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Abstract
Context: The bottleneck on interval type-2 fuzzy logic systems is the output processing when using
Centroid Type-Reduction + Defuzzification (CTR+D method). Nie and Tan proposed an approximation
to CTR+D (NT method). Recently, Mendel and Liu improved the NT method (INT method). Numerical
examples (due to Mendel and Liu) exhibit the NT and INT methods as good approximations to CTR+D.
Method:  Normalization to the unit interval of membership function domains (examples and
counterexample) and variables involved in the calculations for the three methods. Examples (due to
Mendel and Liu) taken from the literature. Counterexample with piecewise linear membership functions.
Comparison by means of error and percentage relative error.
Results: NT vs. CTR+D: Our counterexample showed an error of 0.1014 and a percentage relative error
of 30.53%. This is respectively 23 and 32 times higher than the worst case obtained in the examples. INT
vs. CTR+D: Our counterexample showed an error of 0.0725 and a percentage relative error of 21.83%.
This is respectively 363 and 546 times higher than the worst case obtained in the examples.
Conclusions: NT and INT methods are not necessarily good approximations to the CTR+D method.
Keywords: Type-2 fuzzy logic system, type-reduction, defuzzification, Nie-Tan method.

%nguage: English. j

Resumen

Contexto: El cuello de botella en sistemas de 16gica difusa tipo-2 de intervalo es el procesamiento de
salida que usa reduccién de tipo centroide + defusificaciéon (método CTR+D). Nie y Tan propusieron una
aproximaciéon a CTR+D (método NT). Recientemente, Mendel y Liu mejoraron la propuesta (método
INT). Ejemplos debidos a Mendel y Liu exhiben a NT e INT como buenas aproximaciones a CTR+D.
Método: Normalizacién al intervalo unitario de los dominios de las funciones de pertenencia (para
ejemplos y contragjemplo) y de las variables que intervienen en los cdlculos de los tres métodos. Ejemplos
tomados de la literatura (debidos a Mendel y Liu). Contraejemplo con funciones de pertenencia lineales
por tramos. Comparacién por medio de métricas de error y porcentaje de error relativo.
Resultados: NT vs. CTR+D: El contraejemplo mostré un error de 0.1014 y error relativo porcentual de
30.53%. Esto es respectivamente 23 y 32 veces mayor que el peor caso obtenido en los ejemplos. INT
vs. CTR+D: El contracjemplo mostré un error de 0.0725 y error relativo porcentual de 21.83%. Esto es
respectivamente 363 y 546 veces mayor que el peor caso obtenido en los ejemplos.
Conclusiones: NT e INT no son necesariamente buenas aproximaciones al método CTR+D.

@abras clave: Sistema de l6gica difusa tipo-2, reduccidn de tipo, defusificacion, método Nie-Tan. /

Open access © The authors; licensee: Revista INGENIERIA. ISSN 0121-750X, E-ISSN 2344-8393. Cite this paper as:

@@@ Rojas, J. D., Salazar, O., Serrano, H.: Nie-Tan Method and its Improved Version: A Counterexample.
@ INGENIERIA, Vol. 21, Num. 2, 2016 138:153.
BY NC ND

En linea DOI: http://dx.doi.org/10.14483/udistrital. jour.reving.2016.2.a02

138 INGENIERIA o VOL.21 ¢ NO.2 ¢ ISSN0121-750X e E-ISSN2344-8393 ¢ UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS



Rojas, J. D., Salazar, O., Serrano, H.

1. Introduction

Type-2 Fuzzy Logic Systems (T2FLS) (Figure 1) are used in several applications because Type-2
Fuzzy Sets (T2FS) provide greater flexibility than Type-1 Fuzzy Sets (T1FS) [1], [2]. Ina T2FLS a
crisp numerical input goes through three stages: fuzzification, inferencing, and the output processing.
During the output processing a T2FS is converted into a crisp number. This last stage consists of
two parts: type-reduction and defuzzification. Type-reduction is the procedure by which a T2FS
is converted to a T1FS (called the type-reduced set). This set is then defuzzified to give a crisp
number.

OUTPUT PROCESSING
| A |
! ! | Ccrisp
i | DEFUZZIFIER {H——
1 1 OUTPUT
1 1
CRISP : :
—+ FUZZIFIER | TYPE-REDUCER|4—|
INPUT I I | TYPE
____________ [}
REDUCED
INFERENCE
FUZZY INPUT FUZZY OUTPUT SET (TYPE-1)
SETS SETS

Figure 1. Type-2 Fuzzy Logic System. Taken from [3], [4].

In order to facilitate operations on T2FLSs, Interval Type-2 Fuzzy Sets (IT2FS) were introduced
(Figure 2). IT2FSs are a simplified version of general T2FSs. IT2FSs are defined by two membership
functions (MF): the Lower Membership Function (LMF) and the Upper Membership Function
(UMF). Any MF between LMF and UMF is called an Embedded Membership Function (EMF). The
region bounded by LMF and UMF is called Footprint of Uncertainty (FOU). The corresponding
FLSs are called Interval Type-2 Fuzzy Logic Systems (IT2FLS) [4].

OUTPUT PROCESSING
fommm e mm i — , CRISP

I OQUTPUT
DEFUZZIFIER f——»
ey = (e +¢r)/2

l
1 1
1 |
- - EMF ! !
1 |
1 |
1 |

- FOU (shaded) INTERVAL Cr=lael
TYPE-2 4 .| TYPE-REDUCER f——>
0 FUZZY SET ! | TYPE
! A TTTTTTTTTTTTS * REDUCED
SET

Figure 2. Interval Type-2 Fuzzy Set. LMF = Lower Figure 3. The CTR+D method. Adapted from [3], [4].
Membership Function. UMF = Upper Membership
Function. EMF = Embedded Membership Function.
FOU = Footprint of Uncertainty (shaded). Adapted from

[4].

Since IT2FLSs were proposed, centroid type-reduction' (Figure 3) has been one of the main areas
of study, mainly due to its high computational cost [3], [6]-[9]. If A is an IT2FS, the main problem

!Centroid type-reduction is classified into two forms: discrete and continuous [5]. From a discretization of the MFs
it is possible to switch from continuous to discrete. This paper discusses the continuous version, but several results are
applied to the discrete case.
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consists in finding the type-reduced set® C i = a1, ¢;], where ¢; and ¢, are the endpoints of C';. The
interval [¢;, ¢,| contains the centroids of all EMFs in the FOU. Defuzzification, which consists in
averaging ¢; and ¢, to get ¢y = (¢; +¢,)/2, is a relatively simple step in IT2FLSs. Figure 3 is what
we shall refer to as the Centroid Type-Reduction + Defuzzification (CTR+D) method?.

Nie and Tan [13] proposed an approximation to the CTR+D method. It is known as the Nie-Tan
(NT) method. It consists in averaging LMF and UMF to get an average MF (AMF). The defuzzified
value ¢y is the centroid of this AMF (Figure 4(a)). Mendel and Liu [ 1], [12] improved the NT
method. Their improvement is still an approximation. It is known as the Improved Nie-Tan (INT)
method. It consists in adding to ¢y a correction factor 4, i.e., c;yr = ey + 0 (Figure 4(b)).

OUTPUT PROCESSING
fmmmmmmmm e , CRISP . QUIPUT PROCESSING _ crisp
! | OUTPUT | N | OUTPUT
i | DEFUZZIFIER f—— | | DEFUZZIFIER :
I I CNT " CNT | CINT
! ! I + I
| ! I I
I 1
INTERVAL | | (LMF + UMF)/2 INTERVAL | Oy (LMF + UMF)/2
TYPE-2 — 4 TYPE-REDUCERfFT—* TYPE-2 __{ ,|TYPE-REDUCER ————
FUZZY SET! ——/———————— | TYPE FUZZY SET! | TYPE
A REDUCED Fi e 4 REDUCED
SET SET

(@) (b)
Figure 4. (a) The NT method. (b) The INT method.

Mendel and Liu showed four numerical examples in order to illustrate their theoretical results.
These authors claimed that ¢y is a first-order approximation to ¢y = (¢; + ¢,)/2, and ¢;yr is
a better third-order approximation to c,;. Their examples included IT2FSs defined over different
domains, and they used the following metrics for comparison:

1. Absolute error: Exr = |eyr — ey| and Ernr = |ernr — cul,

FE FE
2. Percentage relative error: REyNy = (%) x 100% and RE;NyT = < |INT) x 100%,
CyM Cym

3. Difference of absolute errors: Exr — ErnT, and

Enr  REnT

Nt REnT

Their numerical results showed 0 < Enr < 0.0844, 0 < E;ny < 0.0014, 0% < RENT <
2.22%, and 0% < RE;ny7 < 0.04%. In terms of error comparison, their results showed 0 <
Ent — Ernre < 0.0829 and 4.29 < Enp/Ernyr < 58.93. Although these results seem to exhibit
the NT and INT methods as a good approximation to the CTR+D method, in this paper we will
show this is not necessarily true.

4. Absolute error ratio:

The metrics shown above depend on two things: (1) the domain where LMF and UMF are defined
and (2) the images of these two MFs. Let us explain this point in general terms. Let A be an IT2FS

2 An alternative notation as interval set is C i=1 / [c1, ¢r]. In this paper we use standard mathematical notation [10].
31t is called the “KM + Defuzzification” method in [11], [12].
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defined over a domain X. If py, : X +— [0,1] : @ — pa, (x) is an EMF then its centroid is given
by

/ zpa, (r)dr
Cy, =5——.

6 /X ja () da

Therefore, C'4. depends on two things for its calculation: (1) the domain X and (2) the image*
of pa,, denoted as Im(uy4,). As a consequence, if M is a metric calculated from C4,, and
Cy,, (centroids of two EMFs), M depends on X, Im(pa,,) and Im(ua,,). As we will see in
next sections: ¢y, cyr and ¢y are calculated from X, LMF and UMF (two particular EMFs).
Therefore, ENT’ EINTa RENT, RE]NT, ENT — EINTa and ENT/EINT = RENT/RE]NT depend
on the domain where LMF and UMF are defined and the images of these two MFs.

The aim of this paper is to show a counterexample that exhibits higher errors than the corresponding
errors in examples reported in the literature when comparing CTR+D method versus NT and INT
methods®. We chose an IT2FS with piecewise linear MFs, mainly due to its simplicity. In order
to reduce the effect of different domains on the metrics (as we explained above), all the domains
(for examples and counterexample) were taken to a common domain: the unit interval [0, 1]. This
has a consequence: a change on a metric is due mainly to the change in the LMFs and UMFs (the
shape of the FOU). Additionally, all the variables involved in the CTR+D, NT and INT methods
were normalized to the unit interval.

After normalizing Mendel and Liu’s results, their four numerical examples showed 0 < E3, <
0.0044, 0 < Efyp < 0.0002, 0% < REN; < 0.96%, and 0% < RE7y; < 0.04%. In terms of
error comparison, their examples showed 0 < EX; — Ejyy < 0.0044 and 4.42 < EXp/Efyr <
60.21. Our counterexample showed Ey, = 0.1014 (23 times higher than £y, = 0.0044),
Efyy = 0.0725 (363 times higher than Ejy, = 0.0002), REN, = 30.53% (32 times higher
than REYN,; = 0.96%), and RE}y; = 21.83% (546 times higher than RE}y, = 0.04%). In
terms of error comparison, our counterexample showed E% — Ejyp = 0.0289 and Eyp/Efyr =
1.3986. We concluded, based on our results, that the NT and INT methods are not necessarily good
approximations to the CTR+D method.

This paper is organized as follows: In Section 2 some preliminaries related to the CTR+D, NT
and INT methods are presented. In Section 3, our normalization to the unit interval is described.
In Section 4, the main results are shown. Finally, discussion and conclusions are presented in
Section 5 and Section 6.

“The image of j14, is Im(pa,) = {pa, (x) | v € X}.

SA comparative study (by means of statistical analysis) was carried out in [14] in order to compare accuracy
and complexity for the Exhaustive Defuzzification method [15] versus the Karnik-Mendel iterative procedure [7]
(EIASC algorithm [16, section III]), the Wu-Mendel approximation (WM algorithm [17, appendix III, pp. 635]), the
Greenfield-Chiclana Collapsing Defuzzifier (collapsing algorithm [18]), and the NT method [13].
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2. Preliminaries

2.1. The CTR+D method

Let A be an IT2FS, which is determined by two MFs® ;i : X ~ [0,1] and 7z : X — [0, 1], defined
over a nonempty set X C R, such that y(x) < fi(z) for all z € X. y is called Lower Membership
Function (LMF) and 7 is called Upper Membership Function (UMF). In many applications X is a
closed interval’, therefore from now on we will suppose X = [a,b] C R, with a < b. The centroid
(type-reduced set) of fl, denoted by C';,is C'; = [¢, ¢,] € X, where ¢; and ¢, are

b b
/xG(x)da: /xG(x)dx
= min ~4>——  and ¢ = max ~——, (D)
p<6<p
- /Q(x)dx

<o<u [P
i / 0(x)dx
and where 0 : X — [0, 1] is a MF such that
(1) < 0(x) < 7i(x) @
for all z € X. The defuzzified value of A is

c +c,
er = (3)
It was shown [19], [20] that the 6 functions to minimize and maximize (1) are respectively
m < <
) = {70 TSI g g () = JEO) S @
H(fﬂ), x> Ty, ,u(x), T > Ty,

where z;, z,, € X are unknown (a priori) switch points between p and 7. The switch points z; and
x, need to be found by means of iterative procedures in order to optimize (1).

Convex combination [21]-[23] was used to characterize all the 6 functions that satisfy (2). It is
known that for any ¢ which satisfies (2), there is at least one MF p, : X — [0, 1] such that

0(x) = p(z) + pa(z)(F(z) — p(z)) )
for all x € X. If uy is taken in (5) as
1, z<ux, 0, z<ux,,
fa () {0, T >y, and i, () {1, x> X, ©)

then (4) is achieved. Therefore, ¢; = mine x a(t) and ¢, = max;cx (), where

/at wfi(x)dx + /tb wp(r)de /at wp(x)de + /tb iz de

/:ﬁ(:v)d:v + /tbﬂ(x)das /:E(a:)da: + /tbﬁ(gj)dx

®In this paper all the MFs are supposed to be Riemann-Integrable.
"In several papers on the centroid, X is taken as (—o0o, 00) with the assumption that all integrals are convergent.
However, over this domain the centroid of an IT2FS could not exist. See [5, sec. 2.1] for an example.

alt) = . and B(t) = G
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forallt € X.
It was also shown [19], [20], [24] that a(¢;) = ¢; and 5(c,.) = ¢, (¢; and ¢, are fixed points of «

and (), i.e.,
q b b
/ xﬁ(x)dx—ir/ ru(r)de / dm+/

= , and ¢, = (8)

/aqﬁ(x)dx—i— /:H(I)dm / dx+/

From (8) it was shown [1 1], [12], [25] that the problem of finding ¢; and c, is equivalent to find
the roots in [a, b] of

&

ot = [ (= oda+ [ -2t ©)
w(t):/(t—x) (x )dm—i—/t (t — z)i(z)dx, (10)

which are defined for all ¢ € X, and where ¢(¢;) = 0 and w(c,) = 0. It was also shown [25]
that the Karnik-Mendel algorithm is equivalent to applying the Newton-Raphson method to find
the roots of ¢ and w.

2.2. The NT method

In the Nie and Tan’s original method [!3], the MF obtained after type-reducing is the average of
fand p, ie., pyr(r) = (A(z) + p(z))/2 for all » € X. Therefore, its defuzzified value is
b
zuyt(T)d
cNT = = . (11)

/ab pnr(z)dz

Mendel and Liu [1 1], [12] claimed that ¢y is a first-order approximation to ¢y = (¢; + ¢,.) /2.

2.3. The INT method
Mendel and Liu [ 1], [12] proposed the improved Nie-Tan method, which is
CINT = CNT + (5, (12)

where cy7 is given in Section 2.2, and J is given by

2(/:NT(CNT—:E) (z )dx+/CiT(CNT—:v) (z )d:)s)

([ +g(l’))dx)2

x ( / ™ () — o))z — / ;w) —g(fv))dw> e
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These authors claimed that ¢/ is a better third-order approximation to ¢y = (¢; + ¢,)/2.

3. Normalization to the unit interval

Since the domain of y and 77 is X' = [a, b], with a < b, a bijective function is established [a, b]
,1] :  — y which is given
0,1 y which is given by

r—a
= . 14
e N (14)

Its inverse function [0, 1] — [a, ] : y — x (also a bijection) is given by
r=a+y(b—a). (15)

By means of (15) we define MFs with normalized domain (to the unit interval) * : [0, 1] + [0, 1]
and 7* : [0, 1] — [0, 1] given by

(a+y(b—a)), (17)
for all y € [0, 1], and where z*(y) < 7i*(y) holds for all y € [0, 1].

y) = fi(a+y(b—a)), (16)
K

3.1. Normalized CTR+D method

By means of (14)—(17), the normalized version of (7) is (after some algebra®):
z 1 z 1
| v+ [ oy | wis+ [ oy
0 Z 0 Z
z 1 z 1
/ i (y)dy + / w(y)dy / 1 (y)dy + / (y)dy
0 z 0 z

where z = (t—a)/(b—a), a*(2) = (a(t) —a)/(b—a), and B*(z) = (B(t) —a)/(b—a). Therefore
¢f = min,cpq) &*(2), ¢f = max.cp.) f*(2) and ¢}, = (¢ + ¢;)/2 where

o’ (2) = , and §*(z) = ., (8)

cq—a . O —a cp—a
b—a’ " b—a b—a

It should be noted that from (14) we have z,a*, 5%, ¢}, ¢}, ¢y, € [0,1]. Similarly (9)—(10) are
reduced to

*
G

c and c¢); = (19)

" (2) = /0 Z(Z -y (y)dy + / (z —y)p"(y)dy, (20)
w'(z) = /OZ(Z —y)p*(y)dy + / (z —y)r*(y)dy, (21)

where ©*(2) = p(t)/(b — a)? and w*(z) = w(t)/(b — a)?. Since p(¢;) = 0 and w(c,) = 0 then
©*(¢f) = 0 and w*(c}) = 0. Therefore ¢} and ¢ are roots in [0, 1] of ¢* and w*. It is not difficult

8The substitution z = a + y(b — a) yields dz = (b — a)dy, which is the required substitution for dz. The other
variables are obtained by performing the corresponding substitutions.
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to verify that ¢*, w* € [—1/2,1/2]. Although ¢* and w* are not in the unit interval, we only need
their roots in [0, 1]. Additionally, there is a relation among ¢* and w*:

' (z)+w(z)=2(B+D)—(A+(O), (22)

for all z € [0, 1], where
1 1 1 1
A—/ yi* (y)dy, B—/ i (y)dy, C—/ yp*(y)dy, andD—/ W (y)dy. (23)
0 0 0 0

3.2. Normalized NT method

By means of (14)—(17) the normalized version of (11) is (after some algebra):

1
/ ypunr(y)dy
Cnr = T : (24)
/ i (y)dy
0
where 15 (y) = (7" (y) + p*(y))/2 forall y € [0, 1], and
C —Qa
G = 21 (25)

From (14) we have that ¢}, € [0, 1].

3.3. Normalized INT method

By means of (14)—(17), the normalized version of (12) is (after some algebra):

Cint = Cnr + 07, (26)
where
* c —a *
Cing = % and 0" = ;. (27)

From (14) we have that ¢}y, € [0, 1]. ¢§7 is given in Section 3.2, and §* is given by

5 ( / ™ (er — 9T )y + / (chor — y)g*(y)dy>

*

CNT

(/ @) +g*(y))dy)2

x ( /0 CNT(ﬁ*(y) — " (y))dy — / (7" (v) —g*(y))dy) (28)

*_
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4. Results

4.1.

Original Mendel and Liu’s numerical examples

Mendel and Liu [11], [

1. Symmetric Gaussian MFs with uncertain deviation defined for all z € X = [0, 10]:

] showed the following four numerical examples.

Hfh(x) = {

py, () = exp (_% (%;55>2) |
(3 (5w))

2. Triangular LMF and Gaussian UMF defined for all x € X = [—5, 14]:

0.6(x+5)/19, < 2.6,
0.4(14 — 2)/19, z > 2.6.

1 (z—2\"
exp —5 , T <T7.185,

exp | —

5

2\ 1.75

3. Piecewise Gaussian MFs defined for all x € X = [0, 10]:

o= {0500 (~ 5 ot (-

(v ;3>2> L0.8 exp <—($_86)2>}.

o) e -

4. Piecewise Linear MFs defined for all z € X = [1, 8]:

f; (z) = max

fiz,(z) = max

(z —1)/6,
(7—x)/6,
07
(z —1)/2,
(7—x)/4,
07

2
1<x 9) x> 7.185.

2

o)

1<z<4] [(x-3)/6, 3<x<5,
4<x<7],|8=x)/9, b5<x<8
otherwise. | | 0, otherwise.
1<z<3]| [ (x—2)/5, 2<x<6,
3<x <7, |[(16—22)/5, 6<ux<8§,
otherwise. | | 0, otherwise.

(29)

(30)

€1V

(32)

(33)

(34)

(35)

(36)

Their results are summarized in Table I. These authors used the following metrics for comparison:

1. Absolute error: Exr = |eyr — cp| and Ernr = |ernt — el

2. Percentage relative error: REN =

146

ENT

[9ve

X 100% and REINT =

EINT

[9ve

x 100%.
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3. Difference of absolute errors: Ent — Ernr.

ENT _ RENT
EINT REINT.

4. Absolute error ratio:

Table I. Computation results in the continuous case. Taken and adapted from [11], [12].

Domain NT method INT method Error comparison
IT2FS  [a,b] cy=(c+¢)/2 enr Ent REnT cint Eint REinyt Ent — Ernt Ent/Ernt
Ay [0, 10} 5.0 5.0 0 0 5.0 0 0 0 —
1212 [—5, 14} 3.7984 3.7141 0.0844 2.22% 3.797 0.0014 0.04% 0.0829 58.93
Ag [O, 10} 4.4152 4.3953 0.0200 0.45% 4.4158 0.0006 0.01% 0.0194 33.63
A4 1, 8] 4.3261 4.3208 0.0053 0.12% 4.3273 0.0012 0.03% 0.0041 4.29

4.2. Normalized results

The corresponding IT2FSs with a normalized domain (37)—(44) are found by means of (29)—(36)
by substituting x € X by a + y(b — a), where y € [0,1]. The a and b values depend on the
X -domain for each IT2FS. For example, for (35)—(36) we have a = 1 and b = 8.

1. Symmetric Gaussian MFs with uncertain deviation (Figure 5(a)) defined for all y € [0, 1]:

1
1y, (y) = exp (—5 (40y — 20)2> : (37)

1 /40y — 20\
5, (y) = exp <—§ (yT) ) : (38)

2. Triangular LMF and Gaussian UMF (Figure 5(b)) defined for all y € [0, 1]:

3y/5, y < 2/5,
* (y) = 39
5, ) {2(1—y>/s, y> 25 9
1 /19y — 7\?
exp —5( y5 )) y < 624/973,
7%, (y) = L ey 5 (40)
exp | 3 ("JT) ) y > 624/973.

3. Piecewise Gaussian MFs (Figure 5(c)) defined for all y € [0, 1]:

w5, (y) = max {0.5 exp (—(103/—2_3)2) ,0.4exp (-M) } . (41)
YT (O IS IR TS ) R
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4. Piecewise Linear MFs (Figure 5(d)) defined for all y € [0, 1]:

[ Ty/6,  0<y<3/7, 7] [(Ty—2)/6, 2/T<y<4/7,
wy,(y) =max q [(6—7y)/6, 3/T<y<6/7,|,|T(1—y)/9, 4/T<y<],
i 0, otherwise. | [ 0, otherwise.
(43)
[ Ty/2, 0<y<2/7 ] [(Ty—-1)/5, 1/T<y<5/T,
5 (y) =max{ |(6-7y)/4, 2/T<y<6/7,|, 141 —y)/5, 5/T<y<]1,
i 0, otherwise. | | 0, otherwise.
(44)
1 1
0.8f 1 0.8
$ ¢
§0.6* 1 §0.6
2 2
|4 |4
204 1204
5 5
= =
0.2 1 0.2
0 0 ‘ ‘ ‘ ‘
0 0.2 04 06 0.8 | 0 0.2 04 0.6 0.8 |
Domain Domain
(a) (b)
1 1
0.8f 1 0.8
$ ¢
§0.6* 1 §0.6
2 2
|4 |4
204 1 204
5 5
= =
0.2 1 0.2
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 0.2 04 06 0.8 | 0 0.2 04 0.6 0.8 i|
Domain Domain

(© (d
Figure 5. IT2FSs with normalized domain (37)—(44).

In Table IT we show ¢}, = (cpr — a)/(b — a), ¢y = (enr — @) /(b — a) and ¢y = (N7 —
a)/(b — a), which are the normalization to the unit interval of ¢y, cyr and ¢;yr in Table I. We

recalculated the following metrics:
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. * _ * * * _ * *

EX E7
2. Percentage relative error: REjy = — = x 100% and RE}y; = ——L x 100%.
M v

3. Difference of absolute errors: By, — Efnp-

R D REY
4. Absolute error ratio: ,fv T — ,fv .
Nt BEINr

Table II. Normalization to the unit interval of the results in Table I.

Normalized NT method Normalized INT method Error comparison
IT2FST cu=(g+c)/2 cyr EYr REYr cinr Eine REINt EXNr — Eine Exe/Einr
A7 0.5 0.5 0 0 0.5 0 0 0 —
/13 0.4631 0.4586 0.0044 0.96% 0.4630 0.0001 0.02% 0.0044 60.21
A; 0.4415 0.4395 0.0020 0.45% 0.4416 0.0001 0.01% 0.0019 33.17
/E; 0.4752 0.4744 0.0008 0.16% 0.4753 0.0002 0.04% 0.0006 4.42

T IT2FSs with normalized domain (37)—(44).

4.3. A counterexample
Let A* be an IT2FS defined over 0, 1], and determined by piecewise linear MFs (Figure 6):

H

X (y+3.24)/3.79, y<0.1,
(y) = .
, otherwise,

(y +2.43)/2.84, y < 0.41,
*(y) =< 1, 0.41 <y < 0.68,
(1.24 — 4)/0.56, y > 0.68.

forall y € [0, 1].

—

Membership degree
o o o
H @ Q@

o
N

O0 0.2 04 06 0.8 1
Domain

Figure 6. IT2FS with normalized domain (45)—(46).
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After calculating’ ¢}, cip» Ciyp» and the corresponding metrics for (45)—(46), we got the results
in Table III.

Table III. Computation results for our counterexample.

Normalized NT method  Normalized INT method Error comparison
IT2FST ¢y =(+¢})/2 cny  Exny REyy ciny  Einy BEiny By — Eine Exe/Eint
A* 0.3321 0.4335 0.1014 30.53% 0.4046 0.0725 21.83% 0.0289 1.3986

T IT2FS with normalized domain (45)—(46).

5. Discussion

As we can see in Table III, our counterexample showed the following:

1. An absolute error £y = 0.1014. This is almost 23 times higher than E7,, = 0.0044 (worst
case in Table II).

2. A percentage relative error REY = 30.53%. This is almost 32 times higher than REY, =
0.96% (worst case in Table II).

3. An absolute error Ej,, = 0.0725. This is almost 363 times higher than Ej,, = 0.0002
(worst case in Table II).

4. An percentage relative error RE}y, = 21.83%. This is almost 546 times higher than
REj Ny = 0.04% (worst case in Table II).

In terms of error comparison EX, — Efype = 0.0289 and EY;/Ejyr = 1.3986, our example
showed that E/3,, is comparable (in magnitude) with respect to £7 -, in contrast with the results
in Table II.

6. Conclusions

This paper showed a counterexample that exhibits higher errors than the corresponding errors in
examples reported in the literature when comparing the NT and INT methods versus the CTR+D
method. We chose an IT2FS with piecewise linear MFs as our counterexample, mainly due
to its simplicity. All the domains (for examples and counterexample) were taken to the unit
interval [0, 1] in order to reduce the effect of different domains on the metrics that we used for
comparison. Additionally, all the variables involved in the three methods were normalized to the
unit interval. We concluded, based on our results, that the NT and INT methods are not necessarily
good approximations to the CTR+D method.

A. Source code for the counterexample in Section 4.3

The source code presented in this section was executed on MATLAB 7.14.0.739 (R2012a), on a
laptop with Microsoft Windows XP Professional 32 bit, Intel(R) Atom(TM) CPU Z520 1.33 GHz,

°In Appendix A we present a source code for the numerical calculation

150 INGENIERIA o VOL.21 ¢ NO.2 ¢ ISSN0121-750X e E-ISSN2344-8393 ¢ UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS



Rojas, J. D., Salazar, O., Serrano, H.

1014 MB of RAM. See the main text for a description of each variable in the following code.

Definition of LMF and UMF.
LMF = Lower Membership Function
UMF = Upper Membership Function

o0 o o o

o\

clear all

syms y z % Symbolic variables

IMF = ((y + 3.24)/3.79) * heaviside (0.1 - y);

UMF = ((y + 2.43)/2.84) % heaviside(0.41 - y) +
(heaviside(y - 0.41) - heaviside(y - 0.68)) +
((1.24 - y)/0.56) % heaviside(y - 0.68);

A = int(y * UMF, vy, O
B = int (UMF, vy, 0, 1);
C = int(y » LMF, vy, O
D = int (LMF, y, 0, 1)
phi = int ((z-y) % UMF, vy, 0, z) + int((z-y) * LMF, vy, z, 1);

omega = z * (B + D) - (A + C) - phi;

sol = solve(phi, ’'Real’, true); % Solve phi = 0. Find real values
index = find(sol >= 0 & sol <= 1);

c_l = vpa(sol(index), 4) % We choose the root of phi in [0,1] as c_1
sol = solve(omega, ’'Real’, true); % Solve omega = 0. Find real values
index = find(sol >= 0 & sol <= 1);

c_r = vpa(sol(index), 4) % We choose the root of omega in [0,1] as c_r
c.M=vpa((c_1l + c_r)/2, 4) % CTR+D method

% NT method

% AMF = Average Membership Function

AMF = (LMF + UMF) / 2;

Cc_NT = int(y = AMF, y, 0, 1) / int (AMF, vy, 0, 1);

c_NT = vpa(c_NT, 4) % Nie-Tan method

o©

numl_delta = int ((c_NT-y)=*UMF, vy, 0, c_NT) + int((c_NT-y)*LMF, vy, c_NT, 1);
num2_delta int (UMF-LMF, vy, 0, c_NT) - int (UMF-LMF, vy, c_NT, 1);

den_delta = (int(UMF, vy, 0, 1) + int(LMF, vy, 0, 1)) = 2;

delta 2 x numl_delta * num2_delta / den_delta;

c_INT = c_NT + delta;

c_INT vpa (c_INT, 4) % Improved Nie-Tan method
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