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RESUMEN

La practica comun de utilizar submuestras de periodos de 30 afios de datos climatologicos para describir las
condiciones pasadas, presentes y futuras ha sido ampliamente aplicada, en muchos casos sin considerar las
propiedades de la serie de tiempo analizada. Este trabajo muestra que esta practica puede llevar, tanto a un
uso ineficiente de la informacion contenida en los datos, como a una caracterizacion imprecisa de las condi-
ciones climaticas actuales, y en particular de las futuras, debido a que los parametros son funcion del tiempo
y del tamafio de la submuestra. Mas atin, este enfoque puede llevar a la deteccion de cambios espurios en los
parametros de la distribucion de la variable analizada. En este trabajo se utiliza el analisis de series de tiempo
de las temperaturas mensuales observadas en Veracruz, México, para ilustrar el hecho de que estas técnicas
permiten realizar una mejor descripcion de la media y variabilidad de las series, lo que a su vez permite
(dependiendo de la clase de proceso) restringir la incertidumbre del pronostico, y por lo tanto ofrecer una
mejor estimacion del riesgo presente y futuro de observar valores fuera de un rango de tolerancia dado. Los
resultados presentados en este trabajo muestran que, si bien se encuentra una tendencia significativa en las
temperaturas, aportando posible evidencia observada de cambio climatico en la region, no existe ninguna que
apoye cambios en la variabilidad de dichas series, y por lo tanto tampoco existe ninguna evidencia observada
a favor de que la variabilidad de la temperatura mensual aumentara o disminuira en el futuro. Esto es, si el
cambio climatico ya esta ocurriendo, se ha manifestado como un cambio en la media de estos procesos y
no ha afectado otros momentos de sus distribuciones (procesos no-estacionarios homogéneos). E1 Magicc-
Scengen, un programa util para la construccion de escenarios de cambio climatico, utiliza submuestras de 20
aflos para estimar la variabilidad futura del clima. Para propositos de comparacion, se construyeron posibles
funciones de densidad futuras siguiendo dos enfoques distintos: el primero utilizando inicamente las salidas
del Magicc-Scengen, y el segundo usando una combinacion de esta informacion y del analisis de series de
tiempo. Se muestra que las estimaciones basadas en submuestras pueden llevar a una estimacion imprecisa
de los impactos potenciales de la variabilidad climatica presente y de los escenarios de cambio climatico en
términos de las probabilidades de obtener valores fuera de un rango de tolerancia dado.
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ABSTRACT

The common practice of using 30-year sub-samples of climatological data for describing past, present and
future conditions has been widely applied, in many cases without considering the properties of the time series
analyzed. This paper shows that this practice can lead to an inefficient use of the information contained in the
data and to an inaccurate characterization of present, and especially future, climatological conditions because
parameters are time and sub-sample size dependent. Furthermore, this approach can lead to the detection of
spurious changes in distribution parameters. The time series analysis of observed monthly temperature in
Veracruz, México, is used to illustrate the fact that these techniques permit to make a better description of
the mean and variability of the series, which in turn allows (depending on the class of process) to restrain
uncertainty of forecasts, and therefore provides a better estimation of present and future risk of observing
values outside a given coping range. Results presented in this paper show that, although a significant trend
is found in the temperatures, giving possible evidence of observed climate change in the region, there is no
evidence to support changes in the variability of the series and therefore there is neither observed evidence
to support that monthly temperature variability will increase (or decrease) in the future. That is, if climate
change is already occurring, it has manifested itself as a change-in-the-mean of these processes and has not
affected other moments of their distributions (homogeneous non-stationary processes). The Magicc-Scengen,
a software useful for constructing climate change scenarios, uses 20-year sub-samples to estimate future
climate variability. For comparison purposes, possible future probability density functions are constructed
following two different approaches: one, using solely the Magicc-Scengen output, and another one using
a combination of this information and the time series analysis. It is shown that sub-sample estimations can
lead to an inaccurate estimation of the potential impacts of present climate variability and of climate change
scenarios in terms of the probabilities of obtaining values outside a given coping range.

1. Introduction

Observed monthly temperature series are analyzed using time series techniques to infer the
underlying data generating process and whether or not it has changed over time. The analyses
performed reveal important results regarding monthly temperature mean and variability that have
relevant implications for describing current climatologic conditions and for forecasting purposes. In
earlier works (Gay et al., 2006; Gay et al., 2004; Conde ef al., 2005), the authors have studied the
potential impacts of climate change in agriculture, in particular for coffee production in Veracruz,
Meéxico. The assessment of the potential risk that climate change represents for coffee producers
in the region motivated the analysis presented herein.

The recommendations of the World Meteorological Organization (WMO) for using periods of
at least 30 years to describe climate conditions have been extensively used, in most cases without
considering the time series properties of the observed variables®. This approach is intended to offer
an easy way to describe past, present and future climate, and for some applications it can provide

*Although in the Guide to Climatological Practices (WMO, 1983), the WMO warns that the properties of a time series
should be taken into account: “the various methods of analysis... can only be applied if the random part of the series is
considered stationary. Before adopting a model, therefore it is always necessary to make sure that it gives a complete
representation of the properties of the series.” Nevertheless, this is rarely considered, especially when computing sim-
ple estimations, such as the standard deviation.
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an acceptable approximation. Nevertheless, for risk, vulnerability and impact assessments, among
others, a more precise approach is required. An example of erroneous application of this approach
can be found in government agencies and insurance companies in México, which usually use this
30 years description for assessing the probabilities of observing climate variables outside normal
conditions, and for determining if an event was unusual enough to warrant insurance claims. In many
cases this has resulted in controversies and mistakes (Gay et al., 2004b). This practice has also been
extended for describing future climate through results from General Circulation Models (GCM)
runs based on different emission scenarios and models (Ruosteenoja et al., 2003; Wigley, 2003),
and in the widely used Magicc-Scengen software. This approach is not adequate if the series have
a stochastic or deterministic trend and can produce spurious changes in distribution parameters.

In the second section of this paper it is shown how this common practice can lead to an inefficient
use of the information contained in the data and to an inaccurate characterization of present, and
especially future, climatological conditions because parameters are time and sub-sample size
dependent. Moreover, if the process is stationary, why to limit sample size to 30 years if more data is
available for obtaining a better estimation of the relevant distribution parameters?; and if the process
is known to be non-stationary, why use standard statistical techniques that require stationarity? Let
us note that, if the process is non-stationary, ergodic properties do not hold either.

Results in Section 3 show that, although for most months in the region there is evidence of what
could be a signal of climate change (expressed in terms of a statistically significant linear trend),
the series are otherwise stationary processes (trend-stationary). That is, if climate change is already
occurring, it has manifested itself as a change-in-the-mean of these processes and has not affected
other moments of their distributions (homogeneous non-stationary processes (Guerrero, 2003)).

A large number of studies on climate change have focused on searching for human induced
changes in climate variables that could be expressed, for example, through statistically significant
trends (Vogelsang and Franses, 2001; Bloomfield, 1992; Zheng and Basher, 1999; Galbraith and
Green, 1992; Woodward and Gray, 1993, 1995), and cointegration between series of atmospheric
concentrations of greenhouse gases and temperature (Stern and Kaufmann, 1997, 1999; Kaufmann
and Stern, 1997). Many others have shed important light about the frequency of occurrence of
extreme events (analyses of maximum values, or values exceeding a threshold value), but in most
cases there is too little data (and of too poor quality) to assess observed changes in their frequency.
One of the most unsettled questions regarding climate change is how, and if, it will affect climate
variability, and especially the frequency and intensity of extreme events. As shown in Section
3, time series techniques permit to make a better description of the mean and variability of the
series, which in turn allows (depending on the class of process) to limit uncertainty of forecasts
and thereby giving better estimation of present and future risk of observing values outside a given
coping range. This information can be used for better assessing present risk in activities or sectors
of interest and for generating future hybrid scenarios (probability distributions) using GCM outputs
and time series analysis.

Results show that, although a significant trend is found in most cases, giving possible evidence
of observed climate change in the region, there is no evidence to support changes in the variability
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of the series and therefore there is neither observed evidence to support that monthly temperature
variability will increase or decrease in the future. This is in clear contrast with the scenarios
that can be constructed using the Magicc-Scengen, given that it projects the standard deviation
of temperature to be a function of time. Two main issues are discussed regarding this topic: the
projected increase-decrease in variability could be produced by the use of an erroneous approach
(the use of a fixed number of years to describe temperature) and; although in some senses an
increase-decrease in variability could imply a larger-lesser threat, it is shown that it could lead to
under-overestimating the potential impacts of climate change in terms of the probabilities of having
values outside a given coping range. Possible future probability density functions are constructed
using the mean and standard deviation, provided by the Magicc-Scengen software for the region,
and compared to the ones obtained constructing a hybrid model that uses the predicted mean values
obtained from the ECHAM (European Centre Hamburg Model) and the statistical information
extracted from time series analysis.
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Fig. 1. Observed monthly temperature for the region of Veracruz, México.
Y axis, temperature in Celsius degrees; X axis, years.

The data for the monthly mean values from 1901 to 1995 were obtained from the IPCC Data
Distribution Center (http://ipcc-ddc.cru.uea.ac.uk/java/time_series.html) for the selected region,
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that is located between 98-93° N and 22-17° W. Figure 1 shows a time series plot of monthly mean
values for 1901 to 1995.

2. Common practices for describing a supposedly time-homogeneous process

An adequate statistical analysis of observed climate variables and of GCM-runs is of prime
importance when assessing the potential impacts on different human and natural systems due to
climate change. Risk assessment, policy making, and adaptation strategies critically depend on this
input and on how well uncertainty can be addressed and reduced using all available information.

According to the IPCC (http://www.grida.no/climate/ipcc_tar/wg1/518.htm), “climate in a
narrow sense is usually defined as the ‘average weather’, or more rigorously, as the statistical
description in terms of the mean and variability of relevant quantities over a period of time ranging
from months to thousands or millions of years. The classical period is 30 years, as defined by
the World Meteorological Organization (WMO, 1983)”. This approach has been widely used to
compare climate from different periods of 30 years and for comparing present and future climate
variability implied by climate change scenarios. As will be shown, this approach is not consistent:
in order to apply standard statistics, the series needs to be time-homogeneous (stationary), and
if the process is time-homogeneous, limiting the sample size to 30 years leads to an inefficient
estimation of true distribution parameters.

The Magicc-Scengen provides changes in climate variability, where “variability is defined by the
inter-annual standard deviation over 20-year intervals” (Wigley, 2003). Furthermore, “variability
changes are expressed as ratios, i.e. future standard deviation divided by initial (present-day)
standard deviation minus 1, expressed as a percentage. A zero value therefore represents no change,
while positive or negative values represent, respectively, increases or decreases in variability”.
Climate change, by definition, implies that climate variables will not be a time-homogeneous
process (i.e. the time variable plays an important role given that distribution parameters will change
as time goes by) and thus computing standard measures of variability for this type of process will
produce erroneous results.

To illustrate this, consider the following model:
T,=o+pt+eg

where 7 is a simulated temperature value for time ¢, o, is a constant that in this case takes the value
of 19 °C, B is a non-constant parameter that takes the values of zero from t =0 to t = 29; 0.015
from t =30 to t = 89 and; 0.055 when t > 90; and is €, a normally distributed random variable with
mean zero and standard deviation of 0.6 °C. The mean and variance of this process are:

E(T)=E(o+Bt+e)=a+pt
Var (T) = Var (o. + Bt +¢) =02 =0.36

Cov(ee.)=0fort#t
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That is, by construction, the mean of the process is a function of time, but its variance is constant.
A realization of this process for a sample length of T =200 is shown in Figure 2. Table I shows
the standard deviation of this process calculated for three different sub-sample sizes: 20 as chosen
by the Magicc-Scengen, 30 as is commonly done and 100 (half sample). It is important to notice
that when calculating the change in variability, the standard deviation of the process is shown to
increase up to a 124.95%, depending on the sub-sample size used for the estimation. Using the whole
sample leads to a more than three times larger variability than its true value.

Table I. Spurious changes in standard deviation of non-stationary simulated series.

20 years  Change in %* 30 years Change in %* 100 years ~ Change in %*  Whole set

sub-sets sub-sets sub-sets
0.462 0.529 0.605 1.86
0.661 43.22 0.616 16.37 1.362 124.95
0.565 22.42 0.532 0.50
0.520 12.69 0.718 35.57
0.572 23.87 0.749 41.48
0.712 54.23 0.790 49.25
0.610 32.08
0.699 51.29
0.703 52.22
0.794 71.86

*With respect to the first sub-set estimation

That is, although by construction the standard deviation of the process is known to be constant,
we are led to believe that the process variability is increasing due to the non-stationarity produced
by atrend. In summary, if the process is time-homogeneous (stationary), restricting sample size will
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Fig. 3 Probability density function of January temperature in the region of Veracruz for different sub-sample
sizes. Panel a) shows the PDF of observed temperature for January in Veracruz, México for two sub-samples
(1901-1947 and 1948-1995). Panel b) shows how the PDF of January temperature has supposedly evolved
during the last Century.

only lead to an inefficient use of data and imprecise parameter estimations, and when the process is
non-stationary even if the sample size is restricted, estimations are very likely to be misleading.

The same can be shown using a “real” observed temperature series. Figure 3a shows the
probability density function (PDF) of the observed temperature for January in Veracruz, México,
for two sub-samples (1901-1947 and 1948-1995). The PDF for each sub-sample apparently assigns
probabilities very differently, such that it is clear that the second sub-sample has fatter tails, greater
dispersion and a wider range. Furthermore, Figure 3b presents how the PDF of January temperature
has supposedly evolved during the last century. This would imply that the variability and range of
extreme events increased notably in the last part of the 20" century. Table II shows the descriptive
statistics for January (see also Figure 1 for a plot of the series) and how distribution moments have
been supposedly evolving through time. Nevertheless, these results are clearly as inconsistent as
in the simulation example shown before, because if the distribution parameters are not constant,
then the process is non-stationary and therefore the standard statistical procedures that were applied
are no longer valid.

Table II. Descriptive statistics for January.
N Mean St. Dev. Median  Minimum Maximum  Skewness Kurtosis

January 1901-1995 (Complete set)

95 21.059  1.055 20.94 18.7 23.94 0.341 0.000
January 1901-1947 (1st subset)

47 20.698  0.870 20.72 18.7 22.96 —-0.000 0.146
January 1948-1995 (2nd subset)

48 21.413  1.108 21.28 19.24 23.94 0.221 -0.476
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3. Time series approach for assessing changes in temperature distribution

Strict stationarity indicates that all joint probability distribution of the random variables that
constitute the process underlying a time series does not change in time. That is, all distribution parameters
remain constant. Given that strict stationarity is difficult to obey and even to verify in practice,
second order (also called wide-sense, weak or covariance) stationarity is commonly used, and if
the variables underlying the series follow a normal distribution, strict and second order stationarity
are equivalent (Maddala and Kim, 1998). Weak or covariance stationarity implies that no changes
in the standard deviation are present, the mean does not change, and that the autocovariances
depend on the lag length but not on absolute time. Examples of this class of processes are white
noise and autoregressive (AR) and moving average processes (MA) and auto regressive moving
average (ARMA).

The most common examples of non-stationary processes are trend-stationary and difference-
stationary (Nelson and Plosser, 1982), and it is of special interest to distinguish between them
because that distinction determines the statistical properties of a series (in this case the implications
about the series variability are of special interest) and allows to infer the proper transformation
needed to apply standard statistical procedures.

A trend stationary process is composed of a deterministic component with the addition of a
stochastic process (white noise, AR, MA, ARMA) that satisfies the stationarity conditions. A simple
example of this class of process is an AR equation of the form:

x=a+Br+px_ +e, (1)

where o is a constant, | p | < 1, e, ~ 1.i.d (0, 6?)" is a white noise process, that could also be
extended to an ARMA process that satisfies the stationarity and invertibility conditions, and Pz is
a deterministic trend. (For a detailed explanation on these conditions see Guerrero, 2003; Enders,
2003). This process is mainly dominated by its deterministic component and therefore has a tendency
to revert to its trend. That is, variations are transitory and do not change the long run path of the
series (Enders, 2003). The mean of this process E (x,) = o + B¢ is not constant but can be known
for any ¢+s. The assumption of a deterministic trend is not as restrictive for climate variables if
we consider that it can be any function of time, although for the objectives of this paper we will
consider the simplest case of a linear trend. One of the most important characteristics of the trend
stationary process is that its variance Var (x,) is constant. This has important implications for the
variability of a series and it means that the forecast error is bounded (Greene, 1999; Maddala and
Kim, 1998).

On the other hand, a series is said to be integrated or difference-stationary if it contains a
stochastic trend. If a series is stationary in levels is said to be I (0), if it has to be differenced once
isI(1), and itis I (2) if it has to be differenced twice to achieve stationarity. The following equation

“i.i.d means independient and identically distributed.
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of'a random walk is a common example of an I (1) type of process:

Vi=YuTte (2)
or

Ay, = e,

where A= (1 — L) is the difference operator, ¢, ~i.i.d (0, 6?) is a white noise process that could also
be an ARMA process satisfying the stationarity and invertibility conditions. This model is a special
case of an AR (1) process (when the coefficient of the autoregressive term is equal to one) and it
is stochastic in nature, as can be shown if the difference equation (2) is solved:

11

Y=yt e,

i=0
where y, is the initial condition and

-1

e .=V

=i t
i=0

is a stochastic trend, a hardly predictable but systematic variation (Maddala and Kim, 1998),
consisting in the sum of the stationary error term. Assuming the initial condition is zero, the mean
of the process is zero E (y;) = E (e¢,) = 0 and its variance increases with time Var (y,) = E (v*,) = tG2,
and diverges as ¢t — o (Hatanaka, 1996). A generalization of equation (2) is a random walk with
a drift (a constant term):

yi=Bty.ate 3)
or
Ay,=B+e,

The solution of this difference equation is
-1
Y=y, B+ e,
i=0

where y, is the initial condition, Bz is a deterministic trend and

Z e, =V,

i=0

is a stochastic trend. In this case the variance of the process is Var (y) = E (v?) = t6°, the same
than in the case of a pure random walk, but the mean E (y,) = B¢ is no longer constant. It is important
to notice that the differences between difference-stationary and trend-stationary arise from the
presence of a stochastic trend, not from a deterministic trend.
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As shown before, a difference-stationary process implies that its variance is a function of
time and therefore the forecast error is not bounded and increases as the period to be forecasted
is extended. Although both classes of processes have several interesting implications for climate
variables, in this paper we will focus in the behavior of their variances. Trend-stationary and
difference-stationary have important implications for how variability of a climate variable can be
expected to be in future, and of the predictability of the series.

It is also important to notice, for statistical purposes, that these processes require different
detrending methods to achieve stationarity and if they are misidentified, tests results and inferences
can be misleading. A wide variety of formal tests to determine the order of integration of a series
have been developed (for a survey see Stock, 1994). Here, two of the most common tests are
considered: the Augmented Dickey-Fuller (ADF) (Dickey and Fuller, 1979; Said and Dickey,
1984), and the Phillips-Perron (PP) tests (Phillips and Perron, 1988).

The ADF test is based on testing the null of a unit root (o = 1) on the following models

,
Ay::Bl+th+(oc_1)y;71+zSsz/—iJ’_E (l)
i=1
Ay, =B, +-1)y,, +i 3 Ay, +e, (ii)
i=1
Ay, =@ -1)y,, +i 3, Ay, +e, (iii)
i=1

where B¢ is a linear trend, the lagged differences of y, are included to correct for autocorrelation
(parametrically) and is a white noise error term. The upper bound for the lag length was determined
using k.., = int (12 * (¢/100%4)) (Hayashi, 2000) and the appropriate number of autoregressive terms
was selected through minimizing the Akaike Information Criteria (Akaike, 1973).

Under the null of a unit root the distribution of the ordinary least squares (OLS) estimators is
nonstandard and follows a Wiener process. In this case the t-statistics are no longer valid and the
correct critical values have been tabulated (Dickey and Fuller, 1979; Phillips and Perron, 1998;
MacKinnon, 1996). The null of models are pure unit root (i), unit root plus a drift (7i) and unit root
plus a drift and a trend (7ii). Under the alternative hypothesis the series is (i) trend-stationary, (i7)
stationary around a constant, and (#i7) stationary around zero.

The difference between the ADF and the PP tests is that the latter does not include lagged
differences in equations i to ii7, and corrects autocorrelation nonparametrically using the Barttlet
kernel spectral estimator and the Newey-West automatic bandwidth selection.

The selection of the appropriate deterministic regressors to be included in both tests is of
crucial importance because tests statistics depend on which regressors are included and because the
power of the test (i.e. the ability of the test to reject the null when is false) is greatly affected. The
procedure used to test for a unit root was that proposed by Dolado, Jenkinson and Sosvilla-Rivero,
and showed in Enders (2003). As stated in Enders (2003) “the key problem is that the tests for unit
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root are conditional on the presence of the deterministic regressors and the tests for the presence

of deterministic regressors are conditional on the presence of a unit root”.

Results of these tests are reported in Tables I1la and IIIb. Results show that for all temperature
series the null hypothesis of a unit root can be rejected at least at 95% confidence levels (except in
the case of February for which the null can be rejected only at 90% by the Dickey-Fuller test) in
favor of trend-stationarity (constant stationary in the case of February and July according to the ADF
test). Therefore, the non-stationarity shown by the series can be considered to be the product of a
changing mean, but a constant variance. That is, if the presence of a trend is interpreted as a sign
of climate change, this process has shown to be a change-in-mean (homogeneous non-stationarity)
and climate variability can be thought to be time invariant.

Table I1Ta. Augmented Dickey-Fuller test.

Month T k B, «B) B, 1(B2) o se(0)  t-statistic
(o —T1)/se(o)

January 95 1 10720 4318 0007 1.698 0477 0.121 4317
(0.000) (0.093) (0.005) TS

February 95 2 7983 2814  —— —— 0643  0.127  -2.805
(0.006) (0.061) CS

March 95 0 14390 6355 0009 2417 0384 0096 6382
(0.000) (0.018) (0.000) TS

April 95 0 25618 9258 0010 2832 0006 0.107  -9.270
(0.000) (0.006) (0.000) TS

May 95 0 30.135 10705 0011  4.032 -0.128 0.105 —10.74
(0.000) (0.000) (0.000) TS

June 95 0 25432 9230 0010 4233 0045 0103  -9.258
(0.000) (0.000) (0.000) TS

July 95 3 12.884 3388  —- —— 0516 0143  -3381
(0.001) (0.014) CS

August 95 0 21415 7928  0.006 3272  0.192 0102  -7.938
(0.000) (0.002) (0.000) TS

September 95 0 26733 9926  0.004 2477  -0.027 0.103  -9.943
(0.000) (0.015) (0.000) TS

October 95 0 21395 8359  0.004 1774  0.137 0.103  -8.380
(0.000) (0.079) (0.000) TS

November 95 2 26356 6916  0.008 2293 -0.161 0168  —6.923
(0.000) (0.024) 0.000) TS

December 95 1 16927  6.114  0.005 1.689 0209 0129  —6.123
(0.000) (0.095) (0.000) TS
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Table IIIb. Phillips-Perron test.

Month T i} (B B, (B.) @ Adj. t-statistic
January 95 14443 7015 0010 2524 0292 7542
(0.000) (0.013) (0.000) TS
February 95 14759 6788  0.007 1855 0322 ~7.251
(0.000) (0.067) (0.000) TS
March 95 14390 6355  0.009 2417  0.384 ~6.428
(0.000) (0.018) (0.000) TS
April 95 25618 9258 0010 2832  0.006 -9.267
(0.000) (0.006) (0.000) TS
May 95 30.135 10704  0.011  4.023 -0.128 ~10.75
(0.000) (0.000) (0.000) TS
June 95 25432 9230 0010 4233  0.045 —9.254
(0.000) (0.000) (0.000) TS
July 95 17.618 6802  0.003 1839  0.331 —6.818
(0.000) (0.069) (0.000) TS
August 95 21415 7928  0.006 3272 0.192 ~8.049
(0.000) (0.002) (0.000) TS
September 95 26733 9926  0.004 2477  0.027 9.949
(0.000) (0.015) (0.000) TS
October 95 21395 8359  0.004 1774  0.137 8303
(0.000) (0.079) (0.000) TS
November 95 18931  8.062  0.006  1.904  0.165 8017
(0.000) (0.060) (0.000) TS
December 95 15903 7317 0005 1736 0256 7358
(0.000) (0.986) (0.000) TS

4. Projections of monthly temperature for 2050 and 2100

The main objective of this section is to obtain a model for the data generating process for the
temperature series of a representative month of each season as well as to construct and compare
future temperature PDF. The four months chosen are: January (winter), April (spring), June
(summer) and October (fall).

Table IV shows the time series models proposed for each of the selected months. June can be
modeled as a trend-stationary autorregresive process of order three, January as a trend-stationary
of order two, October as a trend-stationary first order autoregressive process, and April as a trend-
stationary white noise process. Two important conclusions can be drawn from the misspecification
tests (Table V): models are statistically adequate and therefore can be thought to be a correct
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Table IV. Linear trend models for selected monthly series.

ARMA Trend slope P-value Change in 95 years (°C)
January (2,0) 0.013 0.067* 1.21
April (0, 0) 0.010 0.004** 0.90
June (3,0) 0.011 0.000%** 1.04
October (1,0) 0.006 0.019** 0.61

* Significant at 90% level

** Significant at least at 95% level
Note: an atypical observation (1982) was removed from the October series

Table V. Misspecification tests.

January April June October
JB 0.184 0.282 1.178 0.813
(0.912) (0.868) (0.555) (0.666)
ARCH(1) 0.020 1.209 0.026 0.502
F-statistic (0.888) (0.274) (0.871) (0.480)
TR-squared 0.021 1.219 0.0270 0.510
(0.886) (0.270) (0.870) (0.475)
ARCH(2) 1.527 0.620 0.105 0.231
F-statistic (0.223) (0.540) (0.900) (0.794)
TR-squared 3.052 1.265 0.217 0.475
(0.217) (0.531) (0.897) (0.789)
ARCH(3) 1.190 0.435 0.355 0.246
F-statistic (0.319) (0.729) (0.786) (0.864)
TR-squared 3.586 1.343 1.102 0.765
(0.310) (0.719) 0.777) (0.858)
ARCH(4) 1.337 0.300 0.394 0.316
F-statistic (0.263) (0.877) (0.812) (0.867)
TR-squared 5.326 1.253 1.640 1.317
(0.255) (0.869) (0.802) (0.858)
ARCH(B) 1.505 0.365 0.710 0.708
F-statistic (0.170) (0.936) (0.682) (0.684)
TR-squared 11.622 3.143 5.915 5.891
(0.169) (0.925) (0.657) (0.659)
White 1.275 0.048 0.157 0.570
F-statistic (0.285) (0.953) (0.855) (0.636)
TR-squared 2.562 0.099 0.324 1.754
(0.278) (0.951) (0.850) (0.625)
LM(1) 1.263 0.004 0.504 0.004
F.statistic (0.264) (0.951) (0.479) (0.952)
TR-squared 1.316 0.004 0.524 0.004
(0.251) (0.950) (0.469) (0.950)
LM(2) 0914 0.510 0.462 1.022
F-statistic (0.405) (0.602) (0.632) (0.364)
TR-squared 1.913 1.052 0.966 2.134
(0.384) (0.591) (0.617) (0.344)

Continues in the next page
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Table V. Misspecification tests (continued).

January April June October
LM(3) 0.602 0.429 0.571 1.025
F-statistic (0.516) (0.732) (0.635) (0.385)
T*R-squared 1.913 1.341 1.798 3.210
(0.590) (0.720) (0.615) (0.360)
LM(4) 0.476 0.319 0.697 0.766
F-statistic (0.754) (0.865) (0.596) (0.550)
T*R-squared 2.036 1.341 2.922 3.235
(0.729) (0.854) (0.571) (0.519)
LM(8) 0.783 0.298 0.839 0.807
F-statistic (0.619) (0.965) (0.571) (0.598)
T*R-squared 6.675 2.592 7.041 6.863
(0.572) (0.957) (0.532) (0.551)
L-B(1) 0.104 0.004 0.528 0.000
) (0.950) =) =)
L-B(2) 0.359 1.042 1.048 0.855
-) (0.594) (0.306) (0.355)
L-B(3) 1.313 1.315 1.139 2.609
(0.252) (0.726) (0.566) (0.271)
L-B(4) 2.038 1.331 2.377 2.627
(0.361) (0.856) (0.498) (0.451)
L-B(5) 2.132 2.704 2.761 3.460
(0.545) (0.745) (0.599) (0.484)
L-B(6) 3.262 2.808 2.776 4.654
(0.515) (0.832) (0.735) (0.459)
L-B(7) 3.686 2.920 5.499 4.680
(0.595) (0.892) (0.482) (0.585)
L-B(8) 5.844 3.042 6.112 6.404
(0.441) (0.932) (0.527) (0.494)
L-B(9) 6.245 5.335 6.165 8.704
(0.511) (0.804) (0.629) (0.368)
L-B(10) 8.932 5.475 6.659 8.758
(0.348) (0.857) (0.673)
(0.460)
L-B(11) 9.984 7.342 9.872 10.382
(0.352) (0.771) (0.452) (0.408)
L-B(12) 11.880 10.958 10.125 10.993

(0.293)  (0.532)  (0.520)  (0.444)

representation of the data generating process, and the error terms are homoskedastic*. Two different
heteroskedasticity tests were employed: one for unknown general forms of heteroskedasticity
(White test) and one for autoregressive conditional heteroskedasticity (ARCH). Tests results

"Homoskedasticity refers to a process whose variance is constant (that is, not a function of time or does not change for
different values of regressors). Heteroskedasticity means that the process variance is not constant.
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show that, the variances of the error terms are homoskedastic and there is no volatility. It is also
important to note that the null hypothesis of normally distributed errors cannot be rejected. For
each of these temperature series a significant trend was found, ranging from 0.006 to 0.012; that is,
an increase of 0.61 to 1.21 °C in the 95 years period of study. In summary, the data generating
processes of these temperatures consist of a deterministic forcing component in the form of a linear
trend (conditional mean) plus a normally distributed stationary processes (temperature variations)
around this trend.

The variances and conditional means of these processes are of interest for developing current
and future temperature PDF. Consider the general form of an autoregressive equation of order p
with a linear trend Y, =0t + Bt +u, , where

r
u = prut—r‘ +81
i=1

Its conditional mean and variance can be calculated as follows:

E(Y)=E(o+Prtu,)
= o+t ,
Var(Y,) = var(u,) =6 Y p; +0.

Table VI compares the estimated values of mean and standard deviation using time series and
the 1961-1990 period as suggested by the WMO and the IPCC. It is important to notice that the
estimations of mean are consistently lower using the 30 years period than those obtained with the
conditional mean, while the differences in standard deviations range from —17.38 to +35.36%. That
is, even for observed “current” climatologic conditions both methods give a dissimilar description,
which in turn, would lead to differences in the estimations of present climatic risk for human or
ecological systems. As stated in Section 1, the recommendations of WMO and IPCC (used by
Magicc-Scengen, and others) can lead to poor estimations of the distribution’s parameters and
misleading risk estimations.

Table VI. Mean and standard deviations of selected monthly temperatures (°C).

Time series 30 years period Discrepancies
(1961-1990)
Month Mean Standard Mean Standard Mean Standard
(1976)" deviation deviation (°C) deviation (%)

January 2143  0.979 21.02  0.920 0.41 -5.97
April 26.52  0.859 2643  0.724 0.09 —-15.68
June 2742  0.579 27.31 0.478 0.11 -17.38
October ~ 25.22  0.557 25.04 0.754 0.18 35.36

1976 set as the reference year to compare with the 1961-1990 period.
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Recognizing that simple climate models (such as Magicc) are based on sound physical theory
that permits consistent long term predictions, we will use a hybrid time series approach. The hybrid
model will use the change in mean temperature predicted by the Magicc-Scengen and the time
series properties and estimations described in the previous sections to construct future monthly
temperatures PDF. These PDF will be contrasted with the ones that can be constructed considering
just the Magicc-Scengen estimations of mean and variability.

Table VII shows the climate change scenarios for 2050 and 2100 constructed using the Magicc-
Scengen software. The ECHAM 498 model and the B2-MES emission scenario were chosen and
the reference year was set to 1976 to compare with the 1961-1990 period. The range of changes in
mean temperature goes from 1.1 to 2 °C for year 2050 and from 2.03 to 3.7 °C in 2100 depending
on the month. On the other hand, predictions about the evolution of the standard deviation of
temperature indicate that, for January, temperature variability could increase as much as 25% in
2050 and almost 50% in 2100 in comparison with current variability. For April, predictions of
future variability imply a rather different evolution to a much less variable temperature: for 2050
it would decrease one third of its current value and for 2100 almost 60%.

Table VII. Climate change scenarios for 2050 and 2100 (Magicc-Scengen).

2050 2100
Mean Standard Mean Standard
(°C) deviation (%) O] deviation (%)
January 1.33 25.43% 2.46 47.43%
April 2.00 -31.50 3.70 —58.77
June 1.70 -14.03 3.16 -26.23
October 1.10 23.17 2.03 43.27

To illustrate what can be expected of such changes in variability, consider the interval centered in
zero and plus/minus two standard deviations (*95% of the probability mass in a normal distribution).
Table VIII shows the range in °C for the plus/minus two standard deviations for current (time
series and 30 years average) and 2050 and 2100 climate change scenarios for the Magicc Scengen
(MS) output and for the time series (TS) results. Comparing the ranges obtained from the two

Table VIII. Range in °C of plus/minus two standard deviations for climate change
scenarios for 2050 and 2100 for the Magicc-Scengen (MS) and Hybrid models.

January April June October
1961-1990 3.68 2.90 1.91 3.02
MS 2050 4.62 1.98 1.64 3.71
MS 2100 5.43 1.19 1.41 432
Hybrid (TS)? 3.92 3.43 2.31 223

2 In the hybrid (TS) model, variability remains constant and therefore the range of + 2
standard deviations is the same for present, 2050 and 2100.
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models, it can be seen that for current conditions the range from the 30 years average can be as
35% larger and 17% smaller than the time series range, depending on the month. These differences
increase for future scenarios, such that for 2050 and 2100 the 30 years average can be as much
as 67 and 94% larger and 42 and 65% smaller (respectively) in comparison with the time series
estimation. For 2050, temperature variability within this range spans up to 4.62 °C and for 2100
it would reach 5.43 °C. A similar situation occurs for October’s temperature. In contrast, April’s
and June’s variability would be importantly reduced leading to an almost constant value with a range
of 1.2 °C (for activities where the change in mean temperature are outside their coping ranges,
an almost constant temperature could be very determinant for their viability). This has important
implications for assessing the potential impacts of climate change for human and natural systems,
and it is clear that for most current systems in the region it would be very difficult to cope with
these types of changes in variability and in mean. Recent studies (Gay et al., 2006; Gay et al.,
2004; Conde et al., 2005) show that some agricultural activities in the region can be very sensitive
to changes in climate variability.

Figures 4 to 11 show the PDF for current conditions and for climate change scenarios in 2050
and 2100". The first figure for each month shows the evolution of the corresponding temperature
PDF, while the second figure illustrates the changes in the variability. The PDF for April’s and
June’s temperatures reveal that a reduction in variability can be more risky and produce greater
potential impacts than an increase. Consider a given system that is well adapted to current
temperatures. For 2050, and especially for 2100, such a system will face a completely different
climate, given that probability densities assign completely different probabilities to temperature

4 N N
/\\ /o \
/ \
3 / \
/ / \ Fig. 4. Current, 2050 and 2100 temperature
/ / \ \ for January. Dashed lines indicate time series
2 / | \ “hybrid” projections, continuous lines Magicc-
/ \ Scengen (MS) projections.
/ \ gen (MS) proj
\
1 / \ \
.
/ \ \
20 25

*A normal distribution is imposed for estimating MS PDF, although if not time series analysis was applied the distribu-
tions would be though to be non-normal with heavy right tails produced by the presence of a trend. If normality is not
imposed to MS PDF the dissimilarities between the two approaches (and with the observed data) would be larger.
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25

Fig. 5. Changes in temperature variability
for January. Dashed line indicates time
series “hybrid” distribution, dotted line and
continuous line represent Magicc-Scengen
(MS) temperature distribution for 2050 and
2100, respectively.

Fig. 6. Current, 2050 and 2100 temperature
for April. Dashed lines indicate time series
“hybrid” projections, continuous lines Magicc-
Scengen (MS) projections.

Fig. 7. Changes in temperature variability for
April. Dashed line indicates time series “hybrid”
distribution, dotted line and continuous line
represent Magicc-Scengen (MS) temperature
distribution for 2050 and 2100, respectively.
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Fig. 8. Current, 2050 and 2100 PDF for June
temperature. Dashed lines indicate time series
“hybrid” projections, continuous lines Magicc-
Scengen (MS) projections.

Fig. 9. Changes in temperature variability for
June. Dashed line indicates time series “hybrid”
distribution, dotted line and continuous line
represent Magicc-Scengen (MS) temperature
distribution for 2050 and 2100, respectively.

Fig. 10. Current, 2050 and 2100 PDF for
October temperature. Dashed lines indicate time
series “hybrid” projections, continuous lines
Magicc-Scengen (MS) projections.
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Fig. 11. Changes in temperature variability
for October. Dashed line indicates the PDF
constructed using time series “hybrid”
distribution, dotted line and continuous line
represent Magicc-Scengen (MS) temperature
PDF for 2050 and 2100 respectively.

values (PDF span on almost completely different ranges and do not overlap). In addition, it is
important to notice that for April and June the tails are much lighter for the case of MS scenarios
than for the hybrid, leading to an underestimation of the occurrence of extreme events and their
associated risk. For January and October the opposite situation occurs. As a result of the increase
in the standard deviation, MS PDF overlap more than the ones obtained with the hybrid model.
This assigns a higher probability to temperature values shown in current conditions for 2050
and 2100 scenarios, which in turn underestimates the potential impacts for a given activity
that is well adapted to current conditions. On the other hand, the occurrence of extreme events
from the right side of the temperatures’ PDF is highly overestimated. In summary, projections
that do not consider the time series properties of climate variables can be misleading for risk
management and decision making.

For illustrative purposes, let’s suppose that most of human and natural systems in the region are
well adapted to the 1976 mean (that is, the time series equivalent for the 1961-1990 mean) plus/
minus 1.5 standard deviations (TS). Table IX shows the current, 2050 and 2100 probabilities for
the fixed coping range. It is important to notice that even if climate variability does not increase (or
even if it decreases), the frequency and magnitude of extreme values with respect to a fixed coping
range increases because of the change in the mean of the distribution. In all cases, the probability
of values below (P (X < p — 1.56)) and within (P (p — 1.56 < X < p +1.50)) the coping range
decreases rather rapidly, especially in the representative months of spring and summer. All this
probability is accumulated in the right side of the distribution, which represents an important raise
in the occurrence and magnitude of extremely hot values for the systems that were well adapted
for the previous climate. In fact, for April and June, systems that were adapted to the mean and
plus/minus 1.5 standard deviations will be in 2100 completely outside their coping range.

It is important to notice how the spurious changes in temperature variability (standard deviation),
caused by not considering the stochastic properties of the time series, could lead to a poor estimation
of present and future climate risk. Even for current conditions, if the recommendations of using
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Table IX. Probabilities of values within a coping range for current conditions and climate change
scenarios.

January
P(X<p —1.50) P(p —1.50 <X< p +1.50) P(X> p +1.50)
Hybrid MS Hybrid MS Hybrid MS
Present 6.68% 12.43% 86.64% 85.49% 6.68% 2.08%
2050 0.21% 1.90% 55.27% 66.14% 44.52% 31.96%
2100 0.00% 0.47% 15.38% 32.66% 84.62% 66.87%
April
P(X<u -1.50) P(u—1.50 <X< p +1.50) P(X> p +1.50)
Hybrid MS Hybrid MS Hybrid MS
Present 6.68% 4.91% 86.64% 92.25% 6.68% 2.84%
2050 0.01% 0.00% 20.34% 10.52% 79.66% 89.48%
2100 0.00% 0.00% 0.25% 0.00% 99.75% 100.00%
June
P(X<u -1.506) P(u—1.56 <X< p +1.50) P(X>pu +1.50)
Hybrid MS Hybrid MS Hybrid MS
Present 6.68% 5.64% 86.64% 92.25% 6.68% 2.04%
2050 0.00% 0.00% 7.52% 3.94% 92.48% 96.06%
2100 0.00% 0.00% 0.00% 0.00% 100.00% 100.00%
October
P(X<u —-1.50) P(u—1.50 <X< p +1.50) P(X> p +1.50)
Hybrid MS Hybrid MS Hybrid MS
Present 6.68% 19.24% 86.64% 71.82% 6.68% 8.89%
2050 0.03% 2.94% 31.72% 43.45% 68.26% 53.61%
2100 0.00% 0.64% 1.58% 16.67% 98.42% 82.69%

30 years sub-samples are applied, the occurrence of extreme” cold temperature values for January
and October are two and three times higher than the time series estimations. On the other hand the
current probabilities of extremely high temperature values are underestimated for all months with
the exception of October. The probability scenarios obtained with MS projections show that for the
months for which their variability is expected to increase (January and October), the occurrence of
extremely high temperature values (P (X> p +1.55)) is underestimated, while for the months for which
its variability is expected to decrease (April and June) the opposite occurs. For the interval defined
as the coping range P (n —1.50 < X < p +1.56) the MS projections overestimate the probabilities
for January and October and for April and June the probabilities are underestimated. In all cases the
probabilities of values below P (X < p —1.50) tend to zero as we approach year 2100.

*Notice that here “extreme values™ are defined in terms of the coping range of a given activity instead of the statistical
definition of distribution percentiles.
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5. Conclusions

As stated by the WMO (1983), the most important applications of climatology and meteorology
are: 1) Determination of the times of year which, on average, are favourable or unfavourable for the
activities in question (that is economic activities); 2) Calculation of the probability to be assigned
to the critical natural conditions beyond which the activity is impossible; 3) Examination of the
action to be taken in order that the activity can be continued all the year round; 4) The development
of strategies enabling those activities which are possible during most of the year, to be performed
at minimum cost.

In this paper it is shown how the common practice of using periods of 30 years for describing
climate conditions (without considering the underlying stochastic properties of the process) can
lead to poor estimation of statistical measures in the best case or to detecting spurious changes in
distribution parameters that can be mistaken with manifestations of climate change. This, in turn,
would not permit an adequate assessment of climate risk and the applications of climatology and
meteorology mentioned above cannot be properly accomplished. If the series are believed to be
stationary, limiting the sample size to 30 years provides an inefficient estimation; and if series are
non-stationary, even if the sample size is restricted, estimations are very likely to be misleading.

The time series analysis of observed temperature series in the region of Veracruz, Mexico,
reveals that monthly temperature series in the region can be considered as stationary around a
linear trend (or in some cases a constant). It is relevant to take notice that, although the presence
of a significant trend can be interpreted as a manifestation of climate change, the variance of the
processes has remained constant. That is, climate change in the region has manifested itself as a
change-in-mean phenomenon that has not altered the processes’ variability.

The Magicc-Scengen software is a very useful tool for generating climate change scenarios and
has been widely used in the assessment of its potential impacts, systems’ vulnerability and as an
input for developing adaptation strategies. The new version of this software provides scenarios for
future climate variability, a very important variable for assessing potential impacts and vulnerability
of a given system or activity. Nevertheless, the definition employed for determining the changes
in climate variability is based on calculating the standard deviation in sub-samples of 20 years and
does not take into account the time series properties of the underlying stochastic processes. Climate
change and climate change scenarios imply, by definition, non-stationary processes and therefore
standard statistical measures such as the standard deviation are affected and results are misleading.
As an example, PDF constructed using MS outputs (mean and standard deviation) and from a hybrid
model that combines MS change in mean and the information obtained from the time series analysis
are compared. It is shown that both models provide different evolutions of temperature distributions.
The two PDF obtained with these methods have different ranges of temperature values and assign
dissimilar probabilities to them. MS estimations lead to under- and overestimating potential risks
for a given activity or system in comparison with the hybrid model.
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