionic profile may vary from each well in different areas (Boyd & Thunjai 2003). This indicates that to grow L. vannamei with well water it is important to account for ionic ratios and water salinity values (Saoud et al. 2003, Esparza-Leal et al. 2010). Other indicator is estimating acceptable concentrations of individual ions for brackish water shrimp culture, proposed by Boyd et al. (2002); in this case, any treatment was similar to that estimate of seawater. However, the minimum acceptable concentration of total alkalinity as bicarbonate at all cases was over about 300 mg L\(^{-1}\) (Boyd & Tucker 1998); this condition avoids shrimp has difficulty molting.

Shrimp culture with different source of well water has a mean survival of 77%. Regardless of salinity content, the ionic water profile is a variable that significantly influences the survival of shrimp (Davis et al. 2002, Saoud et al. 2003, Zhu et al. 2004). Farmed shrimp with different ion profiles on water achieved better growth and survival in the Na/K ratio similar to seawater (Roy 2006). In several experiments, Roy et al. (2007) observed better survival and average individual weight of postlarvae, when the culture water approximates to Na/K ratio of 28:1, similar to seawater. Also, Roy et al. (2007) found that growing juvenile shrimp in reconstituted seawater (4 g L\(^{-1}\)) in the treatment of 40 mg K\(^{-1}\) L\(^{-1}\) sustaining a significantly higher weight gain compared to low K\(^{+}\) concentrations. An additional experiment, reference water (control) and treatment of 40 mg K\(^{-1}\) L\(^{-1}\) maintained Na/ K ratios of 29:1 and 30:1, respectively. In concordance with Roy et al. (2010) the adequate concentrations of essential ions, including potassium (K\(^{+}\)) and magnesium (Mg\(^{2+}\)), support better growth and survival of shrimp. Perez-Velazquez et al. (2012) conducted an experiment with water temperature of 26 and 30°C and Na/K ratios of 40, 80 and 120:1. Growth of shrimp was significantly higher at the Na'/K' ratio of 40:1 and shrimp survival were no affected by any Na'/K' ratio.

Final mean weight of shrimp on treatment 1 and seawater (T\(_m\)) was higher and there were significant differences in the production of shrimp within treatments. Observed by Al-Ameeri & Cruz (2006) and according to Wang et al. (1998), mean final sizes of shrimp have a tendency to decrease with increase stocking density and until the carrying capacity of the system is reached. Seawater treatment (T\(_m\)) presented maximum biomass by the end of the experimental run resulting in a higher production per unit area, because higher survival and means final body weight.

Table 3. Regression estimates (b) for length-weight and condition factor (CF) of L. vannamei reared in 4 different sources of low salinity well water and seawater (Control) using PL\(_{25}\) socked at density of 150 shrimp m\(^{-2}\) by 133 days / Valores de regresión (b) para la longitud-peso y factor de condición (CF) de L. vannamei cultivado en 4 diferentes fuentes de agua de baja salinidad y agua de mar (control) utilizando PL\(_{25}\) una densidad de 150 camarones m\(^{-2}\) por 133 días

<table>
<thead>
<tr>
<th>Treatment water source</th>
<th>Coefficient (b)</th>
<th>R(^2)</th>
<th>S.D. (y)</th>
<th>S.D. (x)</th>
<th>Condition factor (CF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(_1)</td>
<td>3.012</td>
<td>0.984</td>
<td>1.06</td>
<td>0.47</td>
<td>0.711</td>
</tr>
<tr>
<td>T(_2)</td>
<td>2.969</td>
<td>0.991</td>
<td>1.51</td>
<td>0.58</td>
<td>0.644</td>
</tr>
<tr>
<td>T(_3)</td>
<td>3.151</td>
<td>0.984</td>
<td>4.36</td>
<td>0.84</td>
<td>0.495</td>
</tr>
<tr>
<td>T(_4)</td>
<td>2.932</td>
<td>0.959</td>
<td>2.02</td>
<td>0.85</td>
<td>0.598</td>
</tr>
<tr>
<td>T(_m)</td>
<td>3.046</td>
<td>0.983</td>
<td>1.85</td>
<td>0.45</td>
<td>0.700</td>
</tr>
</tbody>
</table>

\(\hat{\mu}\) is the t-student statistic. S.D. (s) and (y) are the standard deviation for final total length TL and weight W of each treatment.

Water source: (T\(_1\) 25.43°N, 108.44°W; 25.48°N, 108.37°W; (T\(_2\) 25.60°N, 108.40°W and (T\(_3\) at 25.64°N, 108.51°W and seawater (T\(_m\)) at 25.30°N, 108.53°W
Length-weight relationship and condition factor

The potential relationship of length-weight was similar in all treatments of this study and corresponds to that reported for Penaeid species (Dall *et al.* 1990). Reports indicate that when coefficient \(b \) is equal to 3, isometric growth is observed. Wootton (1992) reported that growth is positive-allometric when the weight of organisms increases more than the length \((b > 3)\) and negative-allometric when the length is greater than the weight \((b < 3)\). In this study the organisms of treatments \(T_1 \) and \(T_m \) showed isometric growth. While for organisms of treatments \(T_1 \) \((b= 2.969)\) and \(T_m \) \((b= 2.932)\), the growth revealed to be negative-allometric. \(T_1 \) proved positive-allometric \((b= 3.151)\).

The length-weight relationship was not proportioned between cultured organisms on well water treatments, probably because of their dissimilar proportionality ion ratios that can affect the growth of organisms (Roy *et al.* 2007). Effect of ion ratios on growth rates could be hidden by the density effect (stocked at a density of 150 organism \(\text{m}^{-3} \)), given that shrimp growth depends heavily on the latter (Murphy *et al.* 1991).

Growths to those organisms cultured in seawater \((T_m)\) and \(T_1 \) were no different, moreover at those treatments ionic ratios for \(\text{Na}/\text{K} \) and \(\text{Mg}/\text{K} \) were statistically similar from seawater. Concentrations of all ions possibly enhanced survival and growth, but after using factors presented by Boyd *et al.* (2002) any treatment was similar with calculated concentrations. McNevin *et al.* (2004) assume that higher potassium concentrations were mainly responsible for superior survival and growth. In this experiment potassium in all treatments was lower that calculated to conserved proportionality at seawater (Castille & Lawrence 1981. Ferraris *et al.* 1986, Parado-Estepa *et al.* 1987), suggesting that most important ions in osmoregulation are chloride and sodium, but the effect of these two ions was important on growth and survival when ionic ratios were near to seawater.

In this analysis, the relationship \(\text{Na}/\text{K} \) \((T_m = 30.9)\) and \(\text{Mg}/\text{K} \) \((T_1 = 3.1)\) in low salinity water were similar to that of seawater on conserved proportionality of ions that are considered suitable for growing shrimp. In these conditions the white shrimp can maintain the growth and survival suitable for cultivation. Shrimp cannot compensate for the ionic balance to maintain good growth rates and which consequently condition indices are lower as founded in some treatments \((T_1, T_2, T_m)\). Also, condition of shrimp obtained in treatments of seawater \((T_m)\) and \(T_1 \) was better. Shrimp culture in low salinity well water is one of multiple cause of stress for the marine shrimp *Litopenaeus vannamei* when the ratio of ions is different from that seawater. Shrimp cultured in water of low salinity with an ionic ratio similar to that of sea water were organisms with the best development under cultivation, therefore indicating that the proportion of ions were important for growth.

Acknowledgments

We would like to thank the Instituto Politécnico Nacional (SIP-20151736) for providing funds for this research. The authors would like to extend thanks to the Aquapacific Hatchery for providing *Litopenaeus vannamei* postlarvae.

Literature Cited

Roy LA. 2006. Physiological and nutritional requirements for the culture of the Pacific white shrimp, Litopenaeus vannamei, in low salinity water. PhD Dissertation, Graduate Faculty of Auburn University, Alabama, 126 pp.

Received 9 May 2016 and accepted December 2016

Editor: Claudia Bustos D.