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| ABSTRACT |

Typology and internal texture analyses were performed on detrital zircons obtained from the Miocene sandstones of
the Ladrilleros-Juanchaco sedimentary sequence (Colombia, Equatorial Pacific). This analysis was complemented
with zircon U/Pb dating to identify typology-age associations as indicators of sediment provenance. Our results
show that zircons with S and P dominant typologies have internal structures/zoning indicative of igneous, and
potentially also metamorphic, origins. Morphometric results suggest limited transport from source areas. Both
typology and U/Pb data point to the western Cordillera as the principal source of detrital materials for this
sedimentary sequence. A paleogeographic reconstruction shows that, during the Late Miocene, significant portions
of the western Cordillera were uplifted and actively eroding, thereby forming a fluvio-topographic barrier that
prevented sediments from the central Cordillera reaching the Pacific basins. Exhumed Miocene plutons located
along the axis of the western Cordillera may also have played a role as geomorphologically active massifs. This
study demonstrates that typologic analysis on detrital zircon grains is a useful tool for establishing provenance
and paleogeography in complex litho-tectonic areas where overlapping U/Pb signatures can lead to contradictory
results..

KEYWORDS Miocene. Ladrilleros-Juanchaco sedimentary sequence. Colomhia western Cordillera. Provenance.

INTRODUCTION paleofluvial networks, etc.) in mountain ranges and
associated sedimentary basins (Pettijohn, 1975; Dickinson,

Provenance studies in terrigenous sedimentary sequences 1985; Bernet and Spiegel, 2004; Garzanti et al., 2007).
are crucial for paleogeographic and morpho-tectonic In recent decades, the study of heavy mineral fractions,
reconstructions (e.g., uplift-erosion, paleotopography, geochronology of detrital phases (e.g., U/Pb dating of
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zircon), and geochemical analysis of detrital materials
(trace elements and isotopes) have been incorporated
into provenance studies to provide valuable data on the
configuration of source areas and their proximity to
depositional environments (Armstrong-Altrin et al., 2004;
Belousova et al., 2005; Boggs, 2009; Dostal and Keppie,
2009; Etemad-Saeed et al., 2011; Grimes et al., 2015).

Although rock fragments (lithics) and individual
mineral grains are excellent indicators of source area,
several problems can arise during interpretation. These are
related primarily to the lithological and/or compositional
similarities between different source areas and to the biased
distribution of detrital materials in the sedimentary rock
due to the different responses of each fragment/mineral to
weathering, erosion, transport, and/or diagenesis (Boggs,
2009). One approach to overcoming these limitations
is to use zircons found in the sedimentary rocks. Being
chemically and physically refractory, zircon is an ultra-
stable mineral phase that is capable of enduring multiple
geological cycles in sedimentary, metamorphic and/or
igneous environments (Garzanti et al., 1987; Finch and
Hanchar, 2003; Hanchar and Hoskin, 2003; Mange and
Wright, 2007; Gehrels, 2012, 2014). At present, zircons
are employed as key source indicators, based on age of the
parental rock through radiometric dating or age of cooling
events via thermochronology (Bernet and Spiegel, 2004;
Carrapa, 2010; Thomas, 2011; Garver, 2014; Gehrels, 2014).
The relatively recent development of dating techniques
(e.g., U/Pb via LA-ICP-MS) that can target specific regions
within a single crystal has enabled space-explicit dating of
complex multiphase zircon grains, while reducing analytical
costs and increasing data throughput as several hundred
grains in detrital samples can be analyzed in a short time
(Bowring and Schmitz, 2003; Davis et al., 2003; Koller
and Sylvester, 2003; Bernet and Spiegel, 2004; Schoene,
2014). Thus, in the last decade, U/Pb age spectra in detrital
zircons has been used widely to improve constraint of
source areas (Thomas, 2011; Gehrels, 2014). Nonetheless,
U/Pb age signatures have been shown to be problematic
in regions where there is high litho-structural complexity,
such as age overlaps between different geological provinces,
multiple litho-tectonic blocks with similar lithologies/ages,
etc. (Reiners et al., 2005; Carrapa, 2010). One such region
is the northern Andes in Colombia (Restrepo and Toussaint,
1988; Toussaint, 1995; Cediel et al., 2003; Moreno-Sanchez
and Pardo-Trujillo, 2003) (Figs. 1; 2), where similar U/Pb
datasets have resulted in contradictory interpretations (e.g.,
Montes et al., 2015; O’Dea et al., 2016).

Another approach to studying zircons that have been
part of the erosive cycle (i.e., eroded, reworked, and
redeposited in sedimentary sequences) is the analysis
of different typologies, such as crystal form, degree of
elongation, and coloration (Fedo et al., 2003; Anani
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etal., 2011; Zoleikhaei et al., 2016). Typology of zircon
populations (morphology and color) is controlled by the
physical and chemical conditions during crystallization
(Anani et al., 2011). Morphologic and chromatic features
can be examined at high resolution under a petrographic
microscope (transmitted and reflected light), and can be
associated with the various lithologies present in source
areas (Dabard et al., 1996).

In addition to the conventional characterization of
zircon morphology by visual inspection under an optical
microscope, the development of high-resolution Scanning
Electron Microscopy and Cathodoluminescence (SEM-
CL) enables us to characterize the internal structure and
zonation patterns for each zircon grain dated in a detrital
sample, further facilitating the discrimination of igneous
and metamorphic zircons, as well as zircons with complex
histories (Hanchar and Rudnick, 1995; Corfu et al., 2003).
The combination of different techniques such as U/Pb
dating and zircon typological analysis, together with
internal texture analysis using SEM-CL, is conducive to
more robust studies in terms of the discrimination of source
areas (Loi and Dabard, 1997; Willner et al., 2003; Anani et
al., 2012); an approach strongly needed in complex litho-
structural domains such as the Northern Andes (Restrepo-
Moreno et al., 2015).

In this work we carry out a detailed analysis of detrital
zircons from the Ladrilleros-Juanchaco Sedimentary
Sequence (LJSS) based on external and internal zircon
morphology using optical (Gértner et al., 2013) and SEM-
CL (Corfu et al., 2003) microscopy. This approach is
complemented with zircon chromatic analysis (Pupin and
Turco, 1972b; Pupin, 1980; Velez et al., 2005; Shahbazi et
al., 2014) and zircon U/Pb dating by LA-ICP-MS (Kosler
and Sylvester, 2003; Chang et al., 2006; Solari and Tanner,
2011; Schoene, 2014).

The combination of these techniques provides a robust
methodological approach to discriminate among zircons on
the basis of more than just their radiometric age and external
and internal morphology, thus allowing us to determine the
age and conditions of zircon formation in the crystalline
source (igneous vs. metamorphic) (Poldevaart, 1950; Pupin
and Turco, 1972b; Pupin et al., 1978; Pupin, 1988; Corfu et
al., 2003). These multi-technique approach is applicable to
detrital zircons, enhancing the accuracy in the determination
of source areas (Loi and Dabard, 1997; Willner et al., 2003;
Anani et al., 2012; Shahbazi et al., 2014).

STUDY AREA

The LIJSS is located in northwestern South America
on the Equatorial Pacific coastline, at ~5°N latitude.
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FIGURE 1. A) Location of the Ladrilleros-Juanchaco Sedimentary Sequence (LJSS) on the Colombian and South American context on the Pacific
coast. The general geodynamic setting is also shown with main tectonic plates and crustal blocks marked as CP: Caribbean Plate, NP: Nazca Plate,
SAP-Cr: South American Plate and Craton, PCB: Panamé&-Chocé Block, NAB: Nor-Andean Block (from Suter et al., 2008; Taboada et al., 2000;
Cediel et al., 2003). B) Local geological framework of the LJSS (modified from Montoya, 2003). C) General aspect of outcrops for the LISS in the
studied section, NW-SE.

Strata of this sequence outcrop in coastal cliffs along La
Barra-Juanchaco Beach and Malaga Bay, approximately
40 km northwest of the city of Buenaventura (Fig. 1).
Physiographically, the LISS occupies a littoral position
on the Pacific lowlands to the west of the western
Cordillera and to the south of the Serranfa Baudé. The
LJSS is part of the San Juan Sub-basin that, from a
stratigraphic and deep marine deposits sedimentary point
of view, is correlated with deep marine deltaic activity
(ANH-Universidad de Caldas, 2011). The main modern
fluvial system in the area, the Rifo San Juan, drains the
western flank of the western Cordillera to form one
of the largest deltaic systems of the South American
Equatorial Pacific (Gonzdlez and Correa, 2001).

Geologica Acta, 15(3), 201-215 (2017)
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Litho-structurally, the LISS (Figs. 1; 2) lies within
a tectonic setting known as the Panamd-Choco Block
(PCB) and is part of the San Juan Sub-basin, delimited
to the south by the Garrapatas fault system and to the
north by the San Juan fault system (Cediel et al., 2003,
2009). The regional geodynamic framework is marked
by the interaction of major tectonic plates (Nazca, Cocos,
Caribbean and South America) in a combined subduction
and collision convergent regimen (Kellogg and Bonini,
1982; Kellogg, 1984; Taboada et al., 2000; Spikings et al.,
2001; Pindell et al., 2005; Bayona et al., 2011; Pindell and
Kennan, 2013). Smaller lithospheric/crustal blocks like
the PCB and the Nor-Andean Block (NAB) (Fig.1) also
play an important role in the litho-tectonic configuration of
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the area. The PCB, for instance, is associated with the last
collisional episode in the region from Oligocene to present
times (Duque-Caro, 1990; Farris et al., 2011).

Previous studies indicate that the LJSS consists of a
continuous, well-exposed sequence of clastic materials,
such as mudstones with sandstone intercalations, deposited
in a marine environment (ANH-Universidad de Caldas,
2011). The sequence is approximately 750m thick (Fig. 3),
although Miocene beds can reach thicknesses of >3000m

Provenance of Miocene rocks (Colombian Pacific)

(Cediel et al., 2003). The sedimentary fill of the basin
rests on oceanic rocks typical of Colombia’s western
crustal domain, west of the Cauca-Romeral fault, i.e.,
the Provincia Litosférica Ocednica Creticico Occidental
(PLOCO) (G6mez et al., 2015). According to Mufioz and
Gomez (2014), the LISS sandstones correspond to lithic
arkoses, feldspathic litharenites, and litharenites that are
texturally (clay matrix, poor selection, and grain angularity)
and compositionally immature. These sandstones are
also characterized by a significant input of volcaniclastic

‘ 78"W K
Caribbean Sea W&

COLOMBIA

Fault

— Rjver

Age-Lithology
Miocene (plutonic-volcanic)
Eocene (plutonic)
Paleocene (volcanic)

B cCretaceous (plutonic-volcanic)
Jurassic (plutonic)
Triassic (metamorphic)

Precambrian (metamorphic)

FIGURE 2. Main physiographic, structural, and chrono-stratigraphic framework (igneous and metamorphic units), adjacent to the Ladrilleros-
Juanchaco Sedimentary Sequence (LJSS). Non-colored areas represent sedimentary rocks and Quaternary deposits. Modified from Gémez et al.

(2015).
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materials (volcanic fragments, horblende + pyroxene
associations, long and euhedral zircon grains) and other
detrital components (quartz, metamorphic fragments(?),
etc.). The presence of volcanic elements affords the
opportunity not only to constrain the age of the sequence
but to discriminate among source areas associated with
either volcano-magmatic arcs (ages varying between the
Cretaceous and the Miocene) or metamorphic elements
that can be related to mountain ranges with metamorphic
basement rocks such as the central Cordillera (Mufioz and
Gomez, 2014). A Burdigalian-Tortonian age (~16-10Ma)
has been established for this sedimentary unit based on
calcareous microfossils (Vallejo et al., 2016). To date, no
geochronological dataset has been used to constrain the
age of the LJSS.

Based on a combined analysis of zircon typology,
internal textures/zonation patterns and U/Pb dating, our
work improves the dating resolution of the sequence,
establishes the origin of detrital components, and identifies
the paleogeographic conditions that lead to the development
of the LJSS.

METHODS

Eleven sandstone samples were collected along various
stratigraphic levels of the LISS to separate zircon grains
for typological analysis (Fig. 3). An additional sample was
collected from the top of the sequence for LA-ICP-MS U/
Pb dating and the generation of age spectra, as well as to
determine internal zircon zonation patterns through SEM-
CLimagery. All zircon grains were separated by gravimetric
methods combining Wilfley® table/gold pan and heavy
liquid runs (TBE: 2.96g/cm?). Mineral concentrates were
further purified through additional heavy liquid (Mel:
3.32g/cm®) and Frantz® Isodynamic magnetic separations.
Zircon grains were mounted in cylindrical resin plugs
(2cm diameter, 1cm thick) for their subsequent preparation
(grinding and polishing to expose internal areas) for U/Pb
dating. To ensure a random, unbiased assembly of zircon
grains from detrital samples, we emptied ~200-300 grains
directly from the vial. Finally, we obtained petrographic
and SEM-CL microscopy images of the zircons to reveal
the external morphology and chromatic features and to
examine internal zonation patterns, respectively.

To assess zircon typology, we implemented the
methodology of Pupin (1980) and Gértner et al. (2013) to
correlate the analyzed zircons with source area lithologies
(e.g., plutonic, volcanic and/or metamorphic), while
providing information in terms of multi-cycle zircons.
To characterize zircon crystals based on morphology/
typology, the following steps were undertaken after Pupin
and Minéraux (1976), Pupin (1980), and Girtner et al.

Geologica Acta, 15(3), 201-215 (2017)
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FIGURE 3. Stratigraphic column for the Ladrilleros-Juanchaco
sedimentary sequence (adapted from Mufioz and Gémez, 2014).
Zircon abundance relative to other heavy minerals is shown. Black
dots correspond to the stratigraphic position of samples analyzed.
Blue dot marks the position of the sample for detrital zircon U/Pb
analysis.

(2013): i) Scanning of grain mounts under the optical
microscope to identify ~150 grains of detrital zircon; ii)
zircon grain characterization by specific morphometric
parameters, such as elongation, roundness, length/width
ratios, and degree of face development; iii) zircon grain
characterization by color tones and intensity (e.g., hue,
saturation, and brightness) and degree of transparency; iv)
zircon classification (Fig. 4); v) statistical calculations to
quantify variability along the morphometric correlation
matrices for each sample; vi) generate specific typological
classifications. Microscopic analyses under transmitted
and reflected light were carried out at the Instituto de
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FIGURE 4. Zircon typological classification proposed by Pupin (1980). Index A reflects the Al/alkali ratio, controlling the development of pyramids in
the crystals. Index T reflects the effects of temperature on the development of prisms.

Investigaciones en Estratigraffa (IIES) of the Universidad
de Caldas (Colombia) using a Nikon LV100® Tri-Polar
Pol Universal and PET SMZ1500® stereomicroscope,
coupled with a high-resolution Nikon DS-F11® camera.
NIS Elements 3.2® software was used for measuring
morphometric features. SEM-CL images were obtained
using a SEM-Quanta 250® coupled with Chroma CL
Gatan® cathodoluminescence device.

All U/Pb measurements were performed by LA-
ICPMS (Chang et al., 2006; Schoene, 2014), using a
213nm New Wave Nd: YAG UV laser, coupled to a
Thermo-Finnigan Element-2 dual-focus monocollector
ICP-MS mass spectrometer. Isotopic measurements were
carried out at the University of Arizona’s Laser-Chron
Laboratory (USA) using the approach proposed by Chang
et al. (2000).

Geologica Acta, 15(3), 201-215 (2017)
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RESULTS
Zircon morphology and typology

In the following section, we present morphometric
characteristics of zircon grains analyzed under optical
microscopy.

Zircon roundness and elongation

LJSS zircons fall primarily in the non-rounded
or poorly rounded fields 1, 2, 3 and 4 according to
Girtner et al. (2013) (Fig. 5A). We note that some
crystal faces and edges are still recognizable even
when the grains exhibit a degree of roundness, thereby
allowing typological characterization (Pupin, 1980). A
smaller proportion (~4%) of zircons fall in categories 9
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ELONGATION

FIGURE 5. Zircon morphological parameters represented in spider diagrams: A) Roundness. B) Elongation. Based on the classification by Gartner et

al. (2013).

and 10, corresponding to grains whose faces and some
edges are partially recognizable or unrecognizable due
to rounding by transport/abrasion (Koster, 1964; Dietz,
1973).

Zircon length varies between ~65 and 500pum, with the
majority giving values of ~100um. Variations in thickness
range from ~60 to 250um. In terms of elongation (Gértner
et al., 2013), most zircons fall within fields 2 and 3 (Fig.
5B) and exhibit length/width ratios between ~1.5 and 2.0.
Zircons in the lower portion of this range are classified
as low elongation, while maximum values are classified
as having moderate elongation (Poldevaart, 1950;
Poldervaart, 1955; Hoppe, 1963; Finger and Haunschmid,
1988; Gartner et al., 2013). Elongation ratios >3 are rare
and only occur in significant numbers in two samples (Fig.
5B).

Zircon typology

The different zircon typologies identified in samples
analyzed via petrographic and SEM-CL microscopy are
shown in Figures 6 and 7. There are few variations in
crystal morphologies that were recognized (Fig. 7). Zircons
are characterized by high values of A and T indices, and
diameters greater than 100pm, thus allowing recognition
of crystallographic features.

Zircon crystalline faces are characterized by pyramids
{101} and {101} >> {211} and prisms {100} {110} and
{100} >> {110}. The typological distribution (Pupin
and Turco, 1972a; Pupin, 1980) is similar between most
grains (Fig. 7), with P1, P2, P3, P4, and P5 being the

Geologica Acta, 15(3), 201-215 (2017)
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most common subtypes (5%-40%). Other subtypes are
S5, S10, L5, D (3%-9%). Relatively few grains (1%-
3%) fall within the J4 and RS typologies. Analyzed
zircon crystals exhibit a marked homogeneity both in
their morphology and optical characteristics (color,
degree of transparency, etc.). Due to the homogeneity
of the different subtypes, we calculated the mean values
of Al and IT for each typology (Fig. 8). These values
show that the LJSS zircons are in a mixed field (5 and 6),
corresponding to sources of igneous rocks in the granular

Ro S10 S So Ss
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G
B D E
Sie S20 R3 P2
Ps
6 IL.
[
i J
P P
AB:2 ﬁRz '

I 11 L

FIGURE 6. Examples of LJSS detrital zircons susceptible to typological
analysis. Optical microscopy images taken in extended focus.
Letters with index correspond to subtypes of the classification found
according to the categories proposed by Pupin (1980) (see Figure 4).
Ro: rounded.
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FIGURE 7. Results of the LJSS zircon typology analysis based on the A.I-T.I diagram of Pupin (1980).

subalkaline and alkaline series. Approximately 92% of
the zircons are colorless, optically pure (few inclusions,
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FIGURE 8. Distribution of granitic rocks in the typology diagram
derived from the mean value of Al and Tl (Pupin, 1988): 1) alumina
leucogranites, 2) monzogranites-granodiorites (sub)autochthonous,
3) monzogranite-granodiorite aluminum intrusives, 4) calc-alkaline
and K-rich calc-alkaline series granites, 5) sub-alkaline series
granites, 6) alkaline series granites, 7) tholeiitic continental granites,
8) tholeiitic series oceanic granites. Purple points represent the
results of zircons analyzed in this study.
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fractures, oxide coatings, etc.). A small proportion (8%)
exhibits some degree of coloration, specifically yellow
to pale pink. Most mineral inclusions are identified as
acicular and/or fine columnar and/or tabular. These are
generally oriented along the C axis with a variety of
optical shades (colorless, green, brown, etc. (see Fig.
6D, F, I, N, Q).

Detrital U/Pb dating by LA-ICP-MS

U/Pb dating was performed on 114 individual
zircon crystals obtained from a sample at the top of
the LISS (Fig. 9). The results show dominant Miocene
peaks (~55% of all dated grains) with absolute ages
over tight intervals at approximately 10-13Ma and, the
more abundant population (about 60 grains) with ages
between ~18-21Ma (Fig. 9). A second age group exhibits
Oligocene ages between ~23-31Ma, followed by two
Mesozoic clusters with a Cretaceous peak at ~75-82Ma
and some zircons with Triassic ages ~230-240Ma. The
last age group comprises a small set of zircons (less than
3%) that are older than 500Ma and reach to ~2800Ma.
The youngest detrital zircon age population within the
Miocene age is interpreted as an estimate of the maximum
depositional age for the LISS in the Tortonian. This date
agrees with a biostratigraphically estimated age based on
nannofossils assemblages (Vallejo et al., 2016).

|208|



E. Osorio-Granada et al.

Cathodoluminescence images

Dated zircons were analyzed by SEM-CL images,
allowing us to identify a variety of internal textures and
to establish differences within the age populations. In
general, Precambrian zircons have rounded and irregular
shapes. In some dated zircons, it was possible to identify
their typology to reveal a predominance of subtypes P4 and
P5. Internal zircon textures exhibit weak-wide zonation
patterns and overlapping zonation domains, as well as
some less conspicuous oscillatory zoning patterns (Corfu
et al., 2003) (Fig. 10). Mesozoic zircons, which are largely
Triassic in age, present a correlation with subtypes such
as S10, P2, P3, P4, and P5. Internally, these zircons are
characterized by overlapping domains of non-zoned cores
surrounded by domains of very fine and strong oscillatory
zoning. Finally, Miocene zircons are correlated with a
greater variety of S and Ptypologies, are smaller in size with
respect to other populations, and show a better development
of crystalline faces. They exhibit varied internal textures
including reabsorbed cores with overgrowth, superposition
of zonation domains, and fine bimodal zonation (Fig. 10).

DISCUSSION

Applied as integrated provenance analyses, typology and
U/Pb geochronology in detrital zircons enables us to constrain
the sources of sedimentary material that filled the San Juan
Sub-basin during the Miocene. In terms of roundness, the
prevalence (91%) of well-faceted to poorly rounded grains
indicates that the analyzed zircons were slightly affected
by abrasion, suggesting JLSS zircons underwent minimal
transport from proximal sources and/or that the kinetic energy
during transport was low (Caspers, 1967; Dietz, 1973).

Elongation analysis is a good indicator of potential
source rocks (Poldervaart, 1955; Poldervaart, 1956; Hoppe,
1963; List, 1966). In our study, the more elongated zircons
are associated with granitic and/or medium- to high-grade
metamorphic origins, while short and rounded zircons
are linked to reworking or low-grade metamorphism
(Poldevaart, 1950; Hoppe, 1963; Finger and Haunschmid,
1988). Elongation is also an indicator of cooling rates,
where rapid cooling (i.e., volcanic) generates mostly longer
crystals (elongation ratio >3). In this sense, our results
show that LJSS zircons do not exhibit a single tendency
of elongation. Instead, the majority of crystals analyzed
present moderate to high ratios (between ~2 and 3), while
two samples give elongation ratios of 5, suggesting that
most zircons have an igneous origin characterized by rapid
cooling (e.g., shallow intrusions and/or volcanics).

SEM-CL images allow identification of internal
textural differences within zircon populations. Precambrian
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FIGURE 9. U/Pb results for 114 U/Pb dates reported in the detrital
zircons for the LJSS sample. A) Concordia Diagram. B) Probability
Density Plot (PDP). Larger PDP covers the entire age range reported.
Smaller PDP covers ages between O and 300Ma where main peaks
are marked with the names of some intrusive bodies of the Western
Cordillera that fall in these intervals and that are considered as
potential sources for detrital material.

zircons present weak and wide zonation with overlapping
domains. Mesozoic zircons display superposition of
domains exhibiting non-zoned cores with overgrowth and
strong zonation. Such patterns are characteristic of granitic
igneous rocks but may also occur in some metamorphic
rocks (Corfu et al., 2003). Finally, Miocene zircons are
characterized by internal textures exhibiting reabsorbed
cores with overgrowth, superposition of zonation domains,
and fine bimodal oscillatory zonation (Fig. 10). These
textural features are typical of zircons formed in acid to
intermediate igneous rocks and develop during zircon
crystallization, reflecting processes of reabsorption,
precipitation, and crystal growth inside magmatic chambers
with compositional variations (Corfu et al., 2003). Zircon
typologies in our study indicate that the majority originated
from granitic rocks of subalkaline affinity, in addition to
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FIGURE 10. Cathodoluminescence (SEM-CL) images of selected LJSS zircons discriminated by age ranges in the Precambrian, Mesozoic and

Miocene. Black circles correspond to ablation pits from U/Pb dating.

alkaline granitic rocks (Figs. 7; 8). However, an association
of zircon morphology/typology with metamorphic rocks
cannot be ruled out.

Detrital zircon populations analyzed for U/Pb ages show
age spectra with significant peaks at ca. 10Ma, 12-13Ma,
and 18-21Ma (Fig. 9). Less prominent peaks are occur in
the intervals ~23-31Ma, ~38-40Ma, ~75-82Ma, and ~230-
240Ma. A small proportion of zircons with ages between
500Ma and 2800Ma are also present. Zircons with U/Pb
ages in the Burdigalian-Aquitanian interval confirm that
material was sourced primarily from plutonic and volcanic
rocks of known Miocene age (ca. 18-20Ma), such as the
Aguaclara Stock, Danubio Stock, Anchicayd Stock, and
Torra Pluton (Brook, 1984; ANH-Universidad de Caldas,
2011). In addition, the younger plutonic Miocene bodies,
Serravallian to Tortonian (ca. 10-14Ma), may indicate
detrital signatures from northern intrusive sources including
the Farallones Batholith, the Horqueta Stock, and other
bodies reported by Calle et al. (1980), Garcia and Garcia
(2012) and Restrepo-Moreno et al. (2013). Oligocene U/Pb
signatures are attributable to plutons such as the Piedrancha
Batholith (Brook, 1984). The contribution of Cretaceous
granites can be linked to the Buga Batholith (Villagémez et
al.,2011) and the Mistratd Stock (Calle and Gonzdlez, 1982;
Moreno-Sanchez and Pardo-Trujillo, 2003). However, the
presence of volcanic lithics and hornblende + pyroxene
associations (Mufioz and Gomez, 2014), in conjunction
with the euhedral and elongated morphology of some zircon
grains (elongation ratios >3), with U/ Pb ages predominantly
between 10 and 21Ma, are clear indications of volcanic
activity during the Miocene depositional stages of the LJSS
in western Colombia.
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Our results indicate that the primary sources of detrital
material for the LJSS correspond to the Late Mesozoic
(i.e., Cretaceous) and Cenozoic litho-stratigraphic
provinces (Fig. 2), which can be correlated with the present
configuration of basement rocks of the western Cordillera.
The age ranges reported above are typical of the western
Cordillera’s plutonic (intermediate to mafic) and volcanic
(intermediate) rocks, suggesting that this mountain range
was already a significant topographic barrier, with exposed
and geomorphically active crystalline massifs. Conversely,
Triassic to Precambrian zircons are often associated with
crystalline rocks of the central Cordillera (Horton et al.,
2015; Nie et al., 2010; Vinasco et al., 2006). The presence
of a few zircon grains in this U/Pb age-range, with typical
peaks at ~230-250Ma, 600Ma, 900-1000Ma, etc., does
not necessarily imply a direct fluvial connection between
the central Cordillera and sedimentary formations along
the Pacific coast. We interpret such zircons as being
derived from reworking of Cretaceous sedimentary covers
positioned over the western Cordillera (e.g., Penderisco
Formation, Urrao Member) where populations with these
Paleozoic and Precambrian ages have been reported (i.e.,
polycyclic zircons; ANH-Universidad de Caldas, 2011).

Based on the presence of Cretaceous zircons in the
LJSS, it could be argued that, since the central Cordillera
also exhibits considerable pulses of Cretaceous magmatism
(Restrepo-Moreno et al., 2009; Villagémez and Spikings,
2013; Cochrane et al., 2014), the possibility of a fluvial
connection between the central Cordillera and the LJSS
should not be discounted. Yet, the absence of Jurassic U/
Pb ages from the SSJL is notable, despite of the fact that
there are plutonic masses of considerable size and Jurassic
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age in the central Cordillera, such as the Ibague Batholith
(Gbémez et al., 2015), positioned at almost the same latitude
as the SSJL.

Relative to the PCB, the virtual absence of Eocene
zircons in the interval ~38-50Ma, corresponding to
some intrusives typical of the Panamanian Arc (e.g.,
Mandé Batholith (Botero, 1981; Villagémez and
Spikings, 2013) and/or the Acandi Batholith (Alvarez
and Parra, 1971; Sillitoe et al., 1982), would indicate
that: i) the PCB was still in a distal position with
respect to the LISS at 10Ma, ii) Mandé-like plutonic
units were still unexposed massifs (i.e., in subsurficial
positions and in the process of exhumation) and thus did
not contribute sediments to the basin and/or iii) there
was no fluvial network connecting geomorphically
active Panamanian elements with the LJSS. However,
recent studies indicate that the plutonic masses of the
Panamanian Arc were already exhumed and served as
source areas for sedimentary formations in Panamd
(Ramirez et al., 2016), making options i) and iii) above
more reasonable.

@ Volcanic arc
@ Viocene plutons

- Arquia and Cajamarca
complexes (metamorphic)

A3 Cretaceous volcanic-sedimentary
= complexes and plutonic rocks

Submarine fan

Provenance of Miocene rocks (Colombian Pacific)

The prevalence of western Cordillera-like zircon detrital
signatures (based on U/Pb age and typologies, this study),
the dominant heavy mineral fractions for these sediments
(Mufioz and Gémez, 2014) and the absence of significant
zircon U/Pb age signals older than the Cretaceous can be
considered as preliminary evidence for the topographic
control exerted by the western Cordillera hindering fluvial
connections between the central Cordillera and the LJSS.
In addition, the presence of zircons potentially derived
from Miocene plutonic bodies (e.g., Farallones Stock,
Tatamd Pluton, etc.) located north and east of the LJSS,
and on an axial portion on the western Cordillera, indicates
that such plutons were exhumed and geomorphically
active and thereby formed areas of detrital contribution
within the paleofluvial network. Further to this detrital-
fluvial contribution, we suggest there may have been a
significant direct contribution from the volcanic products
of a Miocene magmatic arc.

Based on our results, a feasible paleogeographic
reconstruction shows that during the time of LJSS
sedimentation (Burdigalian-Tortonian) there was a

FIGURE 11. Paleogeographic model for the LISS, Proto-Cauca fluvial system and western cordillera during the Miocene (Burdigalian-Tortonian).
Colors are only a reference to differentiate environments and lithologies and do not represent geologic time.
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volcanic-magmatic arc in the western Cordillera of
sufficient topographic relief to separate central Cordillera
source areas from Pacific basins. Marked pulses of uplift
and erosional exhumation are also reported for the western
Cordillera for the interval 15-9Ma (Restrepo-Moreno et
al., 2015). As in present times, this topographic barrier
played a pivotal role for a river network restricted to the
western flank of the western Cordillera that controlled
the extent of fluvial dissection, erosion, and sediment
production-routing into the Pacific plains (Fig. 11). The
proposition of an already existing western Cordillera as a
considerable topographic barrier since the middle Miocene
is consistent with determinations, based on evidence from
borehole and seismic data, on the extent of Pacific basins
in Colombia (i.e., those situated to the west of the western
Cordillera) that show significant reduction in thickness as
one moves from west to east (i.e., from the Pacific Ocean
to the western Cordillera).

CONCLUSIONS

Integration of techniques such as detrital zircon
typology/morphometry, U/Pb dating, and SEM-CL imaging
in samples from the LJSS arenites affords improved
constraint of the depositional age and provenance of the
terrigenous materials deposited in the basin during the
Burdigalian-Tortonian. The high affinity of the zircons
(typology/age/internal zonation patterns) with Miocene
igneous rocks (plutonic and volcanic) potentially implies
that an active volcanic-magmatic arc with significant
topography existed in the western Cordillera and was
the main sediment source. Detrital sources on the central
Cordillera were separated from the Pacific realm by well-
established western Cordillera topographic barriers.

Our methodological approach to evaluate provenance
in a complex litho-structural regime represents a viable
development of the standard methodology, considering
the quantity of information provided in provenance
studies and paleogeographic reconstruction, and should be
systematically used in other sedimentary sequences in the
northern Andes.
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