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The Four Phases of Plant-Arthropod Associations in Deep Time
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{ ABSTRACT |

Vascular-plant hosts, their arthropod herbivores, and associated functional feeding groups are distributed spa-
tiotemporally into four major herbivore expansions during the past 420 m.y. They are: (1) a Late Silurian to
Late Devonian (60 m.y.) phase of myriapod and apterygote, hexapod (perhaps pterygote) herbivores on several
clades of primitive vascular-plant hosts and a prototaxalean fungus; (2) a Late Mississippian to end-Permian (85
m.y.) phase of mites and apterygote and basal pterygote herbivores on pteridophyte and basal gymnospermous
plant hosts; (3) a Middle Triassic to Recent (245 m.y.) phase of mites, orthopteroids (in the broadest sense) and
hemipteroid and basal holometabolan herbivores on pteridophyte and gymnospermous plant hosts; and (4) a
mid Early Cretaceous to Recent (115 m.y.) phase of modern-aspect orthopteroids and derived hemipteroid and
holometabolous herbivores on angiospermous plant hosts. These host-plant and herbivore associations are medi-
ated by seven functional feeding groups: a) external foliage feeding, b) piercing-and-sucking, c) boring (Phase 1
origins); d) galling, e) seed predation, f) nonfeeding oviposition (Phase 2 origins); and leaf mining (early Phase
3 origin). Within about 20 m.y. of each herbivore expansion, there is a biota that expresses the nearly full spec-
trum of later plant-arthropod associations. These four associational phases may be linked to the paleoclimato-
logic variables of greenhouse/icehouse cycles and atmospheric O, and CO; levels by uncertain causes, although
some relationship probably is present. The 7 functional feeding groups persist through most of the sampled
interval but harbor host-plants and arthropod herbivores that are spatiotemporally ephemeral. Poor understand-
ing of associations in Phases 1 to 3 is attributed to disproportionate focus on the angiosperm and holometabolan
insect associations of Phase 4.

KEYWORDS | Plant-insect-associations. Herbivory Fossil-record. Land plants. Insects. Paleoclimate.

INTRODUCTION vided the basic evolutionary history and ecological struc-
ture to continental (terrestrial + fresh water) ecosystems.

The major macroscopic source for biodiversity on the Nowhere is the combination of taxonomic diversity and
planet is land plants and arthropods (Wilson, 1992; ecological richness better demonstrated than the varied
Schoonhoven et al., 2005). These two hyperdiverse plant-insect associations that have been documented for

clades, and to some extent, fungi, historically have pro- the fossil record during the latest wave of major terrestri-
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alization that commenced about 420 m.y. ago, during the
Late Silurian (Labandeira, 2005a). This major invasion of
terrestrial environments has continued unabated to the
Recent and has experienced a dramatic expansion in taxo-
nomic speciosity, major clade diversity, biomass abun-
dance, biogeographic colonization, and ecologic richness
(Labandeira 2002a). Although these five measures are
inextricably linked, it is ecological richness that provides
the single most effective way of assessing how terrestrial
ecosystems evolve in deep geologic time (Vermeij, 2004).
In particular, it is an examination of plant-insect associa-
tions—which provides the paleobiological evidence for
the fundamental interorganismic links of species within
food webs, communities, and ecosystems—that is the
central focus of this study.

The ecology of plant-insect associations is a signifi-
cant aspect of modern ecological research, as illustrated
by sections of ecological journals devoted to this topic.
However, the intensity and broad scope of the study of
modern plant-insect associations has not been matched by
a parallel examination of the fossil record (Labandeira,
2005b). This disconnect is attributable mainly to an over-
whelming paleobiological focus on the description, clas-
sification, and phylogenetic analyses of taxa, rather on the
paleoecological associations of plants and arthropods.
Recently, however, there has been a gradual and sus-
tained, albeit limited, trend toward examination of plant-
insect associations in the fossil record. These studies are
characterizable into: (1) studies of a specific host plant
interaction with an insect herbivore (Amerom and Boers-
ma, 1971; Zhou and Zhang, 1989; Waggoner and Poteet,
1996), typically involving one or perhaps a few associa-
tions; (2) the examination of a particular insect herbivore
functional feeding group, such as leaf mining, on multiple
hosts within a flora of interest (Crane and Jarzembowski,
1980; Lang et al., 1995); or alternatively (3) the compara-
tively rare assessment of multiple herbivore associations
on a single host-plant genus or species, such as Early
Devonian Psilophyton DAWSON 1859 (Trant and Gensel,
1985; Banks and Colthart, 1993) or Late Pennsylvanian
Psaronius chasei MORGAN 1959 (Labandeira, 1998c;
Labandeira and Phillips, 1996a, 1996b); and (4) the com-
prehensive study typically of an entire flora and all of its
herbivore associations, replete with a multitude of plant
hosts and herbivore damage types. This fourth approach
of evaluating bulk floras has variously focused on general
qualitative examinations (Straus, 1977; Scott et al. 1985,
Stephenson and Scott, 1992; Grauvogel-Stamm and Kel-
ber, 1996; Ash, 1997; Castro, 1997; Glasspool et al.,
2003), quantitative use of presence-absence data such as
Scott and Taylor (1983) from a comparatively limited
number of specimens representing a single plant-host tax-
on, to diverse bulk floras with explicitly described dam-
age types (Labandeira et al., 2002a; Wilf and Labandeira,
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1999; Wilf et al., 2005) or quantitative assessments of
herbivorized versus original surface area (Beck and
Labandeira, 1998; Adami-Rodrigues et al., 2004b), simi-
lar to examinations of extant plants (Wint, 1983; Coley
and Barone, 1996). To date, there have been a sufficient
number of such studies regionally and from the latest Sil-
urian to the Pleistocene-Holocene boundary that a global
data set now can be assembled and examined for coarse-
grained patterns involving vascular plants, herbivorous
arthropods, and their ecological associations. The results
of these data provide the broadest view of how plant-
arthropod associations have appeared, expanded, and con-
tracted in terrestrial environments, resulting in the bewil-
dering ecological richness of today (Wilson, 1992).

Although the data provided herein are comparatively
coarse, it is my intention to provide a plant-arthropod asso-
ciational baseline for Phanerozoic terrestrial ecosystems,
by which finer patterns, involving taxonomically more cir-
cumscribed plant hosts and arthropod herbivores, can be
further elucidated. In parts of this temporal-taxonomic-
associational matrix where preservational potential is high
and intervals of geologic time are relatively short, more
taxonomically circumscribed plant-host clades, or lineages,
can be specified and investigated for the evolution of their
component communities of arthropod herbivores (Root,
1973; Futuyma and Mitter, 1996). As an alternative to this
lineage-by-lineage ‘“vertical” approach, a “horizontal”
approach would examine the topology of a herbivore radia-
tion or demise, such as the geochronologically sudden col-
onization of plant-host lineages by clades of arthropod her-
bivores, leading to particular types of stereotyped
associations or specified lineages of insect gallers or leaf
miners (Farrell, 1998; Wilf et al., 2000; Cook et al., 2002;
Farrell and Sequeira, 2004). Fossil studies have the poten-
tial to provide paleobiological ground-truthing, such as
calibration rates of colonization or extinction by comparing
occurrences of taxa to known time intervals, or tests of evo-
lutionary hypotheses regarding the origin and evolution of
plant-insect associations (Fox, 1988; Boucot, 1990; Jermy,
1993; Farrell and Mitter, 1993; Thompson, 1994; Price,
1997; Vermeij, 2004; Schoonhoven et al., 2005). It should
be noted that historically the plant host (paleobotanical),
arthropod herbivore (paleoentomological), and association-
al (paleoecological) fossil records have been considered
separate (Labandeira, 2002a), and have had minimal cross
links for understanding how plants and arthropods actually
have interacted in deep geologic time.

METHODS, DATA STRUCTURE, AND RATIONALE

This is the first compilation of published or otherwise
personally observed associational data from the fossil
record to provide plant hosts, types of associations, and
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insect herbivores that are partitioned into discrete slices of
time. The associational part of these data is expressed by
the major types of feeding, known as functional feeding
groups (Coulson and Witter, 1984; Labandeira, 1998a;
Wilf and Labandeira, 1999). The plant-host taxa generally
are provided at the conventionally accepted ordinal rank
and the inferred arthropod herbivores are delimited by
ordinal and superordinal ranks. The 7 functional feeding
groups of plant-arthropod associations are a) external
foliage feeding, b) piercing-and-sucking, ¢) boring, d)
leaf mining, e) galling, f) seed predation, and g) oviposi-
tion. The first six are distinctive feeding strategies; the
last one is not a feeding type, but rather a distinctive egg-
laying strategy that involves endophytic insertion of eggs
into plant tissues by a lancet-like device, the ovipositor
(Wesenberg-Lund, 1913), and thus is included for com-
pleteness since it has a significant fossil record of plant
damage (Béthoux et al., 2004). This examination of the 6
functional feeding groups and oviposition is supplement-
ed by an earlier, separate study of palynivory and nec-
tarivory (Fig. 1; Labandeira, 2000). The additional func-
tional feeding groups of palynivory and nectarivory
(surface fluid feeding) are not considered further in this
study. The plant taxa and phylogenetic framework to
which the 7 associations were assigned is based mostly
on the recent work of Anderson et al. (in press) and
Hilton and Bateman (2006).

A context for this contribution is provided by several
studies of both plant diversity (Knoll and Niklas, 1987;
Niklas et al., 1985) and insect diversity (Labandeira and
Sepkoski, 1993; Jarzembowski and Ross, 1996; Dmitriev
and Ponomarenko, 2002) through time that provide broad
patterns of major clade origination, turnover and extinc-
tion during the past 420 m.y., based on taxa that are
assumed to be or are monophyletic from then-current
evaluations (See Labandeira [2005a] for the validity and
indispensability of the taxic approach in understanding
major patterns of insect diversity through time). Although
there has been discussion regarding the more specific and
focused associational relationships of these two hyperdi-
verse and interacting clades through time (Howe and
Westley, 1988; Jolivet, 1998; Shcherbakov, 2000; Ver-
meij, 2004; Schoonhoven et al., 2005), modest attempts
have demonstrated mostly anecdotal evolutionary patterns
(Willemstein, 1987; DiMichele and Hook, 1992; Scott et
al. 1992; Labandeira, 2002a; Zherikhin, 2002a, 2002b).
This contribution adds to these studies by providing: (1)
documentation of the major plant lineages through time
and identification of particular, ecologically dominant
host-plant clades; (2) a record of major arthropod herbi-
vore lineages through time (myriapods and especially
mites and hexapods), including their intervals of domi-
nance; (3) determination of the temporal distribution of
the basic functional feeding groups based principally on
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arthropod-mediated damage on plants; (4) a temporal
framework in which these three records are geochrono-
logically related, including recent absolute-age calibra-
tions of the geologic time scale and stage-level correla-
tions of relevant strata; and (5) a preliminary assessment
of the role between global phases of herbivory and envi-
ronmental variables such as atmospheric oxygen abun-
dance and surface temperature.

Initial evaluation of the data was done by recording
only those publications that had explicit and compelling
photographic documentation. Personal observation by the
author of unpublished plant-insect associational data also
was included. Published and observational data included
in the data base (see Appendix at www.geologica-
acta.com) required demonstration of herbivory, often
using multiple criteria, as opposed to detritivory (Laban-
deira, 1998a; Scott and Titchener, 1999). For most func-
tional feeding groups, one or more of the following four
criteria were present (Labandeira, 1998a). First, the pres-
ence of callus or other types of reaction tissue induced by
trauma to a live plant should be demonstrated (Tovar et
al., 1995). A second line of evidence, particularly for
external foliage feeding, is the presence of micromorpho-
logical structures such as veinal stringers, necrotic tissue
flaps, and contiguous cuspules within larger excisions
that are caused by mandibulate chewing, or other features
that indicate active feeding (Gangwere, 1966; Kazikova,
1985; Araya et al., 2000). Third is the presence of stereo-
typed feeding patterns that are consistent with known
modern feeding types (Bodnaryk, 1992; Puplesis, 1994;
Heron, 2003). The resulting plant-host damage types
involve both a single, unique pattern by a host-specialist
clade as well as a pattern that is convergently arrived at
by different, often host-generalist, clades (see discussion
in Labandeira et al. 2002a). Last, within diverse floras,
distinctive plant-host specificity patterns and the targeting
of particular tissue types can reveal herbivory that would
not be expected from physically induced leaf injury such
as wind damage or particle impact abrasion (Katterman,
1990; Vincent, 1990). In certain instances, criteria includ-
ed links to known, highly distinctive, extant damage types
(Opler, 1973), sometimes involving both conspecific lar-
val and adult instars on the same host-plant species (Wilf
et al., 2000). Collectively or singly, these four criteria
effectively segregated herbivory from detritivory in
almost all cases. Only in the case of boring in wood, was
there often an absence of evidence for consumption of
live tissue. However, since many holometabolous insect
wood-borers live in live cambial tissue but also bore
through dead secondary xylem, borings were included
whose diameters indicate production by beetles or other
holometabolous larvae. Excluded were borings attributed
to detritivorous arthropods, such as termite galleries and
all small diameter oribatid mite borings (Hueber and
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Galtier, 2002), unless there was separate evidence for
plant response tissues. Some groups of termites and mites
are herbivorous (Krantz and Lindquist, 1979; Waller and
La Fage, 1987), although their activities are more appro-
priately registered in the fossil record from the evidence
of plant damage attributed to external foliage feeders or
as identifiable contents of coprolites.

After herbivory was established by scrutiny of illus-
trated examples from the paleoecological literature, as
well as personally examined material, these data were
included in the Appendix (www.geologica-acta.com). The
Appendix was partitioned into four subsets, each defined
by the temporal ranges of major host-plant and plant-
feeding arthropod clades. In particular, these separations
into four principal intervals were based on a combination
of: (1) temporal ranges of major dominant plant-host and
arthropod-herbivore clades in the fossil record, (2) extinc-
tion or other major turnover events, whether of many
individual clades or entire biotas, and (3) occasional inter-
vals of ecologically distinctive associations not present in
earlier or later biotas (Knoll and Niklas, 1987; Labandeira
and Sepkoski, 1993; Stewart and Rothwell, 1993; Laban-
deira, 2002a).

The relevant literature on fossil plant-insect associa-
tions was extensively but not exhaustively surveyed. In
those instances where there were multiple duplicative lit-
erature citations documenting the same association or set
of associations, only the most comprehensive or recent
source, or both, were used. Occurrence data from this
search (Appendix; www.geologica-acta.com) represents a
420 m.y. interval from the latest Silurian to the latest
Pleistocene, and resulted collectively in 181 biotas pos-
sessing 424 separate associations. These biotas were allo-
cated to 54 distinct, five-million-year bins of time based
on age dates or stage-level correlations of each biota.
These biotas range from a single association between a
plant host and its arthropod herbivore (Karpinski, 1962;
Amerom, 1966; Opler, 1982) to a few extensively studied
biotas that contain numerous clades of damaged plant
hosts, several types of associations, and a variety of
inferred insect herbivores (Grauvogel-Stamm and Kelber,
1996; Ash, 1997; Wilf and Labandeira, 1999; Scott et al.,
2004). However, for those specific host-plant taxa that
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harbored five or more functional feeding groups, a cutoff
of four was used per cell for graphical clarity in figures 3-
6. Collectively, most of the data qualitatively occurred
between the two end-members of single occurrences and
descriptions of multitudinous associations from a single,
diverse biota.

The data (Appendix; www.geologica-acta.com) repre-
sent 60 major clades of tracheophyte plants that have
been considered typically at an ordinal taxonomic rank,
with the exception of higher-ranked Devonian plant lin-
eages (Rothwell and Serbet, 1994; Hilton and Bateman,
2006). For reasons of completeness, particularly as it
relates to the origin of the borer functional feeding group,
a “woody” Devonian clade of massive, lignified fungi
(Prototaxites) was added to the host list. For arthropod
herbivores, which are dominantly insects, 18 major clades
were included, which traditionally have been allocated to
ranks from order to superorder. These clades of plant
hosts and insect herbivores interacted with each other
through 7 plant-arthropod functional feeding groups. The
quality of assignments for these three elements was best
for functional feeding groups, whose assignments were
obvious; of high but somewhat lesser reliability was iden-
tification of the plant hosts; and the least reliable overall
were the inferred insect herbivores, which occasionally
lacked diagnostic plant-damage evidence that would con-
fidently assign the potential culprit to a particular myria-
pod, mite, or insect clade.

TEMPORAL PATTERNS OF HERBIVORY

The temporal distribution of plant hosts, associations,
and arthropod herbivores resulted in four distinctive her-
bivore expansion phases, paralleling in timing the previ-
ously identified “evolutionary assemblages” for paly-
nivory and nectarivory (Labandeira, 2000; Fig. 1).
Defining features of these assemblages are: (1) a tempo-
rally constrained and taxonomically distinctive suite of
plant host-clades typically at the ordinal rank, (2) a simi-
larly juxtaposed assemblage of arthropod herbivore clades
that consumed or otherwise interacted with plant-host
clades, and (3) the presence of a diverse, abundant,
preservationally exceptional and associationally rich biota

FIGURE 11 A matrix of vascular plants, insects, and their associations for palynivory and pollination, placed in geochronological context. This matrix
details the four evolutionary assemblages of palynivores, nectarivores, pollinators, and their host plants that are distinct at the highest taxonomic lev-
els, discussed in Labandeira (2000). Fossil plant and animal taxa at top are those that display evidence for plant-insect associations, based on direct
or indirect evidence from dispersed coprolites, gut contents, plant reproductive biology, insect mouthpart structure, plant damage, and modern taxo-
nomic affiliation. Thin horizontal connectors are well-supported associations from identified insects with known plant palynomorphs as gut contents.
Plant taxa with asterisks (*) are spores or pollen; a few Paleozoic taxa refer to form-genera of plant organs with known whole-plant taxonomic attribu-
tions. Taxa persisting to the present are indicated by bold vertical links, solid for Assemblages 3 and 4, respectively. The arthropod culprits of Assem-
blage 1 remain unknown and probably include arthropods other than insects, such as myriapods. This compilation includes the most prominent stud-
ies and is not complete. Modified from Labandeira (2000) to conform to recent changes of the geologic time scale (Gradstein et al., 2004); the two,
topmost intervals of time of the Neogene are, from oldest to youngest, Pliocene and Pleistocene. Abbreviations: Miss.: Mississippian (or Early Car-

boniferous); Penn.: Pennsylvanian (or Late Carboniferous).
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early within the development of each of the four expansion
phases. These biotas provide excellent examples of associ-
ational richness within each expansion phase, and can be
considered as a “flagship” biota to which others within the
same expansion phase can be compared (Table 1).

Herbivory in the Earliest Terrestrial Ecosystems

A controversial issue regarding the trophic structuring
of early land-based ecosystems is the role of detritivores
versus herbivores in channeling the primary production of
land plants into the food web. An early view was that ear-
ly land ecosystems were scaled-down or otherwise simple
versions of extant ecosystems, containing the full compli-
ment of major trophic groups, including herbivores. An
alternative view is that the earliest ecosystems either
lacked herbivores or the consumption of live plant tissues
was insignificant (Shear and Selden, 2001; Habgood et
al., 2004). Given the evidence, principally from coprolites
and plant damage from several major Late Silurian—-Mid-
dle Devonian biotas, the truth is somewhere in between,
with detritivory and palynivory dominant and herbivory
and carnivory subordinate. The earliest herbivory was a
consequence of a few modes of feeding, but qualitatively
much less than that of the subsequent Carboniferous
(Labandeira, 2002a). This conclusion is based on the
sparse occurrence of insect-mediated plant lesions or bor-
ings during the Late Silurian and Devonian (Labandeira,
1998a). The tracking of plant organs and the first instance
of herbivory on them has a bimodal distribution (Fig. 2),
suggesting a geologically earlier targeting of stems and
spores but a delayed attack on roots, leaves, wood and
seeds that was launched during the Late Missi-
ssippian—Middle Pennsylvanian (Iannuzzi and Laban-
deira, unpubl. data). Although many recognize herbivory
in the early land plant record, a dissenting view holds that
some of these damaged tissues were either mediated by
abiological agents or may not constitute herbivory (Shear
and Selden, 2001). There have been a significantly greater
number of relevant studies of Pennsylvanian-age, when
compared to Mississippian-age, floras (DiMichele and
Hook, 1992), in addition to the fact that the Pennsylvan-
ian is about one-third the duration of the Mississippian.
Both of these factors may account for an intrinsically
deficient record of herbivory during the Mississippian.

Another issue is what constitutes ‘herbivory?’ The
long-standing view of insect ecologists is that herbivory is
the °...consumption by animals of any plant parts, includ-
ing foliage, stems, roots, flowers, fruits or seeds’
(Schowalter, 2000). An alternative concept of herbivory is
that only consumption of the vegetative parts of the plant
constitutes herbivory, and that seeds, spores and pollen
and possibly roots are an exception because they are
either too nutritionally rewarding or too difficult to access
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for digestion (Shear and Selden, 2001). However, vegeta-
tive parts of a plant also represent continua between less
digestible tissues (e.g. vascular strands) to tissues with
greater nutritional value (e.g. mesophyll). Additionally,
pollen and spore protoplasts are accessible by a variety of
insects that extract their contents by a range of processes
without subjecting the exterior grain walls to physical
breakage (Scott et al., 1985; Oliveira et al., 2002). Thus,
consumption of all live plant tissues is considered as her-
bivory, whereas the feeding on dead plant, fungal, and
animal tissues is considered detritivory. It is this latter
definition, proposed by ecologists, which provides the
context for the initial herbivory on land (Figs. 1 to 3), as
represented by Herbivore Expansions 1 and 2.

Temporal Lags between the Origin of Plant
Tissues and their Herbivory

The Paleozoic fossil record of arthropod use of vascu-
lar plant tissues is one of plant-host histological diversifi-
cation up to the Pennsylvanian, with minor to major tem-
poral lags between the time of anatomical origin of
particular tissues and the time of origin of their herbivore
consumption (Fig. 2). In some cases during the Late Sil-
urian to Early Devonian there was relatively sudden and
early colonization by palynivorous herbivores of sporan-
gia and their spores (Figure 1; Edwards et al., 1995; Hab-
good et al., 2004) by piercer-and-suckers of stems (Figure
2; Kevan et al., 1975; Banks and Colthart, 1993), and
wood precursor tissues in the form of borings within the
hardened basidiomycete fungus Prototaxites DAWSON
1859 (Hotton et al., 1996.). By contrast, subsequently
derived tissues, occurring in organs such as roots, leaves,
and seeds, originate from the later Early to Late Devon-
ian, yet do not exhibit evidence for earliest herbivory until
the Late Mississippian, representing lags from ~ 50 to
100 m.y. This latter herbivory event initiates Herbivore
Expansion Phase 2, which includes folivory (Iannuzzi and
Labandeira, unpubl. data), a second expansion of boring
into the true wood of lignophyte vascular plants (Dunn et
al., 2003), seed predation (Jennings, 1974), and roots
(Labandeira, 2001). A similar lag also is evident at the
commencement of Herbivore Expansion 3, in which the
earliest example occurs from the early Middle to early
Late Triassic, postdating the prior presence of relevant
plant-host clades by several million years, especially true
for the Karoo Basin of South Africa (Scott et al., 2004;
Labandeira and Anderson, 2005.). Similarly, but perhaps
more muted, was herbivore response that has been noted
for the aftermath of the end-Cretaceous extinction within
Herbivore Expansion 4, in which herbivore levels and
richness during the latest Cretaceous were not reached
until the Paleocene/Eocene boundary, some 10 m.y. after
the extinction event (Wilf et al., 2001; Labandeira et al.,
2002b). The existence of these lags between the initial
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TABLE 1 | Salient featuresof the four phases of herhivore expansion (excluding palynivory and nectarivory).

Herbivore Major Number
expansion Major arthropod Early Functional Number of biotas Number
phase, interval, host-plant- herbivore flagship feeding of asso- investi-  of 5 m.y.
and duration clades! clades! biotas groups ciations gated intervals
1. 420-360 Ma protracheo- myriapods, Rhynie 3 10 5 5
(~60 m.y.) phytes, apterygotes
trimerophytes,
rhyniopsids,
lycopsids,
zosterophylls,
pteridophytes,
prototaxales?
2.335-251 Ma pteridophytes, myriapods, Calhoun 7 57 31 14
(~85m.y.) stem mites,
spermatophytes, apterygotes,
(crown palaeo-
spermatophytes) dictyopteroids®
“prot-orthopteroids”
3. 245 Ma-present pteridophytes, mites, Molteno 8 95 56 33
(245 m.y.) crown orthopteroids,
spermatophytes, hemipteroids,
(stem early or
spermatophytes) plesiomorphic
holometabolan
clades
4. 115 Ma—present angiosperms, orthopteroids, Dakota 8 263 88 22
(115 m.y.) (pteridosperms), hemipteroids,
(conifers) late or
apomorphic
holometabolan
clades

1See text for listing of subclades within these groups; parentheses indicate a subdominant clade of plant hosts; groups in quotes are para-

phyletic.
2A columnar basidiomycete fungus (Hueber, 2001).

3A monophyletic clade united by unique mouthpart construction and consisting of the subclades Palaeodictyoptera, Megasecoptera,

Diaphanopterodea and Dicliptera (Grimaldi and Engel, 2005).

appearance of available tissues and their initial consump-
tion by arthropod herbivores may be a general feature of
the plant-arthropod associational record.

Herbivore Expansion 1: Late Silurian to Mid-
Carboniferous

Records of Herbivore Expansion 1 (Fig. 3), which
persisted for about 60 m.y., originate from the coastlines
of Euramerica (Appendix; www.geologica-acta.com).
This phase consists of 5 examined biotas, each occurring
in a five-million-year interval, but clustered toward the
latest Silurian and Early Devonian. Three functional feed-
ing groups (excluding palynivory; see Labandeira, 2000)
and 10 discrete associations are present (Figs. 1 and 3;
Table 1). Dominant host plants consist of basal clades of

vascular plants, namely protracheophytes, trimerophytes,
rhyniopsids, lycopsids, zosterophylls and pteridophytes,
but also the massive basidiomycete Profotaxites (Hueber,
2001). Herbivorous arthropods probably were myriapods
(diplopods and arthropleurids), mites, and to a lesser
extent apterygote hexapods and possibly true insects.
Four plant-arthropod associations are represented. These
associations are external feeding (Trant and Gensel, 1985)
and piercing-and sucking (Kevan et al., 1975; Banks and
Colthart, 1993), both on photosynthetic tissues of stems;
boring in the cortical and medullary tissues of the indurat-
ed axial organs of Prototaxites and piths of land plants
(Kidston and Lang, 1921; Hueber, 2001); and palynivory
of spores and sporangia (Edwards et al., 1995; Habgood
et al., 2004; Figs. 1 to 3). The dominantly targeted plant
host appears to be the Rhyniopsida. The dominant herbi-



C.C. LABANDEIRA Plant-Arthropod Associations in Deep Time

vore group may have been subgroups of myriapods. The 2005a), and provide a reasonable spectrum of feeding
most pervasive association is external feeding on photo- types involved in the consumption of several available tis-
synthetic tissues. These sparse data document the relative- sue types from primitive vascular-plants. Tissues or parts
ly early origin of herbivory in terrestrial habitats within of organs that originated later during the Devonian, such
predominantly detritivore ecosystems (Labandeira, as leaves for folivorous external feeders, wood for borers
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FIGURE 2 | Occurrence data provided for the first appearance and initial herbivore colonization of six organ or tissue types. Colonization of Herhivore
Expansion 1 includes consumption of spores (Edwards et al., 1995; Edwards, 1996; Habgood et al., 2004); consumption of stem tissues by both
external feeders (Kevan et al., 1975; Trant and Gensel, 1985; Banks and Colthart, 1993) and by piercer-and-suckers (Kevan et al., 1975; Banks and
Colthart, 1993); and borers of “woody” tissues in the form of lignified cortical and medullary tissues, depicted in Fig. 7. Borings occurred initially in
vegetative portions of the massive basidiomycete fungus Prototaxites pawson 1859 (Hueber, 2001) that bear borings (Arnold, 1952; Hotton et al.,
1996; Hueber, 2001; Labandeira pers. observ.), shown by the finely stippled Devonian pattern, and later as Late Mississippian and Pennsylvanian
borings in plant hosts (Dunn et al., 2003), shown in the coarsely stippled pattern. These three latter functional feeding groups, and their plant hosts
and inferred insect herbivores, are shown in Fig. 3. Note that Prototaxites is a fungus (Hueber, 2001), but served as an initial host for borers of ligni-
fied tissues, a functional feeding group that later may have independently re-evolved on lignophyte plants by a different arthropod clade. Herbivore
Expansion 2 commences during the later Mississippian, and contains a second invasion of borings in indurated tissues (Dunn et al., 2003), this time
on lignophytic seed plants (Kenrick and Crane, 1997). Additionally, there is evidence for the initial herhivory on leaves, or external foliage feeding
(lannuzzi and Labandeira, unpubl. data), initial seed predation (Jennings, 1974), and initial root feeding (Labandeira, 2001). Root feeding is very
poorly documented in the fossil record, and is not included in any figure as a distinct functional feeding group.
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Herbivore Expansion 1

Groups

FIGURE 3T Herbivore Expansion 1. lllustrated is
the distribution of functional feeding groups
within specified biotas (at right), on accompa-
nying plant hosts within specified five-million-
year intervals (at left). Inferred insect herbi-
vores are provided in a middle panel that link
functional feeding groups with plant hosts with-
in each binned interval. Color symbols for func-
tional feeding groups (bhasic associations) are
at upper-left, and apply throughout the chart to
inferred insect herbivores and plant hosts for

each successive 5-million-year interval ranging

from the Late Silurian to Late Devonian. Arrow

indicates the “flagship” associational biota for

Expansion Phase 1, the silica permineralized
Rhynie and Windyfield Cherts of Scotland; Unit-

ed Kingdom. See Fig. 1 for the distribution of a
fourth functional feeding group, palynivory, not
displayed herein. Plant-host clades are from
Kenrick and Crane (1997); arthropod-herbivore
clades are from Wheeler et al. (2004). Geolog-
ic time scale is after Gradstein et al. (2004).
See Appendix at www.geologica-acta.com,
Table 1, and text for additional details. Abbrevi-
ation: C: Carhoniferous; uppermost stage of the
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on more massive plant trunks, or seeds for seed predators,
were not consumed until the beginning of Herbivore
Expansion 2.

The early “flagship” biota for Herbivore Expansion 1
is the permineralized Rhynie and Windyfield Cherts from
southern Scotland, of Early Devonian (Pragian) age
(Trewin and Rice, 2004). These deposits are part of the
Dryden Flags Formation, and are interpreted as preserved
siliceous hot springs within a region of lacustrine and flu-
vial sedimentary environments (Trewin, 1994; Habgood
et al., 2004). The associated biota consists of early land
plants, a relatively diverse assemblage of freshwater and
especially terrestrial arthropods, and a modest number of
plant hosts and arthropod associations.

Herbivore Expansion 2: Mid Carboniferous to
the Permo-Triassic Boundary

The earliest expression of Herbivore Expansion 2
(Fig. 4) is documented from two occurrences during the
Late Mississippian. The older example is the earliest
occurrence of external foliage feeding (lannuzzi and
Labandeira, unpubl. data), about 6 million years prior to
the sudden and major increase in the taxonomic diversity
of winged insects at the Mississippian-Pennsylvanian

Silurian is Ptidoli.

boundary (Brauckmann et al., 1995). The other consists
of borings in plant axial tissues from slightly younger
strata (Dunn et al., 2003). Notably, both occurrences are
on pteridosperm taxa. Documentation for Phase 2, which
lasted approximately 85 m.y., principally originates from
Euramerica during the Early Pennsylvanian to mid Early
Permian, particularly the interior peat-bearing basins in
the eastern United States and western Europe and from
Gondwanaland during the mid Early Permian to the latest
Permian, especially the Karoo Basin of South Africa, the
Sydney and Bowen Basins of Australia, and the Parana
Basin of east-central South America (Appendix;
www.geologica-acta.com). This phase of distinctive her-
bivory documents 6 functional feeding groups (only leaf
mining is absent), representing 57 separate associations
from 31 biotas that occur among 14 five-million-year
intervals. Palynivory is not included in this tabulation
(Labandeira 2000). The dominant host plants consist of
pteridophytes, mostly stem spermatophytes (seed plants),
and to a lesser extent crown spermatophytes (sensu Hilton
and Bateman, 2006) (Table 1; Figs. 1 and 4). Herbivorous
arthropods are significantly more varied than those of
Phase 1, and consist principally of myriapods, mites, and
particularly paleopterous and neopterous insects, the lat-
ter two of which predominantly consist, respectively, of
the monophyletic paleodictyopteroids and the paraphyletic



C.C. LABANDEIRA

“protorthopterans.” The plant-host clades that were most
targeted overall by herbivorous arthropods were medul-
losan pteridosperms during the Pennsylvanian and Early
Permian in Euramerica, and glossopterid pteridosperms
throughout the Permian in Gondwana. Subordinately,
Euramerican lyginopterid pteridosperms were attacked
during the Pennsylvanian and cordaites in biogeographi-
cally disparate sites during the Late Pennsylvanian and
Early Permian. One of the major trends of Herbivore
Expansion 2 during the Pennsylvanian and Early Permian
is the launching of herbivory on medullosan pteri-
dosperms in Euramerica, which exhibits by far the great-
est amount of herbivore-mediated damage, especially
external foliage feeding, of any contemporaneous plant
clade, both in terms of herbivorized pinnule area and fre-
quency of attack (Greenfest and Labandeira, 1997; Beck
and Labandeira, 1998; Labandeira, 2001). This phenome-
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[l external folliage feeding
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non occurs both in compression floras, representing flu-
vial subenvironments, and peat-substrate wetland envi-
ronments (Labandeira, 2001). In a similar way glos-
sopterids were preferentially targeted during the Permian
in Gondwana (Plumstead, 1963; Holmes, 1995; Adami-
Rodrigues et al., 2004a). An interesting pattern is the rela-
tively balanced distribution of all 6 associations (Fig. 4),
with the exception of overall dominance by external
foliage feeding.

The Calhoun Coal, from southeastern Illinois, U.S.A.,
of early Late Pennsylvanian (Kasimovian) age, is a mem-
ber of the Mattoon Formation, and is a calcite permineral-
ized coal-ball deposit representing a peat-swamp forest
dominated by marattialean tree-ferns and subordinately
by medullosan seed ferns (Labandeira, 2001). No known
arthropod fauna has been found from this deposit, attri-

Herbivore Expansion 2
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FIGURE 4 | Herbivore Expansion 2. lllustrated is the distribution of functional feeding groups within specified biotas (at right), on accompanying plant
hosts within specified five-million-year intervals (at left). Inferred insect herhivores are provided in a middle panel that link functional feeding groups
(basic associations) with plant hosts within each interval. Color symbols for functional feeding groups are at upper-left, and apply throughout the
chart to inferred insect herbivores and plant hosts for successive 5-million-year intervals ranging from the Late Mississippian (Early Carboniferous)
to Late Permian. Arrow indicates the “flagship” associational biota for Expansion Phase 2, the carbonate permineralized Late Pennsylvanian (Late
Carboniferous) Calhoun Coal of lllinois, U.S.A. See Fig. 1 for the distribution of an additional functional feeding group, palynivory, not displayed here-
in. Plant-host clades are from Rothwell and Serbet (1994) and especially Hilton and Bateman (2006); arthropod-herbivore clades are from Codding-
ton et al. (2004) and especially Willmann (2004), except for the “protorthopteroid complex” which is either paraphyletic or monophyletic in the
sense that the group is used herein. The Palaeodictyopteroidea is considered to be monophyletic, united with distinctive mouthpart characters, and
consists of the subclades Palaeodictyoptera, Megasecoptera, Diaphanopterodea and Dicliptera (Grimaldi and Engel, 2005). Geologic time scale is
after Gradstein et al. (2004). See Appendix at www.geologica-acta.com, Table 1 and text for additional details. Abbreviation: T: Triassic.
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butable to the apparent lack of chitin preservation. Never-
theless, the superb anatomical preservation of plant tis-
sues in the Calhoun Coal has resulted in the most diverse
assemblage of plant-insect associations for any known
deposit of Herbivore Expansion 2 (Labandeira and
Phillips, 1996a, 1996b, 2002). Evidence for insect-medi-
ated herbivory is principally from varied types of anatom-
ically preserved endophytic and exophytic plant damage
that reveal details such as mouthpart stylet tracks, callus
and other types of reaction tissue such as those from
stylet tracks and galls, and diverse populations of copro-
lites whose contents preserve pollen, spores, and vegeta-
tive tissues assignable to both plant-host tissues and taxa.
This evidence allows identification at the species level of
almost all interacting host plants (Labandeira, 1998a,
1998c).

Although this account is concerned principally with
plant-herbivore associations, the pattern of Paleozoic
detritivore associations also expresses a significant expan-
sion coincident with the second phase of herbivory. Com-
mencing during the Middle Mississippian (Visean), par-
ticularly in Euramerican floras, there is a major increase
of oribatid mite detritivory in a variety of host-plant and
environmental settings (Rex, 1986; Scott, 1977; Scott et
al., 1992; Labandeira et al., 1997; Tomescu et al., 2001),
mixed with limited evidence for herbivory (Dunn et al.,
2003). This degradation of a wide variety of Middle Mis-
sissippian plant tissues continued throughout the Paleo-
zoic and was extensively supplemented during the later
Mesozoic by clades such as termites and wood roaches
(Labandeira et al., 1997; Nalepa et al., 2001).

Herbivore Expansion 3: Middle Triassic to Recent

The lower boundary of Herbivore Expansion 3 (Fig.
5) is probably the end-Permian event, coupled with major
floral turnover during the Late Permian. The earliest evi-
dence for Herbivore Expansion 3 is found in three princi-
pal regions during the Middle Triassic, but continues
through the early Late Triassic. They are the southwestern
United States (Walker, 1938; Ash, 1997, 2000, 2005),
Western Europe (Linck, 1949; Roselt, 1954; Grauvogel-
Stamm and Kelber, 1996), and the Karoo Basin of South
Africa (Anderson and Anderson, 1989; Scott et al., 2004).
This worldwide pattern extends into the Mesozoic and is
supplemented with deposits from all continents. Herbi-
vore Expansion 3 contains the full modern compliment of
7 functional feeding groups (Figs. 1 and 5; Table 1) that
provide 95 distinct associations from 56 biotas that repre-
sent 33 five-million-year intervals. (Palynivory and sur-
face fluid feeding are excluded from Fig. 5; Labandeira,
2000). Notably, unlike the other three major assemblages
of plant-insect associations, Herbivore Expansion 3 has
the longest persistence in geologic time, lasting for about
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245 m.y. from the Middle Triassic to the Recent. It is like-
ly that many of the Late Cretaceous to Neogene associa-
tions of Herbivore Expansion 4 were laterally transferred
from angiosperm hosts onto the gymnospermous hosts of
Herbivore Expansion 3, and thus are temporally distinct
from the more ancient, Mesozoic associations such as
those detailed by Farrell (1998).

The dominant host plants of Herbivore Expansion 3
are pteridophytes, crown spermatophytes, and, to a lesser
extent, stem spermatophytes, the latter of which were
experiencing replacement by more derived gymnosper-
mous clades. Herbivorous arthropods comprise principal-
ly mites, orthopteroids (Orthoptera, Holophasmatodea),
hemipteroids (Lophioneurida, Thysanoptera, Auchenor-
rhyncha, Sternorrhyncha) and early or otherwise ple-
siomorphic holometabolan clades (such as Archostemata,
Nemonychidae, Belidae, Symphyta, Aneuretopsychina
(sensu Rasnitsyn and Kozlov, 1991), Nemestrinidae,
Archaeolepidae, Micropterygidae and Agathiphagidae).
There is a distinctive evolution of major host-plant use by
herbivores within Phase 3, beginning with a variety of
ginkgoopsids, peltasperms, broadleaved voltzialean (e.g.
Heidiphyllum) and podocarpalean (Podocarpaceae +
Araucariaceae) conifers, and perhaps pteridophytes that
were colonized during the Middle to early Late Triassic
by all functional feeding groups (Anderson and Anderson,
1985; Grauvogel-Stamm and Kelber, 1996; Ash, 1997).
This diversification was followed during the Jurassic to
Early Cretaceous by a shift to a variety of cycads, non-
voltzialean conifers, bennettitaleans and pentoxylaleans
that were colonized by borers and subordinately by seed
predators. Probable culprits for some of these associations
include principally beetles (Crepet, 1974), such as the
Obrieniidae (Klavins et al., 2005) and Nitidulidae (Nishi-
da and Hayashi, 1996). Late Cretaceous to Neogene
occurrences emphasize the conifer order Pinales (includ-
ing “cupressoid” families) in which boring and seed pre-
dation virtually are the only remaining major associations
(Fig. 5). The dominant insect herbivore taxon throughout
Herbivore Expansion 3 is the Coleoptera, early Triassic
occurrences of which emphasize external leaf mining,
external foliage feeding, and especially boring on many
broadleaved gymnospermous clades. Subsequently, there
was the re-emergence of seed predation, and especially
wood boring by saproxylic coleopterans during the Lower
Cretaceous on pinaceous conifers (Jarzembowski, 1990;
Falder et al., 1998; Ratzel et al., 2001). These clades, par-
ticularly the Curculionoidea, were involved in the recolo-
nization of xylic substrates in pinaceous conifers and
included invasion of cambial tissues. During the Neogene
the emergence of galling Diptera, principally Cecidomyi-
idae (Labandeira, 2005c), supplemented existing associa-
tions. Throughout Phase 3, odonatopterans evidently
oviposited in pteridophytes and a restricted variety of
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FIGURE 5 Herbivore Expansion 3. lllustrated is the distribution of functional feeding groups within specified biotas (at right), on accompanying plant
hosts within specified five-million-year intervals (at left). Inferred insect herbivores are provided in a middle panel that link functional feeding groups
(basic associations) with plant hosts within each interval. Color symbols for functional feeding groups are at upper-left, and apply throughout the chart to
inferred insect herhivores and plant hosts for successive 5-million-year intervals ranging from the early Middle Triassic to the Recent. Arrow indicates
the “flagship” associational biota for Expansion Phase 3, the compression Late Triassic Molteno Formation of South Africa. See Fig. 1 for the distribution
of additional feeding groups, palynivory and nectarivory, not displayed herein. Plant-host clades are from Rothwell and Serbet (1994), Anderson et al. (in
press) and especially Hilton and Bateman (2006); arthropod-herbivore clades are from Coddington et al. (2004) and especially Willmann (2004), with
“Orthopteroidea” synonymous with his “Polyneoptera”. Geologic time scale is after Gradstein et al. (2004); the two, topmost intervals of time of the Neo-
gene are, from oldest to youngest, Pliocene and Pleistocene. See Appendix at www.geologica-acta.com, Table 1 and text for additional details.
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gymnospermous seed plants. Evidence for piercing-and-
sucking is rare.

The Molteno Formation is of Late Triassic (Early
Carnian) age that yields compression fossils of diverse
plants and insects that geographically span much of the
Karoo Basin of South Africa, and has been extensively
examined since the late 1960’s (Anderson and Anderson,
1983, 1985, 1989, 2003; Scott et al., 2004). This “flag-
ship” deposit for Herbivore Expansion 3 contains about
100 anthropogenically unbiased and censused localities
representing an estimated 180,000 plant-organ specimens
(overwhelmingly leaves and seeds), many of which pro-
vide clear and abundant evidence for external foliage
feeding, piercing-and-sucking, leaf mining (earliest
known occurrence), galling, seed predation, and oviposi-
tion (Anderson and Anderson, 1989, 2003; Scott et al.,
2004; Labandeira and Anderson, 2005). The major plant-
host clades include sphenophytes, filicalean ferns,
voltzialean conifers, peltasperms, cycads, subclades of
ginkgoopsids that include ginkgoaleans, as well as pen-
toxylaleans, and gnetopsids (Anderson and Anderson,
2003; Anderson et al., in press; Hilton and Bateman,
2006). Several major habitats have been reconstructed
from the floristic data: Dicroidium riparian forest (two
types), Dicroidium woodland, Sphenobaiera woodland,
Heidiphyllum thicket, Equisetum marsh, and a fern—Kan-
naskoppifolia meadow (Anderson et al., 1998; Anderson
and Anderson, 2003). These taxonomic and community-
level data indicate a diverse, ecologically heterogeneous
ecosystem of several million years duration with exten-
sive associations among insect herbivores (Scott et al.,
2004; Labandeira and Anderson, 2005). The Molteno For-
mation overwhelmingly contains the most diverse associ-
ations of any deposit from Herbivore Expansion 3, and
was present within 20 m.y. of commencement of the
phase. The absence of any subsequent Jurassic or earliest
Cretaceous biota with equivalent levels of associations as
the Molteno is anomalous, and may be attributable to a
poor fossil record or an intrinsic decrease in associational
complexity in most ecosystems.

Herbivore Expansion 4: Mid Lower Cretaceous
to Recent

The most recent and intensively studied phase of
arthropod herbivory on vascular plants is Herbivore
Expansion 4 (Fig. 6). This phase is synonymous with the
angiosperm radiation, and their herbivore associations are
predominantly with more apomorphic clades of hemi-
pteroid and holometabolous insect orders. The 115 m.y.
duration of this phase parallels the last half of Herbivore
Expansion 3, although their temporal overlap suggests
evolutionary host switching of herbivores to and from
plant-host clades of both major expansions. This phase of
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herbivory contains 7 functional feeding groups represent-
ing 262 associations from 89 biotas among 22 five-mil-
lion-year intervals. Palynivory and surface fluid feeding
are excluded from the listed functional feeding groups
(Labandeira, 2000). The primary data documenting Her-
bivore Expansion 4 is worldwide in origin, although the
greatest concentrations of localities are in Western Europe
and North America, primarily because of greater paleon-
tological examination rather than a necessarily richer
record. The relatively compact but even distribution of
taxa and associations during this phase resembles that of
Herbivore Expansion 2 of the late Paleozoic rather than
that of the earlier and contemporary phase of Herbivore
Expansion 3, the latter of which is twice as long-lived and
displays a more open matrix of colonized plant-hosts, their
herbivores and associations (Figs. 5 to 7). Interpretations of
this latter pattern are that it either reflects a real biological
signal, or alternatively represents an absence of investiga-
tion, particularly for the Jurassic and Early Cretaceous.

Twenty-eight orders of angiosperms, including a sig-
nificant number of unassignable taxa, constitute the plant
hosts for Herbivore Expansion 4. Nine identifiable plant-
host orders have the most occurrences (Fig. 6), all of
which bear the full or almost full spectrum of functional
feeding groups and colonization by the major groups of
arthropod herbivores. However, there is a threefold, suc-
cessive pattern of insect colonization of families within
each of these orders. First, the Laurales (Lauraceae, Chlo-
ranthaceae) and Proteales (Platanaceae, Trochoden-
draceae) have among the earliest occurrences but also
have the most persistent record of colonization, well into
the late Neogene. Second, the Saxifragales (Cercidiphyl-
laceae, Hamamelidaceae) represents a subsequent, later
Cretaceous to mid-Eocene colonization. Third, the
remaining six orders—Malpighiales (Malpighiaceae,
Euphorbiaceae, Salicaceae), Fabales (Fabaceae sensu
lato), Rosales (Rosaceae, Ulmaceae, Celtidaceae,
Moraceae), Fagales (Fagaceae, Betulaceae, Juglandaceae,
Myricaceae), Sapindales (Sapindaceae, Anacardiaceae,
Rutaceae), and Ericales (Ericaceae, Theaceae,
Sapotaceae) —have late Paleocene to Recent patterns of
exploitation by arthropod herbivores that are represented
by all functional feeding groups. The principal arthropod
clades of interacting herbivores are orthopteroids
(Orthoptera, Phasmatodea), crown-group hemipteroids
(especially Sternorrhyncha and Heteroptera), and princi-
pally crown-groups of holometabolous insects (Polypha-
ga, Formicidae, Apoidea, Ditrysia, Cyclorrhapha).
Notably, the density of functional feeding groups is more
intense for Herbivore Expansion 4 than any of the three
preceding or contemporaneous phases, and no particular
dietary mode is dominant. Additionally, there is more par-
titioning of individual plant clades by multiple functional
feeding groups and arthropod herbivores. For individual
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FIGURE 6 | Herbivore Expansion 4. lllustrated is the distribution of functional feeding groups within specified hiotas (at right), on accompanying plant
hosts within specified five-million-year intervals (at left). Inferred insect herhivores are provided in a middle panel that link functional feeding
groups (basic associations) with plant hosts within each interval. Color symbols for functional feeding groups are at upper-left, and apply throughout
the chart to inferred insect herbivores and plant hosts for successive 5-million-year intervals ranging from the mid Early Cretaceous to the Recent.
Arrow indicates the “flagship” associational biota for Expansion Phase 4, the compression latest Early Cretaceous Dakota Formation of Kansas,
U.S.A. See Fig. 1 for the distribution of additional functional feeding groups, palynivory and nectarivory, not displayed herein. Plant-host clades are
from Soltis and Soltis (2004); arthropod herbivore clades are from Coddington et al. (2004) and especially Willmann (2004), with “Orthopteroidea”
synonymous with his “Polyneoptera”. Geologic time scale is after Gradstein et al. (2004); the two, topmost intervals of time of the Neogene are, from
oldest to youngest, Pliocene and Pleistocene. See Appendix at www.geologica-acta.com, Table 1 and text for additional details.
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functional feeding groups, external foliage feeding
(Straus, 1977), leaf mining (Kozlov, 1988; Labandeira et
al., 1994), galling (Scott et al., 1994) and oviposition
(Hellmund and Hellmund, 2002b) have the greatest
throughput and are present from the beginning of the
angiosperm radiation. Curiously, piercing-and-sucking,
boring and seed predation are relatively delayed, collec-
tively appearing from the later Late Cretaceous to the
middle Eocene. These patterns also occur on the unas-
signed plant hosts, which could represent a random sam-
ple of available plant hosts because of their uncertain and
variable taxonomic affinities.

The Dakota Fm, the “flagship” biota for the Herbivore
Expansion 4, spans the Early to Late Cretaceous bound-
ary (late Albian to mid Cenomanian), and encompasses
fluvial, deltaic and other terrestrial deposits bordering the
east and west sides of the midcontinental seaway that
extended from the Arctic Ocean to the Gulf of Mexico
(Brenner et al., 2000; Wang, 2002). Sites from Kansas
and Nebraska, U.S.A., of late Albian age (~103 Ma) rep-
resent coastal swamp, flood plain lake, and ox-bow chan-
nel deposits, and contain the earliest, highly diverse,
abundant, and well preserved associations with
angiosperms during their initial ecological radiation
across a variety of lowland environments (Doyle and
Hickey, 1976). The Dakota Formation probably has in
excess of 300 species of vascular plants (Wang 2002) and
many remain undescribed. Plant-insect associations from
this important deposit have only recently been investigat-
ed (Stephenson, 1991; Scott et al., 1994; Labandeira et
al., 1994; Labandeira, 1998b), but contain the earliest
occurrences of leaf mines and among the earliest galls
and external foliage feeding of any early angiosperm flo-
ra. There are virtually no insect body fossils.

Synchronicity of Herbivore Expansion Phases
with Environmental Change?

An obvious issue is whether the temporal distribution of
the four herbivore expansion phases (Fig. 7) matches major
cycles or otherwise aperiodic intervals of environmental
change, such as paleoclimatologic shifts (Fig. 8). Three evi-
dent phenomena— greenhouse/icehouse cycles and associat-
ed global temperature and fluctuations in both atmospheric
O, and CO, content—may have possible links with the four
phases of herbivore expansion. These possible relationships
could be mediated by an effect on underlying vegetation as a
resource for arthropod herbivores. Data for establishing a
greenhouse/icehouse world are from Frakes et al. (1992) and
global temperatures are from Scotese (2005). Atmospheric
O, levels are based on the sediment abundance model (Ber-
ner et al., 2000, 2003; Falkowski et al., 2005; see also
Lenton, 2001). Atmospheric CO, levels are inferred from the
data of Cornette et al. (2002), based on the ratio of historical
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CO; to recent CO, presented in Berner and Kothavala
(2001). These data and their relationship to the four herbi-
vore expansion phases are plotted in Fig. 8.

Herbivore Expansion 1 occurs from the Late Silurian
to the Early Mississippian and is linked to a distinct com-
bination of primitive, terrestrial vascular plant and arthro-
pod clades. The earlier part of Phase 1 is associated with
a greenhouse world that was gradually transformed mid-
way to an icehouse world. Additionally, there are initially
stable, high O, levels (22.5% to 25%) during the Late Sil-
urian and Early Devonian that subsequently plummet to
13% by the early Late Devonian, compared to present
value of 21%. Very elevated but highly fluctuating CO,
levels characterize Phase 1 during the early to middle
Devonian, but are followed by a sharp decline to modern
levels during the Early Mississippian.

After an Early Mississippian hiatus occurring prior to
Herbivore Expansion 2 (Ward et al., in press), there is a
resurgence of herbivory during the Late Mississippian to the
Permo Triassic boundary, similar to the previous phase by
occupying a strong greenhouse world. Moreover, Phase 2
occurs during a broad, unimodal distribution of elevated
atmospheric O levels, starting with relatively depressed
concentrations (~ 17 %), reaching an unprecedented peak of
31% during the Early Permian (but see Lenton, 2001), and
decreasing to approximately current levels at the Permian-
Triassic boundary. This decrease may explain major
turnover of Permian plant clades. Atmospheric CO; was
consistently low, comparable to modern levels throughout
the Carboniferous and Permian, but experienced a sharp rise
during the Triassic, in which there may have been a reorga-
nization of the global carbon cycle, and thus resetting the
CO; level at higher values (Berner, 2002).

Herbivore Expansion 3, from the Middle Triassic to
the Recent, originates during an icehouse world and
evolves into the anomalous greenhouse world of the
Jurassic to mid Cretaceous, in which there evidently is
latitudinal cooling but no polar icecaps. Atmospheric O,
content during Phase 3 reaches its lowest levels of the
past 420 m.y., fluctuating from 12.5 to 19% for Early Tri-
assic to Middle Jurassic, only to remain flat (17% to
19%) for about a 100 m.y. interval from the Late Jurassic
to mid Cretaceous, and rising during the past 50 m.y. to
somewhat higher than present levels (23% to 21%). By
contrast, atmospheric CO; levels are elevated at ~ 5%
throughout the Triassic (Berner, 2002), followed by a
modest increase to higher levels of ~ 9% during the Mid-
dle Jurassic, and thenceforth steadily declining to approx-
imately the 0.035% preindustrial value of today.

Herbivore Expansion 4 occurs from the mid Early
Cretaceous to the Recent. Unlike the initial part of Phase
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3, Phase 4 commences during a greenhouse world, and
similarly evolves into a subsequent icehouse world of the
Paleogene and Neogene. Unlike Phase 3, however, earlier
Phase 4 associations occurred during somewhat depressed
but stable O levels (18% to 17%), peaking at 23% at 30
Ma (early Oligocene), and then declining but remaining
high, reaching levels of 21% O, today. Atmospheric CO,
levels begin with levels of ~ 7% during the Early Creta-
ceous, followed by a steady decline to the preindustrial
values of 0.035%.

There is limited evidence that these three paleocli-
matologic indicators have a rational, predictive combi-
nation of a greenhouse/icehouse switch that is linked to
values of atmospheric O, and CO, (Veizer et al., 2000).
However, it is not clear what the proximal cause is
between the apparent synchrony of these three paleocli-
matologic variables and each of the four herbivore
expansion phases (Fig. 8). For example, the role of pale-
ogeography remains unknown. It is known, though, that
all phases except for Phase 3 began during periods of
globally warm temperatures. One possibility is that
these atmospheric variables have direct physiologic con-
sequences on the selection and turnover of particular
plant clades globally, which in turn elicit an association-
al response from selected clades of insect herbivores.
The Early Cenozoic Thermal Maximum may be more a
temporally restricted example of this phenomenon (Wilf
et al., 2001). It remains untested whether a unique, com-
bined signal of these three (or perhaps other) paleocli-
matologic variables is explainable by plant or insect
physiology (Lincoln et al., 1993; Graham et al., 1995),
and if there is a trigger which resulted in phases of
unique or augmented plant-insect associations. Modern
studies from the experimental physiology of plants (Gra-
ham et al., 1995; Whittaker, 2001) and insects
(Bartholomew and Casey, 1977; Loudon, 1988; Nicolas
and Sillans, 1989; Hagner-Holler et al., 2004) that are
subjected to fluctuating levels of O, and CO, may be
relevant.

Plant-Arthropod Associations in Deep Time

DISCUSSION

This compilation and the resulting matrices depicting
the ecological associations of host plants and their insect
herbivores in the fossil record have provided some basic
macroevolutionary patterns. One is the presence of sever-
al fixed and persistent functional feeding groups of
arthropod herbivores since they originated during the Late
Paleozoic, or Triassic in the case of leaf mining. By con-
trast, the specific plant and arthropod occupants of these
associations are ephemeral in time and space. Member-
ship volatility is attributable to clade turnover of plants
and their herbivore arthropods, as well as associated fun-
gi, and perhaps other interacting organisms. This turnover
provides a dynamic context to the evolution of not only
associations among specific biotas within each of the four
herbivore expansions, but also among each of the four
major phases. Additionally, comparisons of the biogeog-
raphy of these associations within and among penecon-
temporaneous floras of each phase may record the emer-
gence and evolutionary radiation of arthropod herbivore
clades. A potential example of hemispherical extent
would be Gondwanan floras occurring in the same paleo-
continental and similar basinal settings from Southern
Africa, South America, Australia, India and Antarctica
during the end of pteridophyte- and glossopterid dominated
Herbivore Expansion 2, and the beginning of more diverse
floras that were dominated by ginkgoopsid, voltzialean
conifer, cycadophyte and gnetopsid taxa of Herbivore
Expansion 3 (Fig. 7). It remains unknown whether similar
plant hosts across the broad supercontinent of Gondwana
shared similar herbivores in distant basins within each of
these two phases, or if they evolved geographically distinc-
tive suites of herbivores. A related issue is whether there is
persistence of taxonomically conservative lineages of plant
hosts and their insect herbivores through time, particularly
among the preangiospermous portion of Herbivore Expan-
sion 3 to the Recent. Such associational longevity may
address whether some associations of today are truly
ancient in origin (Farrell, 1998; Powell et al., 1998).

FIGURE 7 | Summary of herhivore expansion phases in Phanerozoic continental environments. This figure is a condensation of, from left to right,
plant host, plant-insect associational, and inferred insect herbivore patterns provided in figures 3 to 6. At left are major plant-host clades, based on
classifications from Kenrick and Crane (1997), Rothwell and Serbet (1994), Judd et al. (1999), Soltis and Soltis (2004), Pryer et al. (2004) and
Anderson and Anderson (2003). At right are the dominant arthropod herbivore clades that are based on classifications from Wheeler et al. (2004),
Coddington et al. (2004), and Willmann (2004). An exception is the major fungal clade, Prototaxales, at far left. At center are the four, major
expansion phases, based on associations from the literature, each of which has a “flagship” biota early in its development (Table 1). They are, from
hottom to top: the first is Herbivore Expansion 1, with an axis of the rhyniopsid Rhynia gwynne-vaughanii kioston and Lane 1917 containing a stem
boring, from the Rhynie Chert (Early Devonian, Early Pragian) of Scotland (Kevan et al., 1975). Second is Herhivore Expansion 2, with a gall in the
rhachis tissues of the marattialean fern Psaronius chasei morean 1959, from the Calhoun Coal (Late Pennsylvanian, Kasimovian) of the lllinois
Basin, lllinois, U.S.A. (Labandeira and Phillips, 2002). Third is Herbivore Expansion 3, with external foliage feeding on the matatiellalean ginkgoop-
sid Dejerseya lunensis (JoHNSTON) ANDERSON and ANDERsoN 1989, from the Molteno Formation (Late Triassic, Carnian) of the Karoo Basin of South Africa
(Scott et al., 2004). Last and fourth is Herbivore Expansion 4, with a leaf mine on the protealean (platanoid) Sapindopsis beekeria wane 2002 from
the Dakota Formation (Early Cretaceous, late Albian) of Kansas, U.S.A. (Labandeira et al., 1994; Wang, 2002). The absolute widths of each bubble
do not necessarily conform to the absolute diversity of associations, but the relative distributions of widths among the four phases indicate relative
importances. At right are major groups of interacting arthropod herbivores, namely clusters of clades that consist of myriapods, mites, and several
insect lineages (Labandeira, 1994; Rasnitsyn and Quicke, 2002). Geologic time scale after Gradstein et al. (2004); the two, topmost intervals of
time of the Neogene are, from oldest to youngest, Pliocene and Pleistocene.
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One observation that contextualizes this study involves
the overwhelming focus by biologists on associations
between angiosperms and holometabolous insects. This sin-
gular emphasis involves documentation of numerous associa-
tions and co-radiations between these currently hyperdiverse
clades (Grimaldi, 1999; Grimaldi and Engel, 2005). This
predilection is reasonable, as the overwhelming majority of
extant associations available for study involve angiosperms
and holometabolous insects from Herbivore Expansion 4.

Plant-Arthropod Associations in Deep Time

Those that may have survived from Herbivore Expansion 3
occur on conifers, cycads and possibly gnetaleans (Burdick,
1961; Norstog, 1987; Kato and Inoue, 1994) that have geo-
graphically unique or relictual distributions. Apparently, there
are no extant associations from herbivore Expansions 1 and 2.
This “angiocentrism” has clouded our understanding of the
deeper history of plant-insect associations by limiting our under-
standing of how extinct host-plants and their insect herbivores
have associated at deeper macroevolutionary timescales.
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FIGURE 8| The relationship of Late Silurian to Recent physical variables—atmospheric 0 and CO, content, and average global temperatures—with
that of the four herbivore expansion phases, as determined by the fossil history of plant-insect associations. Atmospheric CO2 ratios are from Berner
and Kothavala (2001); atmospheric 0, percentages from Falkowski et al. (2005) and Ward et al. (in press); average global temperature from Scotese

(2005); and greenhouse/icehouse cycles are from Frakes et al. (1992).
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Current ecological studies of plant-arthropod associa-
tions thus focus overwhelmingly on plant-host taxa that are
crown spermatophytes (angiosperms) and on insect herbi-
vore taxa that are clades of crown-group Holometabola
(“phytophagan” beetles, cyclorrhaphan flies, ditrysian
moths, and aculeate hymenopterans) and to a lesser extent
Hemipteroidea (especially sternorrhynchans and phy-
tophagous bugs such as Lygaeidae, Coreidae, and Miridae;
Fig. 7). Paleobiologically, this is a rather atypical situation,
historically confined to the last fourth of the history of
plant-arthropod associations. A retreat to Herbivore Expan-
sion 3 would reveal taxa in which the crown spermato-
phytes of the time were various gymnospermous clades
(several lineages of ginkoopsids, voltzialean and cheirolep-
idaceous conifers, peltaspermaleans, pentoxylaleans, ben-
nettitaleans) and their arthropod herbivores were more
basally positioned clades of holometabolous insects
(polyphagan coleopterans, brachyceran flies, aneuretopsy-
chid mecopterans, micropterygid to monotrysian lepi-
dopterans, symphytan hymenopterans) and hemipteroids
(thysanopterans, lophioneurids, sternorrhynchans, auchen-
orrhynchans). Would the partitioning and use of plant-host
taxa be the same as those for Herbivore Expansion 4?
Retreat yet one more phase to that of Herbivore Expansion
2, and the landscape of host plants then consisted of pteri-
dophytes (especially marattialean ferns) and stem sper-
matophytes (dominantly medullosan and glossopterid
pteridosperms and cordaitalean conifers), and the dominant
phytophagous clades of arthropod herbivores were mites,
apterygotes, paleodictyopteroids and a diverse assemblage
of primitive “protorthopteroid” insects. How would the her-
bivore component community on a host plant dominant within
Phase 2 compare ecologically with a component community
of today’s Phase 4? More specifically, could the varied associ-
ations seen among the Herbivore Expansion 4 be an ecologi-
cally similar or repackaged version of those from Herbivore
expansions 2 or 3, but with different players?

CONCLUSIONS

Although this study is only a first attempt to under-
stand the broad patterns of plant-arthropod associations in
deep time, five conclusions are made. These conclusions
can be considered as hypotheses that should engender
additional analyses and testing though the gathering of
additional data at finer spatiotemporal scales.

1. The fossil record of plant-insect associations can be
organized into four, major, temporal phases. Each of these
phases has a unique spectrum of major interacting clades
of vascular-plant hosts and arthropod (overwhelmingly
insect) herbivores.

2. Each herbivore expansion phase is typified by an early
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biota of exceptional associational richness that establishes
most of the broad limits for subsequent associations and
their modifications. This early expression, represented by a
“flagship” biota, can be considered ecologically either as a
rebound from an earlier event characterized by the demise of
the previous herbivore expansion phase, or alternatively the
origination of a fundamentally new major clade of host
plants and insect herbivores without linkage to a causative
environmental perturbation.

3. There are qualitative links between each of the her-
bivore expansion phases and three paleoclimatologic vari-
ables (greenhouse or icehouse world and atmospheric O,
and CO; levels). However, no consistent or predictive pat-
tern emerges that can explain the specific relationship
between these paleoclimatologic variables and a particu-
lar herbivore expansion phase.

4. Associations persist through geologic time whereas
the occupants of those associations are spatiotemporally
constrained. This suggests that the several modes of
arthropod feeding on vascular plant tissues are fixed, con-
strained possibly by plant tissue architecture and arthro-
pod mouthpart structure, and thus displays extensive taxo-
nomic and functional convergence.

5. An “angiocentric” focus on Herbivore Expansion 4
(angiosperms vs. crown holometabolans and hemipteroids)
has had the effect of de-emphasizing patterns and processes
of plant-arthropod associations during the preceding 300
million years. In particular, more understanding of herbivore
expansions 1 through 3 is needed to comprehend the full
breadth of how vascular plants and their arthropod herbi-
vores historically have monopolized life on land.
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APPENDIX
Register of biotas for Figures 3 to 6

Herbivore Expansion 1

Biota Locality Stratigraphic placement Time interval Major references

1 Ludford Lane, Perton Downton Castle Limestone Silurian, Pridol{ Edwards et al.
Lane, Welsh Borderland 1995; Edwards
UK. 1996
2 Brown Clee Hill, Welsh Old Red Sandstone, micr- Devonian, Edwards et al.
Borderland, Wales, U.K. ornatus-newportensis Spore Lochkovian 1995; Edwards
Biozone 1996
3 Rhynie Chert, Aberdeen- Dryden Flags Formation Devonian, Kidston and Lang,
shore, Scotland, U.K. Pragian 1921; Kevan et al.
1975; Shear and Selden
2001; Habgood et al. 2004
4 Gaspé, Quebec, Canada Battery Point Formation Devonian, Trant and Gensel 1985;
Emsian Banks and Colthart
1993; Hotton et al.
1996; Hueber 2001;
Labandeira, pers. observ
5 Kettle Point, Ontario, Huron Shale Devonian, Arnold 1952; Hueber
Canada Famennian 2001
Herbivore Expansion 2
Biota Locality Stratigraphic placement Time interval Major references
1 Sydney Basin, New Mclnnes Formation Mississippian, lannuzzi and Laban-
South Wales, Australia earliest deira, unpubli. data
Serpukhovian
2 White River, Washing- Fayetteville Formation Mississippian, Dunn et al. 2003
ton Co., Arkansas, U.S.A. Serpukhovian
3 Jackson Co., Illinois, Caseyville Formation Pennsylvanian, Jennings 1974
U.S.A. Bashkirian
4 Northumberland, Coal Measures, below the Pennsylvanian, Thomas 1969;
England, U.K. Ashlington Marine Band late Bashkirianto ~ Amerom 1973
early Moscovian
5 North-central England, Coal Measures, below and Pennsylvanian, Holden 1910, 1930;
U.K. above the Catharina Seam Moscovian Chaloner et al. 1991
6  Méricourt, Arras, France “Assise de Bruay” unit Pennsylvanian, Amerom and Boersma
middle Moscovian 1971
7  Zwickau, Germany “Hellgrauer Schieferton” Pennsylvanian, Muller 1982
late Moscovian
8 Saline and Gallatin Cos., Carbondale Formation, Pennsylvanian, Labandeira and Phillips
Illinois, U.S.A. (Herrin Coal) late Moscovian 2002
9 Mazon Creek, north- Carbondale Formation, Pennsylvanian, Scott and Taylor 1983;

central Illinois, U.S.A.

(Francis Creek Shale)

late Moscovian

Labandeira and Beall
1990; Scott et al. 1992
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Berryville, Lawrence
Co., Illinois, U.S.A.

La Magdalena Coalfield,
Leodn, Spain
Graissessac, Hérault,
France

Saar-Nahe Basin,
Germany

Chunya, Siberia Russia

Pingquan, Hebei
Province, China
Faxinal and Morro do
Papaléo, Rio Grande do
Sul, Brazil

Coprolite Bone Bed,
Archer Co., Texas,
U.S.A.

Chemnitz, Erzgebirge

Basin, Sachsen, Germany

Gaines Co., Texas,
U.S.A.

Ranigang Coalfield,
West Bengal, India
Taint, Baylor Co.,
Texas, U.S.A.
Chubut, Argentina
Minas do Leao, Rio
Grande do Sul, Brazil

Taiyuan City, Shanxi,
Province, China

King Co., Texas, U.S.A.

Vereeniging, Gauteng,
South Africa

Cooyal, Sydney Basin,
Australia

Ranigang Coalfield,

Northern Prince Charles
Mountains, East
Antarctica

Bowen Basin, Queens-
land, Australia

Clouston Farm, Kwa-
Zulu-Natal, South Africa

Mattoon Formation
(Calhoun Coal)

[formation not reported]
“...between the Grand Pas
and Burelle Coal Seams...”
Lower Rotliegende
[formation not reported]

Taiyuan Formation

Rio Bonito Formation

Nocona Formation

Leukersdorf Formation,
“Zeisgwald-Tuff-Horizontes”
Clear Fork Group

Barakar Formation
Waggoner Ranch Formation
Rio Genoa Formation

Irati and Serra Alta

Formations

Shihhotse Formation

Blaine Formation

Vryheid Formation

Upper Illawarra Coal
Measures

Ranigang Formation
Bainmedart Coal Measures
Rangal Coal Measures,

Bandanna Formation
Estcourt Formation
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Pennsylvanian,
Kasimovian

Pennsylvanian,
Gzehlian
Pennsylvanian
late Gzhelian
Carboniferous-
Permian boundary

latest Carboni-
ferous

Permian,
Asselian
Permian, Artin-
skian/Kungurian

Permian,
Sakmarian

Lower Permian

Permian, late
Artinskian
Permian, Artins-
kian/Kungurian
Permian,
Artinskian
Lower Permian
Permian, Kun-
gurian/Roadian

Permian, Kungurian
/Roadian

Boundary

Permian,

?7Roadian

Permian,

?Roadian

Late Permian

Late Permian
Late Permian
Permian,
Wouchiapingian

Permian,
Changhsingian

Lesnikowska 1990;
Labandeira and Phillips
1996a, 1996b, 2002;
RoBler 2000; Laban-
deira, pers. observ.
Amerom 1966; Castro
1997

Béthoux et al. 2004

Florin 1945; Meyen
1984; Kerp 1988;
Zherikhin, 2002a
Sharov 1973; Zherikhin
2002a

Hilton et al. 2001, 2002

Guerra-Sommer 1995;
Adami-Rodrigues et al.
2004a, 2004b
Greenfest and Laban-
deira 1997

RoBler1996
DiMichele et al. 2000
Srivastava 1987

Beck and Labandeira
1998

Caneo 1987
Adami-Rodrigues and
Tannuzzi 2001; Adami-
Rodrigues et al. 2004a
Glasspool et al. 2003

DiMichele et al. 2004

Plumstead 1963;
Amerom 1966
Holmes 1995

Srivastava 1996;
Banerjee and Bera 1998
Weaver et al. 1997

McLoughlin 1994a,
1994b

Labandeira and Prevec,
unpubl. data
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Biota Locality

1

2

10

11

12

13

14

15

16

17

18

19

Gres-a-Voltzia, northern
Vosges Mtns., France
Wasselonne, Bas-Rhine,
France; Schleerieth and
Ochsenfurt, Franconia,
Germany

Karoo Basin: KwaZulu-
Natal, Eastern Cape and

Northern Cape Provinces,

South Africa

Sydney Basin, New
South Wales, Australia
Petrified Forest National
Park, Arizona, U.S.A.

Xinigua, Rio Grande
do Sul, Brazil
Kiufner, Bavaria,
Germany

Yima, Henan Province,
China

Murlipahar, Bihar,
India

Yorkshire, northern
England, U.K.
Jaramillo, Santa Cruz
Province, Argentina
Mikhailovka, Chayan
District, Kazakhstan
Steiner, Mt. Ellen, and
East McEImo Creek
localities, Western
Interior, U.S.A.

Clack Island, northern
Queensland, Australia
Crowborough, East
Sussex, England, U.K.

Przenosza, Limanowa
District, Poland
Makhtesh Ramon,
Negev, Israel
Chunakhal and Hiran-
duba, Jharkhand State,
India

Amarjola, Bihar State,
India

Plant-Arthropod Associations in Deep Time

Herbivore Expansion 3

Stratigraphic placement

Bundsandstein Formation

Lettenkohle and Lower
Keuper Formations

Molteno Formation

Blackstone Formation

Chinle Formation

Santa Maria Formation

“Pflanzensandstein”

Yima Formation

Dubrajpur Formation

Scarborough Formation
La Matilde Formation
Karabatsu Formation

Morrison Formation

Battle Camp Formation

Waldhurst Clay or
Ashdown Formation

?Verovice Shale
Hatira Formation

Rajmahal Formation
(Intertrappean Beds)

[formation not reported]

Time interval

Triassic,

Lower Anisian
Triassic,

Upper Ladinian

Triassic,
Carnian

Triassic,
Carnian
Triassic,
Norian

Triassic,
Norian
Jurassic,
Hettangian

Jurassic, Toarcian

Jurassic,
Aalenian

Jurassic,

Bajocian

Jurassic, Callovian
to Oxfordian
Jurassic,
Kimmeridgian
Jurassic

Tithonian

Latest Jurassic to
earliest Cretaceous
Cretaceous, late
Berriasian to mid-
dle Valanginian
Cretaceous,
?Barremian

Lower Aptian

Cretaceous,
Aptian/Albian
boundary

Lower Cretaceous

Major references

Grauvogel-Stamm and
Kelber 1996

Linck 1949; Roselt
1954; Geyer and Kelber
1987; Kelber 1988;
Grauvogel-Stamm and
Kelber 1996

Anderson and Anderson
1989; Scott et al. 2004;
Labandeira and Ander-
son 2005

Tillyard 1922; Roze-
felds and Sobbe 1987
Walker 1938; Ash 1997,
1999, 2000, 2005; Ash
Savidge 2004; Creber
and Ash 2004

Minello 1994

Weber 1968; Van Kon-
ijnenburg-Van

Cittert and Schmeifner 1999

Zhou and Zhang 1989
to Aalenian
Vishnu-Mittre 1957,
Sharma and

Harsh 1989

Harris 1942; Alvin et al.
1967; Scott et al. 1992
Genise and Hazeldine
1995

Rasnitsyn and Krassilov
2000

Tidwell and Ash 1990;
Tidwell and Medlyn
1992; Dayvault and
Hatch 2003

Rozefelds 1988a

Jarzembowski 1990
Reymandwna 1960,
1991

Krassilov et al. 2004b

Banerji 2004

Bose 1968
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20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Glen Rose, Somervell
Co., Texas

Yuleba, Queensland,
Australia

Hokodz, northwestern
Caucasus Region, Russia

Blackhawk, Black Hills
South Dakota, U.S.A.

Valcheta, Rio Negro,
Argentina

Nammoura, Mont-Liban
District, Lebanon
Shuparo Lake, Hokkaido
Japan

Ohyubari, Hokkaido
Japan

Brannen Lake, Vancou-
ver Island, British
Columbia, Canada

Big Cedar Ridge,
Wyoming, U.S.A.

Williston Basin,
southwestern North
Dakota, U.S.A.
Republic, Ferry Co.,
Washington, U.S.A.
Baltic amber; Baltic
Region, northern Europe
Geodetic Hills, Axel
Heiberg Island, Nunavut,
Canada

Dynow, Skole Nappe,
Outer Carpathians,
Poland

Klepzig, Germany

Rott, Schwaben,
Germany
Freilendorf, Hessen,
Germany

Southern Limburg,
Netherlands
Szentgal, Hungary

Konin, Poland

Duiren, Nordrhein-
Westfalien, Germany
Bohemia, Czech
Republic

Glen Rose Formation

Mooga Sandstone

Diadochoceras nodosocos-

tatum and Acanthoplites
bigoureti Zone
“Sandstones”
[formation not reported]

“Namoura Plattenkalk”

Yezo Group

Yezo Group

Haslam Formation

Meeteetsee Formation

Hell Creek Formation

Klondike Mountain
Formation
Prussian Formation

Buchanan Lake Formation

Kliwa Sandstone

“lignite”

“porcellanite”

“lignite”

[formation not reported]
“lignite”

“lignite”

“lignite”

[formation not reported]

Plant-Arthropod Associations in Deep Time

Aptian/Albian
boundary
Lower Cretaceous

Cretaceous, upper
Albian

Lower Cretaceous

Late Cretaceous

Cretaceous,
Cenomanian
Cretaceous, Ceno-
manian to early
Santonian
Cretaceous, Late
Turonian to Early
Campanian
Cretaceous, lower
Campanian

Cretaceous, early
Maastrichtian

Cretaceous, late
Maastrichtian

Paleogene,
Ypresian
Paleogene,
Lutetian
Paleogene,
Lutetian

Paleogene,
Rupelian

Paleogene,
middle Oligocene
Paleogene,
Chattian
Paleogene
Chattian
Neogene, late
Miocene
Neogene,
Tortonian
Neogene,
Tortonian
Neogene, ?early
Miocene
Neogene, ?early
Miocene

Watson 1977

Tidwell and Rozefelds
1991

Falder et al. 1998;
Ratzel et al. 2001

Wieland 1906; Dele-
voryas 1968; Crepet
1974; Crowson 1976
Andreis et al. 1991;
Genise 1995

Krassilov and Bacchia
2000

Saiki and Yoshida 1999

Nishida and Hayashi
1996

Stockey and Rothwell
2003

Wing et al. 1993;
Labandeira et al. 1995

Labandeira et al. 2002a,
2002b

Labandeira, pers.
observ.
Conwenz 1890

Labandeira et al. 2001
Rajchel and Uchman
1998

Linstow 1906
Hellmund and Hell-
mund 1991

Roselt and Feustel
1960

Suss 1979, 1980
Dudich 1961
Madziara-Borusiewicz
1970

Mohn 1960

Engelhardt 1876
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43

44

45

46

47

48

49

50

51

52

53

54

55

56

Biota

Wieliczka, Poland

Clarkia, Latah Co.,
Idaho, U.S.A.

Emerald Creek 1, Bene-
wah Co., Idaho, U.S.A.
Emerald Creek 2, Sho-
shone Co., Idaho, U.S.A.
Oviatt Creek, Clearwater
Co., Idaho, U.S.A.
Juliaetta, Nez Perce

Co., Idaho, U.S.A.
Jasper Creek, Yellow-
stone National Park,
Wyoming, U.S.A.
Guntramsdorf, Austria

Konigsbruck, Alsace,
France

Peary Land, northern
Greenland, Denmark

Scarborough, Ontario,
Canada

Washington, District

of Columbia, U.S.A.
Santa Cruz Island,
California, U.S.A.

Near Fairbanks, Alaska,
US.A.

Locality

Kiowa Co., Kansas,
U.S.A.

Stump Neck, Maryland,
U.S.A.

Quantico, Virginia,
U.S.A.

Rose Creek, Hoisington,
Linnenberger Ranch, and
Acme localities, Kansas
and Nebraska, U.S.A.
Cumberland, Lincoln
Co., Wyoming, U.S.A.
Tumbler Ridge, east-
central British
Columbia, Canada

Salzstocke Formation
Latah Formation
Latah Formation
Latah Formation
Latah Formation
Latah Formation

[formation not reported]

“Congeriensand”
[formation not reported]

Kap Kgbenhavn Formation

interglacial clays
unconsolidated sediment
Santa Cruz Island Formation

(alluvial deposits)
Goldstream Formation

Plant-Arthropod Associations in Deep Time

Neogene, ?early
Miocene
Neogene, middle
Miocene
Neogene, middle
Miocene
Neogene, middle
Miocene
Neogene, middle
Miocene
Neogene, middle
Miocene
Neogene,
Messinian

Neogene, lower
Pliocene
Neogene, middle
to upper Pliocene
Neogene, Plio-
cene/Pleistocene
Boundary
Neogene,
Pleistocene
Neogene,
Pleistocene
Neogene
Pleistocene
Neogene, late
Pleistocene

Herbivore Expansion 4

Stratigraphic placement
Cheyenne Formation

Patapsco Formation

Potomac Group, unassigned

Dakota Formation

Frontier Formation (lower)

Dunvegan Formation

Time interval

Cretaceous, lower
to middle Albian
Cretaceous,
middle to upper
Albian
Cretaceous,
middle to upper
Albian
Cretaceous, late
Albian

Cretaceous, early
Cenomanian
Cretaceous, early
Cenomanian

Zablocki 1960

Lewis 1985, Lewis et al.
1990b

Lewis et al. 1990b
Lewis et al. 1990b
Lewis et al. 1990b

Lewis et al. 1990a

Brues 1936

Abel 1933
Geissert et al. 1981

Bocher 1995

Scudder 1900

Berry 1924; Gagné
1968

Chaney and Mason
1934

Péwe et al. 1997

Major references
Stephenson 1991

Hickey and Doyle 1977,
Larew, 1992

Upchurch et al. 1994

Stephenson 1991;
Labandeira et al. 1994,
Labandeira 1998b;
unpubl. data
Stephenson 1991

Crabtree 1987
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Vyserovice, Lidice,
Kounice and other
localities, Bohemia,
Czech Republic
Karatau, Kzyl Dzhar
Region, Kazakhstan
Gerofit, Negev, Israel

Cumberland, Lincoln
Co., Wyoming, U.S.A.
“Qilfield Coulee”, Madi-
son, Co., Montana,
U.S.A.

Gaillard, Crawford

Co., Georgia, U.S.A.
Big Cedar Ridge, north-
west Wyoming, U.S.A.

Bisti Badlands, New
Mexico, U.S.A.
Valcheta, Rio Negro,
Argentina

Williston Basin, south-
western North Dakota,
U.S.A.

Williston Basin, south-
western North Dakota,
U.S.A.

Various localities, north-
ern Western Interior,
Wyoming, Montana,
Utah, U.S.A.

Cold Ash, Berkshire,
UK.

Damalgiri, Meghalaya
State, India

Almont, North Dakota,
U.S.A.

Foster Gulch, Carbon
Co., Montana, U.S.A.
Puryear, Henry Co.,
Tennessee, U.S.A.
Sourdough Flora, Sweet-
water Co., Wyoming,
U.S.A.

Laguna del Hunco,
Chubut Province,
Argentina

Dubois, Park Co.,
Wyoming, U.S.A.
Bonanza, Uintah Co.,
Utah, U.S.A.

Perucer Formation

Beleutinskaya Formation
Gerofit Formation
Frontier Formation (upper)

Two Medicine Formation

Gaillard Formation

Meeteetsee Formation

Fruitland Formation
[formation not reported]
Hell Creek Formation
Fort Union Formation
(lower)

Fort Union Formation

(upper)

Woolwich and Reading
Beds

Tura Formation

Sentinel Butte Formation
Fort Union Formation
(upper)

Wilcox Formation

‘Wasatch Formation

La Huitrera Formation

‘Wind River Formation

Green River Formation

Plant-Arthropod Associations in Deep Time

Cretaceous,
middle
Cenomanian

Cretaceous,
Turonian
Cretaceous,
middle Turonian
Cretaceous,

late Turonian

Cretaceous, lower-

most Campanian

Cretaceous, late
Santonian
Cretaceous, early
Maastrichtian

Cretaceous, late
Campanian
Late Cretaceous

Cretaceous, late
Maastrichtian

Paleogene,
Danian

Paleogene,
Selandrian to
Thanetian

Paleogene,

Paleogene,
Thanetian
Paleogene,
Thanetian
Paleogene, early
Ypresian
Paleogene,
Ypresian
Paleogene
Ypresian

Paleogene,
Ypresian

Paleogene, late
Ypresian
Paleogene,
Lutetian

Fric 1882, 1901;
Stephenson 1991

Kozlov 1988
Krassilov et al., 2004a

Knowlton 1917;
Crabtree 1987
Crabtree 1987

Lupia et al. 2002

Wing et al. 1993;
Labandeira, pers.
observ.

Tidwell et al. 1981

Andreis et al. 1991;
Genise 1995

Wilf et al. 2000; Laban-

deira et al. 2002a, 2002b

Labandeira et al. 2002a,
2002b

Wilf and Labandeira
1999; Wilf et al. 2001

Crane and Jarzem-
Thanetian bowski 1980
Srivastava et al. 2000

Crane et al. 1990
Lang 1996

Berry 1923; Brooks
1955; Wittlake 1969
Wilf et al. 2000, 2001,
2005

Wilf et al. 2005

Hickey and Hodges
1975

Wilf and Labandeira
1999; Wilf et al. 2001,
2005



C.C. LABANDEIRA

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Darmstadt, Hessen,
Germany

Geiseltal, Halle,
Sachsen-Anhalt,
Germany

Republic, Ferry Co.,
Washington, U.S.A.

Bonanza, Uintah Co.,
Utah, U.S.A.

Eckfeld, Manderscheid,
Rheinland-Pfalz,
Germany

Baltic amber; Baltic
Region, northern Europe
Prineville, Crook Co.,
Oregon, U.S.A.

Holley, Crook Co.,
Oregon, U.S.A.
Bournemouth, East
Dorset, England, U.K.

White Lake Basin,
British Columbia, Canada
Kennedy Range, West
Australia, Australia
Amethyst Mountain,
Park Co., Wyoming,
US.A.

Comstock, Douglas Co.,
Oregon, U.S.A.
Florissant, Park Co.,
Colorado, U.S.A.

Anglesea, Victoria,
Australia

Vargem, Grande do Sul,
Sao Paulo, Brazil

La Porte, Plumas Co.,
California, U.S.A.
Seifhennersdorf,
Sachsen, Germany
Wind brickyard,
Baromallas, Hungary
Ruby River, Madison
Co., Montana, U.S.A.
Rott, Schwaben, Bayern,
Germany

Messel Formation

Mittelkohle Formation

Klondike Mountain
Formation
Green River Formation

Maar Formation

Prussian Formation

Clarno Formation

Eugene Formation
Branksome Sand Formation
(including Bournemouth
Fresh Water Beds)
[unreported formation]

Merlinleigh Sandstone

[formation not reported]

Comstock Formation

Florissant Formation

[formation not reported]
Tremembé Formation
one Formation
“Kuclin” diatomite
[formation not reported]
Renova Formation

Koln Formation

Plant-Arthropod Associations in Deep Time

Paleogene,
Lutetian

Paleogene,
Lutetian

Paleogene,
Lutetian

Paleogene,
Lutetian
Paleogene,
Lutetian

Paleogene,
Lutetian
Paleogene,
Rupelian
Paleogene,
Bartonian
Paleogene,
Bartonian

Paleogene,
Bartonian
Paleogene,
?Priabonian
Paleogene,
?Priabonian

Paleogene,
Priabonian
Paleogene,
Priabonian

Paleogene,
Priabonian
Paleogene,
Rupelian
Paleogene,
Rupelian
Paleogene, middle
Oligocene
Paleogene,
Chattian
Paleogene,
Chattian
Paleogene,
Chattian

Kinzelbach 1970; Straus
1976; Barthel and
Ruffle 1976; Collinson
1990; Schaarschmidt
1992; Hellmund and
Hellmund 1998

Mai 1976

Wolfe and Wehr 1987;
Lewis 1992; Lewis and
Carroll 1991; Pigg et al.
2001; Labandeira 2002b
Wilf et al. 2001, 2005

Wilde and Franken-
hauser 1998

Wappler and Engel
2003

Chaney 1927; Gregory
1969

Gregory 1968

Stephenson 1991;
Lang et al. 1995

Freeman 1965

McNamara and
Scott 1983

Suiss and Miller-
Stoll 1980

Sanborn 1935

Cockerell 1908a, 1908b,
1910; Opler 1982;
Meyer 2003

Rozefelds 1988b

Martins-Neto 1989,
1998
Potbury 1935

Hellmund and Hell-
mund 1996
Ambrus and Hably 1979

Becker 1965, 1969;

Lewis 1976

Heyden 1862; Sittig
1927; Hellmund and
Hellmund 1991
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49

50

51

52

53

54

55

56

S56a

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Simojovel, Chiapas,
Mexico
Most, Czech Republic

Diuren, Nordrhein-
Westfalien, Germany
Mainz and Petersburg,
Rheinland-Pfalz,
Germany

Osieczow, Poland

Oeningen, Baden,
Switzerland
Berzdorf (Sachsen),
Germany

Ribesalbes, Castellon,
Spain

Bellver de Cerdana

Rubielos de Mora,
Teruel, Spain

Seed site 64, Sioux Co.,
Nebraska, U.S.A.
Salhausen, Hessen,
Germany

Randecker Maar, Stutt-
gart, Baden-Wirttemburg,
Germany

Stinking Water Harney
Co., Oregon, U.S.A.
Gilliam Springs, Washoe
Co., Nevada, U.S.A.
Linqu, Shandong,

China

Upper Goldyke, Cedar
Mtns., Nevada, U.S.A.
Trout Creek, Oregon,
Stewart Valley and
Buffalo Canyon,
Nevada, U.S.A.
Clarkia, Shoshone Co.,
Idaho, U.S.A.
Albertine Rift Valley,
Uganda

Aldrich Station,
Nevada, U.S.A.
Southern Idaho, U.S.A.

Waistensachsen, Hesse,
Germany

Baluntun Formation
“Main Brown Coal Seam”
“Floz Garzweiler”

Hydrobia Limestone

“Quadersandstein formation”
“Stinkschiefer”

Toneisensteinblock
Formation

[formation not reported]

[formation not reported]
[formation not reported]
Sheep Creek Formation
Braunkohle Formation

Dysodil Formation

Astoria Formation
[formation not reported]

Shanwang Formation

[formation not reported]
Buffalo Canyon Formation
and others of similar age
Latah Formation

Nkondo Formation
[formation not reported]
Trapper Creek Formation

Lettengraben Formation

Plant-Arthropod Associations in Deep Time

Neogene,
Aquitanian
Neogene,
Aquitanian
Paleogene,
Aquitanian
Neogene,
Aquitanian

Neogene,
Aquitanian
Neogene, ?early
Burdigalian
Neogene
Burdigalian

Neogene,
Lower Miocene

Neogene,
Upper Miocene
Neogene,
Lower Miocene
Neogene,
Burdigalian
Neogene, late
Burdigalian
Neogene, late
Burdigalian

Neogene,
Langhian
Neogene, early
Langhian
Neogene,
Langhian or
Serravallian
Neogene,
Langhian
Neogene,
Langhian

Neogene,
Tortonian
Neogene,
Tortonian
Neogene, late
Serravallian
Neogene,
Tortonian
Neogene
Tortonian

Poinar and Brown 2002
Mikulas et al. 1998
Schmidt et al. 1958

Schmidtgen 1938

Karpinski 1962;
Radwanski 1977
Heer 1853; Madler 1936

Hellmund and Hell-
mund 2002a, 2002b

Penalver and Martinez-
Delclos 1997, Penalver
and Martinez-Delclos
2004

Martinez-Delclos 1996

Penalver and Martinez-
Delclos 1997
Thomasson 1982

Hellmund and Hell-
mund 2002a, 2002b
Hering 1930; Hellmund
and Hellmund 2002b

Opler 1973; Waggoner
1999

Waggoner and Poteet
1996

Guo 1991

Opler 1973

Opler 1973

Knowlton, 1926; Opler
1973; Lewis 1985

Nel 1994

Opler 1973

Liebhold et al. 1982

Miller-Stoll 1989
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71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Table Mountain, Tuo-
lumne Co., California,
U.S.A.

Paris Basin, France

La Cerdana, Lérida,
Spain

Nagano and Gumma
Prefectures, Japan
Douglas Co., Washing-
ton, U.S.A.

Egweil, Wurttemburg,
Germany

Mikéfalva, Hungary

Willershausen, Thuringia,
Germany

Chuizbaia, Maramures
northwestern Romania
Brun-Vosendorf and
Laaer Berg, Austria
Neu-Isenburg, Hessen,
Germany

Wetterau, Hesse,
Germany

Santa Rosa, Sonoma
Co., California, U.S.A.
VitoSov, Czech Republic

Beceite, Teruel, Spain

Konigsburg, Alsace,
France

Birtley, Durham,
England, U.K.

Rancho La Brea, Los
Angeles Co., California,
U.S.A.

Mehrten Formation

[formation not reported]
“Unit C of lower Neogene
unit”

“Kabutiowa Plant Bed”
[formation not reported]
“SuBwassermolasse”

[formation not reported]

“lacustrine clay sediments”

Diatomit-Schiefer
[formation not reported]
“Tonscholle”

“lignite”

Sonoma Formation
“karst breccia”
travertine deposits
“lignite”
unconsolidated peat

asphaltum

Plant-Arthropod Associations in Deep Time

Neogene,
Tortonian

Neogene, late
Miocene
Neogene, late
Miocene
Neogene, late
Miocene
Neogene, late
Miocene
Neogene, late
Miocene
Neogene,
Messinian
Neogene, early
Pliocene

Neogene, early
Pliocene
Neogene, early
Pliocene
Neogene,
Pliocene
Neogene,
Pliocene
Neogene, middle
Pleistocene
Neogene,
Pleistocene
Neogene,
Pleistocene
Neogene, middle
to late Pliocene
Neogene, late
Pleistocene
Neogene, late
Pleistocene

Condit 1944

Brues 1936

Diéguez et al. 1996;
Barrdn et al. 1999
Kuroko 1987
Hoffman 1932
Selmeier 1984

Siiss and Miller-

Stoll 1975

Kernbach 1967; Heie
1967; Steinbach 1967,
Straus 1967, 1977
Givulescu 1984
Berger 1949, 1953
Straus 1967, 1977
Rietschel 1983
Greiling and Schneider
1973

Axelrod 1944
Mikulas et al. 1998
Penalver et al. 2002
Geissert et al. 1981
Heslop-Harrison 1926

Larew 1987



