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Exact spectrum and wave functions of the hyperbolic Scarf potential
in terms of finite Romanovski polynomials

D.E. Alvarez-Castillo and M. Kirchbach
Instituto de Fsica, Universidad Adtnoma de San Luis Potigs
Av. Manuel Nava 6, San Luis PotpS.L.P. 78290, Mexico.

Recibido el 1 de septiembre de 2006; aceptado el 24 de febrero de 2007

The Schédinger equation with the hyperbolic Scarf potential reported so far in the literature is somewhat artificially manipulated into tf
form of the Jacobi equation with an imaginary argument and parameters that are complex conjugate to each other. Instead we here sol
former equation anew and make the case that it reduces straightforward to a particular form of the generalized real hypergeometric equ
whose solutions are referred to in the mathematics literature as the finite Romanovski polynomials, in reference to the observation the
any parameter set only a finite number of such polynomials appear to be orthogonal. This is a qualitatively new integral property that ¢
not copy any of the features of the Jacobi polynomials. In this manner, the finite number of bound states within the hyperbolic Scarf poter
is brought into correspondence with a finite system of a new class of orthogonal polynomials. This work adds a new example to the ci
of the problems on the Sabdinger equation. The techniques used by us extend the teachings on the Sturm-Liouville theory of ordina
differential equations beyond their standard presentation in the textbooks on mathematical methods in physics.

Keywords:Schrodinger equation; Scarf potentials; Romanovski polynomials.

La solucbn a la ecuaéin de Schidinger con el potencial de Scarf hipélico reportada hasta ahora en la literatisich esh manipulada
artificialmente para obtenerla en la forma de los polinomios de Jacobi con argumentos imaginarésetrparque son complejos conju-
gados entre ellos. En lugar de eso, nosotros resolvimos la nueva@toaténida y desarrollamos el caso en el que realmente se reduce
a una forma particular de la ecuasihipergeoratrica generalizada real, cuyas soluciones se refieren en la literaturaatietecomo los
polinomios finitos de Romanovski. La noténide finito se refiere a que, para cualquieapaetro fijo, solo un amero finito de dichos poli-
nomios son ortogonales. Esta es una nueva propiedad cualitativa de la integral que no surge como copia de ninguna dédtsasadacter
los polinomios de Jacobi. De esta manera,(eharo finito de estados en el potencial de Scarf hilarb es consistente en correspondencia

a un sistema finito de polinomios ortogonales de una nueva clase.

Descriptores:Ecuacon de Schrodinger; potenciales de Scarf; polinomios de Romanovski.

PACS: 02.30.Gp; 03.65.Ge; 12.60.Jv

1. Introduction then employing the relevant group algebra in order to con-
struct the solutions as the group representation spaces [8, 9].
The exactly solvable Schdinger equations occupy a pole Finally, there is al_so the most recent _and powerful method
position in quantum mechanics insofar as most of them re2f SUPer-symmetric quantum mechanics (SUSYQM) which
late directly to physical systems. Suffices to mention agonsiders the special class of Satlinger equations (in units
prominent examples the quantum Kepler or Coulomb prob®f 72 = 1 = 2m) that allow for a factorization according
lem and its importance in the description of the discrete spect-0 [10-12],
trum of the hydrogen atom [1], the harmonic-oscillator, the

Hulthen, and the Morse potentials with their relevance to vi- (H(2) — en) thn(z) = (_dz +u(z) — eﬂ) Vn(z) =0,
brational spectra [2, 3]. Another good example is given by dz

the Rschl-Teller potential [4] which appears as an effective H(z) = AT (2)A=(2) + €0,

mean field in many-body systems witkinteractions [5]. In

terms of path integrals, the criteria for exact resolvability of A*(z) = (id + U(z)) ) )
the Schodinger equation is the existence of exactly solvable dz

corresponding path integrals [6].
ere, H(z) stands for the (one-dimensional) Hamiltonian,

There are various methods of finding the exact solution% is th lled ial and he lad
of the Schédinger equation (SE) for the bound states, an is- (2) is the so called super-potential, (z) are the lad-

sue on which we shall focus in the present work. The tra_der operators connecting neighboring solutions. The super-

ditional method, to be pursued by us here, consists in repotential allows us to recover the ground state wave function,
ducing SE by an appropriate change of the variables to tha%st(z)’ as

very form of the generalized hypergeometric equation [7] Past(2) ~ e [TV 2)
whose solutions are polynomials, the majority of them be-

ing well known. The second method suggests to first unThe excited states are then built up on topygf; (=) through
veiling the dynamical symmetry of the potential problem andthe repeated action of th&™ (2) operators.
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FIGURE 1. The trigonometric Scarf potential (Scarf I) for the set parametersq = 10, b = 5, anda = 1. The horizontal lines
of parametersg = 10, b = 5, anda = 1. The horizontal lines  represent the energies,, of the bound states.
represent the discrete levels.

Scarf | is transformed into the so-callagperbolicScarf po-

1.1. The trigonometric Scarf potential tential (Scarf 1), here denoted bﬁf’b)(z) and displayed in
Fig. 2,

Super-symmetric quantum mechanics manages a family of I

exactly solvable potentials (see Refs. 11 to 13 for details), 0l (2) = 6 + (b* — a® — ac)secRaz

one of which is the so called trigonometric Scarf potential

(Scarf 1) [14], here denoted hy (z) and given by +b(2a + a)seclvz tanh oz Y

The latter potential has also been found independently within

(a,b) _ .2 2 2 2
v (2) =—a” + (a7 + b7 —aa)sec” az the framework of super-symmetric quantum mechanics while
— b(2a + @) tan az sec oz, (3)  exploring the super-potential [11,13,15]:
It has been used in the construction of a periodic potential and U(z) = atanh az + bsechwz . (8)
employed in one-dimensional crystal models in solid state o . o
physics. Upon the above substitutions, and takimg= 1 for simplic-

The exact solution of the Sdbdinger equation with the 1 the energy changes to

trigonometric Scarf potential (displayed in Fig. 1) is well
known [11, 13] and given in terms of the Jacobi polynomi-
als, P%<(z), as

en=¢n—a’=—(a—n)*, n=0,1,2,..<a. (9

It is important to notice that, while the trigonometric
1 Scarf potential allows for an infinite number of bound states,
*(2), the number of discrete levels within the hyperbolic Scarf po-
tential is finite, a difference that will be explained in Sec. 3
below. Yet the most violent changes seem to be suffered by

bn(x) = /(1 — 2)7(1 + 2)5 P~ F°

T =sinaz,

WO () = (1—2) "2 (1 +2)°7 3, the Jacobi weight function in Eqg. (4) and are due to the open-
) ) ing of the finite interva[—1, +-1] toward infinity
vy=—(a—0b), 6=—(a+D). 4) ) .
a a z=sinaz € [-1,1] — z=sinhaz € [—o0, +o0]. (10)

Here, w7~2~2(x) stands for tlhf weight function from |, his case, the wave functions become [11, 16, 17],
which the Jacobi polynomialg, 2°" * (x) are obtained via

the Rodrigues formula. Pn(—iz) = (14 22)"Sebtan" 2o Py
The corresponding energy spectrum is obtained as 1
n=ib—a——. (11)
€n = en +a® = (a +na)?. (5) 2
Here,c, is some state dependent complex phase to be fixed
1.2. The hyperbolic Scarf potential later on. The latter equation gives the impression that the ex-
act solutions of the hyperbolic Scarf potential rely exclusively
By means of the substitutions upon those peculiar Jacobi polynomials with imaginary argu-
ments and complex indices. We here draw attention to the
a—1ia, a— —ia, b-—b, (6)  fact that this need not be so.
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1.3. The goal physics, Scarf Il finds application in studies of the non-
perturbative sector of gauge theories by means of toy mod-
The goal of this work is to solve the Sdtinger els such as the scalar field theory in (1+1) space-time di-
equation with the hyperbolic Scarf potential mensions. Here, one encounters the so called “kink-like”
anew and to make the case that it reduces in solutions which are nothing more than static solitons. The
a straightforward manner to a particular form spatial derivative of the kink-like solution is viewed as the
of the generalized real hypergeometric equation ground state wave function of an appropriately constructed
whose solutions are given by a finite set of real Schidinger equation, which is then employed in the calcu-
orthogonal polynomials. In this manner, the fi- lation of the quantum corrections to the first order. In Ref. 17
nite number of bound states within the hyper- it was shown that specifically Scarf Il is amenable to a stable
bolic Scarf potential is brought in correspon- renormalizable scalar field theory.
dence with a finite system of orthogonal poly- The paper is organized as follows. In the next section
nomials of a new class. we first highlight in brief the basics of the generalized hy-

These polynomials were discovered in 1884 by the EnPergeometric equation and then relate it to the Sdimger

glish mathematician Sir Edward John Routh [18] and re-equation with the hyperbolic Scarf potential. The solutions

discovered 45 years later by the Russian mathematiciaf® obtained in terms of finite Romanovski polynomials and

Vsevolod Ivanovich Romanovski in 1929 [19] within the are presented in Sec. 3. Section 4 is devoted to the disguise of

context of probability distributions. Though they have beenthe Romanovski polynomials as non—spherical angular func-

studied on few occasions in the current mathematical literations. The paper ends with a brief summary.

ture where they are termed to as “finite Romanovski” [20-23]

or “Romanovski-Pseudo-Jacobi” polynomials [24], they have, .

been completely ignored by the textbooks on mathematicaf™ M?‘Ster formulas for .the polynomial SO._

methods in physics and, surprisingly enough, by the standard |Ut'0n$ to the generalized hypergeometric

mathematics textbooks as well [7,25-28]. The notion “finite” equation

refers to the observation that, for any given set of parameters ) ) )

(i.e. in any potential), only a finite number of polynomials All classical orthogon_al polynomials appear as ;olutlons of

appear orthogonal. the so cal_led genera_llzed hypergeometric equation (the pre-
The Romanovski polynomials happen to be equal (up tgentation in this section closely follows Ref. 22):

a phase factor) to Jacobi polynomials with imaginary argu-

» / > —
ments and parameters that are complex conjugate to each (@)Y (@) + 7(2)y (2) = Anyn(2) = 0, (12)
other, much like theinh > = isin iz relationship. Although olz)=az® +br+ec, 7(x)=xd+e,
one may (but does not have to) deduce the local characteris-
tics of the latter, such as generating function and recurrence An =n(n—1)a+nd. (13)

relations, from those of the former, the finite orthogonality ) o )
erties of the Jacobi polynomials, but requires an independerﬁpted by
x) , (14)

proof.
Our work adds a new example to the circle of typical yn(z) = P, < d e
guantum mechanical problems [29]. The techniques used by
us here extend the study of the Sturm-Liouville theory of or-
dinary differential equations beyond that of the usual textwith the symbol
books.

A final comment on the importance of the potential in p ( d e m)
Eq. (7). The hyperbolic Scarf potential finds various applica- "\ a b ’
tions in physics ranging from electrodynamics and solid state
physics to particle theory. In solid state, physics Scarf 1l isin which the equation parameters have been made explicit,
used in the construction of more realistic periodic potentialsstanding for a polynomial of degree )\, being the eigen-
in crystals [30] than those built from the trigonometric Scarfvalue parameter, and = 0,1,2,.... In Ref. 22 a master
potential. In electrodynamics, Scarf Il appears in a class oformula for the (monic,P,,) polynomial solutions has been
problems with non-central potentials (see Sec. 4). In particlelerived by Koepf and Masjed-Jamei; according to them, one
| finds

- d e
P"(a b ¢

Rev. Mex. Fs. E53(2) (2007) 143-154
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() (1, ) e
b+ Vb% — dac 2—%—271 b+ Vb% — 4ac

Though the formal proof of this relation is a bit lengthy, The Pearson equation is solved by

its verification with symbolic mathematical software such as

Maple is straightforward. Notice that tr(é,(c") are not nor- w(z) =W ( d e x)

malized. On the other side, Eq. (12) can be treated alterna- o a b

tively as described in the textbook by Nikiforov and Uvarov

in Ref. 7, where it is cast into a self-adjoint form and its ~ exp </ (d—2a)z + (e~ b) da:) (17)

weight function,w(x), satisfies the so called Pearson differ- ax? +br +c ’

ential equation, : .
q and shows how one can calculate any weight function asso-

ciated with any parameter set of interest (we again used a

9 (o(z)w(x)) = 7(z)w(x) (16)  symbol for the weight function that makes explicit the pa-
dx rameters of the equation). The corresponding polynomials

are now classified according to the weight function, and are

| built up from the Rodrigues representation as
P, d “lz| = F="(d+ (n+k — 2)a)P, d “lz| = !
a b c a b c ( d e )
w T
a b c

n

dz™

X

2 n d e
<(a:1: +bm+c)W<a b oo

(18)

The master formulas in the respective Eqgs. (15) and (18), al-
low for the construction of all the polynomial solutions to the cases of the Jacobi polynomials. The Bessel polynomials are

generalized hypergeometric equation. One identifies as speot orthogonal in the conventional senge, within a real

cial cases the canonical parameterizations known as

e the Jacobi polynomials with = —1,b = 0, ¢ = 1,
d=—v—06—2,ande = —v + 4,

the Laguerre polynomials with = 0, b = 1, ¢ = 0,
d=—1,ande =a + 1,

the Hermite polynomials witlu = b
d = —2,ande = 0,

the Romanovski polynomials with= 1,6 = 0,c = 1,
d =2(1—p), ande = g with p > 0,

the Bessel polynomials with = 1, b = 0, ¢ = 0,
d=a+2,ande = 3.

All other parameterizations can be reduced to one of the
above five by an appropriate shift of the variables. The first
three polynomials are the only ones that are traditionally
presented in the standard textbooks on mathematical methods

interval, and will be left out of consideration.

Some of the properties of the fourth polynomials have
been studied in the specialized mathematics literature such
as Refs. 20, 21, and 23. Their weight function is calculated
from Eq. (17) as

wPD(z) = (22 + 1)_”6‘1taIrl v, (19)
This weight function was first reported by Routh [18], then
and independently by Romanovski [19]. The polynomials as-
sociated with Eq. (19) are named after Romanovski, and will
be denoted b)Rﬁ,’Z"Z)(m). They have non-trivial orthogonal-
ity properties over the infinite intervaloo, +o0c]. Indeed,
as long as the weight function decreasesa¥®, integrals of
the type

+o0o
[ w O @R @R (@)

— 00

(20)

in physics such as [25-28], while the fourth and fifth seem towill be convergent only if
have escaped due attention. Notice that the Legendre, Gegen-

bauer, and Chebychev polynomials appear as particular

m+m' <2p—1, (21)

Rev. Mex. Fs. E53(2) (2007) 143-154
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meaning that only a finite number of Romanovski polyno-point canonical transformation [32, 33], taken by us as
mials are orthogonal. This is the reason for the term “fi-z = f(x) = sinh ™' z, is obtained as:
nite”"Romanovski polynomials (details are given in Ref. 31).

The differential equation satisfied by the Romanovski poly- 5 d2g, () dg(z)
nomials reads as (14 z%) 5t
dx dx
(1+: 2)d2R£lp7q) (2) +(2(=p+ Dz +9q) dRi (2) —b?+a(a+1) b(2a+1)
' @ R " ( 1+a2 1422 x+6n> o (@)=0,  (23)
— (n(n—1)+2n(1 —p))RPD(z) = 0. (22)

In the next section we shall show that the Sehinger equa-  with g, (z) = ¥, (sinh™ '), ande, = e, — a>. Equa-
tion with the hyperbolic Scarf potential reduces precisely totion (19) suggests the following substitution in Eq. (23):
that very Eq. (22).

_ e _atanTlg (B,a)
2.1. The real polynomial equation associated with the gn(r) = (1 +a7)7e™> D (@),
hyperbolic Scarf potential x=sinhz, —oc0o<z<+400. (24)

The Schédinger equation for the potential of interest when _ _
rewritten in a new variable;, introduced via an appropriate In(ﬁeffect, Eq. (23) reduces to the following equation for

| DY (a),
dQD(B’a) (x) dD(ﬁ;a) (.13)
2 n _ n
L L N D L
ta? 45— b+ )+ a(—b—2ab+ & —
+<62+en+(a S 11)502 2 = aﬂ))ﬂf’“)(w):()- (25)

If the potential equation (25) is to coincide with the Ro-
manovski equation (22), then Finally, the third restriction leads to a condition that fixes the

e first the coefficient in front of the /(2> + 1) term  Scarf Il energy spectrum as
in (25) must vanish,

_ 2
e the coefficients in front of the first derivatives must be en = —(a—n)". (30)

equalji.e.2(—p+1)+¢=(28+ 1)z — «,
) ) In this way, the polynomials that enter the solution of the
e the eigenvalue constants should also be equal, Schibdinger equation will be

en+ 032 =-n((n—1)+2(1 —p)).
The first condition restricts the parameters of g (x) DF=—a.0=20) () = R(p:a%,q:f%) (2) (31)
polynomials to " - '

2
ata—b+ 2 + B—B32=0, (26)  They are obtained by means of the Rodrigues formula from
4 the weight functions(*+2:-20) (z) as
—b—2ab+ < —af=0. 27)
_ 2 _ R(aJr%,be)(m) _ 1 dm
Solving Egs. (26) and (27) far and results in m T wlati.—2b) (z) dz™
I6] a (67 ( ) « (1 _i_:172)mw(a-ﬁ-%,—Qb)(‘,L.)7
The second condition relates the parameteasid5 to p and ) ) »
¢, and amounts to w72 () = (1 4 g?2) 7072 2tan @, (32)
1
f=-a=-pt3 —a=qg=-2b 29 psa result, the wave function of theth level, v),,, takes the
| form
o 1 1 B o+l —
LZJn(Z = sinh™! x) :d:f gn(x) = 771\/(1 + x2) (a+é)e*2btan 1 er(z +3 2b) (:U),
/dslnd};c T
dsinh ™'z = ;dx (33)
VitaZ

Rev. Mex. Fs. E53(2) (2007) 143-154
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The orthogonality integral of the Sdtainger wave functions gives rise to the following orthogonality integral of the Ro-
manovski polynomials:

—+oo +oo
/ V()0 (2)dz = / (14 o)~ (i) g2 tan ™t RH 2720 () RIS 20 (4 g (34)

which coincides in form with the integral in Eq. (20) and is
convergent fom < a. The fact that only a finite number of Ithe Romanovski polynomials by a phase factor founif'as
Romanovski polynomials are orthogonal is reflected by theRef. 35:
finite number of bound states within the potential of interest,

a humber that depends on the potential parameters, in accordZ-nPn 2(1-p) iq i
with Eq. (21). -1 0 1
As to the complete Scarf Il spectrum, it was constructed
in Ref. 9 using the dynamical symmetry approach [8]. There, -p ( 2(1-p) q x) (38)
the Scarf Il potential was found to posséd$(1, 1) as a sym- " 1 0 1 ’

metry group. The bound states have been assigned to the
discrete unitary irreducible representationsséf(1,1). The  Because of this relationship, the Romanovski polyno-
scattering and resonant states (which are beyond the scope®fals have been termed to as “Romanovski-Pseudo-
the present study) have been related to the continuous unitad@cobi” by Lesky [24].  The relationship in Eq. (38)
and non-unitary representations$ff (1, 1), respectively. tells that theRgf’ /() properties translate into those of
A comment is in order on the relation between the Ro-P "2 "7+ (iz) and visa versa, and that it is a matter of
manovski polynomials and the Jacobi polynomials of imag-convenience to prefer one polynomial over the other. When
inary arguments and parameters that are complex conjugatecomes to recurrence relations, generating functions, etc., it

to each other. Recall the real Jacobi equation, is perhaps more convenient to favor the Jacobi polynomials,
although the generating function of the Romanovski polyno-
d?>P)(z) dP) () mials is equally well calculated directly from the correspond-
_ 2 on _5— n
(1-2% dx? Hr=0-(y+0+2)z) dx ing Taylor series expansion [31]. However, concerning the
—n(ndy 40+ 1)P,j*5(3:) —0. (35) orthogonality integrals, the advantage is clearly on the side

of the real Romanovski polynomials. This is so because the

As mentioned above, the real Jacobi polynomials are orthog=0MPlex Jacobi polynomials are known for their highly non-
onal within the[—1, 1] interval with respect to the weight- trivial orthogonahty prlopert|es, which depend on the inter-
function in Eq. (4). Transforming to a complex argument, play bgtween mtggratlon contour and parameter values [36].
x — iz, and parameters; = 6* = ¢ + id, Eq. (35) trans- For this reason, in random matrix theory [37], the problem

forms into on the gap probabilities in the spectrum of the circular Jacobi
ensemble is treated in terms of the Cauchy random ensemble,
(1+42) d? petide=id (o) a venue that heads one again to the Romanovski polynomials
dz? (notice that forp = 1, ¢ = 0 the weight function in Eq. (19)
dPeide=id (i) reduces to the Cauchy distribution). _
+(=2d+2(c+ 1):1:)"T In summary, for all the reasons given above, the Ro-
) , manovski polynomials qualify as the most adequate real de-
+n(n+2c+ )Py iz) = 0. (36)  grees of freedom in the mathematics of the hyperbolic Scarf
potential.
Correspondingly, the weight function turns out to be
wetide=id(jpy = (1 4 g?)ce 2dtan o @7) 3. The polynomial construction
and it coincides with the weight function of the Romanovski The construction of thé%,g,a+%’_2b) () polynomials is now
polynomials in Eq. (19) upon the identifications= —p, and  straightforward and based upon the Rodrigues representation
q = —2d. This means thastid-c=id(z) will differ from in Eq. (18), where we plug in the weight function from

Rev. Mex. Fs. E53(2) (2007) 143-154
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Eqg. (19). In carrying out the differentiations, we find the lowest four (unnormalized) polynomials to be

. g”%"%) T (39)
R$a+%»—2b) (JC) = —2b+ (1 — QG)I, (40)
R§“+%»—2b) (z) = 3 — 2a + 4b> — 8b(1 — a)z + (6 — 10a + 4a)2?, @

Rg“*%"%) (z) = —266 + 12ab — 8b* + [~3(—15+16a—4a?)+12(3—2a)b*|x
+ (—72b + 84ab — 24ab)z* + 2(—2 + a)(—15 + 16a — 4a?)x>. (42)
As illustration, in Fig. 3 we show the Scarf Il wave functions of the first and third levels.

The finite orthogonality of the Romanovski polynomials becomes especially transparent in the interesting limiting case

the sechz potential (it appears in the non-relativistic reduction of the sine-Gordon equation), where one easily finds that t
(a+3,0)

normalization constanty’,, are given by the following expressions:
2 2
at+l 2a —1 I'(a—1
(N1< wo)) _a-DAa-y
QF(CL + 5)
1 2 —_ —
(N2(a+270)) — 2ﬁ(a 1)]‘—‘1(0’ 2) (3 . 2(1)2, a > 2,
I'(a—3)
2
a+i —2)'(a —
(N?f *2’0)) _ 3\/%(?( ) 1()“ 3 (102 — 160+ 15)2, a>3 etc (43)
a—3

Software like Maple or Mathematica are quite useful for the4. Romanovski  polynomials and non-
graphical study of these functions. The latter expressions spherical angular functions in electrody-

show that, for positive integer values of theparameter, namics with non-central potentials
a = n, only the first(n — 1) Romanovski polynomials are
orthogonal (the convergence of the integrals requiresa),  |n recent years, there have been several studies of the bound

as it should be in accordance with Egs. (21), (9). The genstates of an electron within a compound Coulomb- and non-
eral expressions for the normalization constants of any Rocentral potential (see Refs. 38 and 39, and references therein).
manovski polynomial are defined by integrals of the type | et us assume the following potential:

/ (1 + x2)7(p7n)€qtan_1 Tl V(T,@) = VC(T) + 2 ‘/2(9) = —C COtH, (44)
- wherel,(r) denotes the Coulomb potential atits the polar
and are analytic fofp — n) integer or semi-integer. angle (see Fig. 4). The corresponding Sclinger equation
| reads
10 ,0 1 0 . 0 1 0?
{— {ﬂ@rr o + oy 9% + 7“2511129&&} + V(r, 9)} U(r,0,¢) = E¥Y(r,0,9), (45)
and is solved as usual by separating the variables: |
and
U(r,0,¢) = R(r)0(0)2(p). (46)
d?0(0) 9 de(9)
The radial and angular differential equations fotr) and a2 T cot(0) a0
©(#) are then found to be 2
+ 114+ 1) = Va(0) — 0(0)=0, (48
dz'R(T) ng(T) ( ) 2(0) sin g (0) (48)
dr? r dr ) . .
with I(I + 1) being the separation constant. From now on we
+ |(Ve(r)+ E) — [+ 1)) R(r) =0, (47) shall focus our attention on Eg. (48). It is obvious that for

r2

V2(#) = 0, and upon changing variables frofnto cos 6, it
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new variablez, introduced vi&d — f(z). This transforna-

Coz tion leads to the new equation:
-]
2 "
| e )] £
i) - )] v — o 60
sin? f(z) : =0

with f/(z)=df(z)/dz, andy(z) defined as)(z)=0(f(z)).
Next, one requires the coefficient in front of the first
derivative to vanish, which transforms Eq. (50) intol&
Schibdinger equation. This restrict§(z) to satisfying the
differential equation:

- /"(2)
f'(z)

which is solved byf (z) = 2tan~! e*. With this relation and
after some algebraic manipulations, one finds that

= f'(z) cot f(2), (51)

—100
—200 ¢

=300}

sinf = , cosf =—tanhz, (52)
T cosh z
and consequently,
=500
! I o
FIGURA 3. Wave functions for the first and third levels within the f(z) = sin f(2) = sech 2. (53)
hyperbolic Scarf potencial. . . L. .
Equation (52) impliessinh z = —cot 8, or, equivalently,

§ = cot~!(—sinhz). Upon substituting Eq. (53) into
Egs. (44), and (50), one arrives at

d?i(z) 1
+ [{(l+1
dz? ( )COSh2Z
+ ctanhz— 2| (2) = 0
ctanhz _—=— —m 2)=0,

¥(z) Lo (0 = cot™!(—sinh 2))

O(0) Ay (z =sinh ™" (—cot 0)) . (54)

Taking into consideration Egs. (7),(44), and (52), one real-
izes that the latter equation is precisely the one-dimensional
Schibdinger equation with the hyperbolic Scarf potential
where

FIGURE 4. The non-central potentidl (r, §), displayed here in its l+1)=—0*—ala+1)), m?>=—€,=(a—n)?,
intersection with ther = 0 plane,i.e. for r = /y2 + 22, and
6 = tan~'y/z. The polar angle part of its exact solutions is ex- m>0, c=-b2a+1). (55)
pressed in terms of the Romanovski polynomials.

Taking into account Eq. (9) above, the first Egs. (55) is satis-
becomes the associated Legendre equation. Correspondingdfigd by
O(0) approaches the associated Legendre functions,

. a = b=1Il(l+1). 56
0(0) 25 pm(cos ), (49) t+1) (6)
an observation that will become important below. As long as the integer number satisfies

In order to solve Eq. (48) we follow the prescription given
in Ref. 38 and begin by substituting the polar angle by the m=a—-n=I{l+1)-n>0,
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thenl < m < [(Il + 1). In this way, the solution fo®
becomes

0(0) = Un=1(1+1)—m (Z = Sinhfl(— cot 9))

— (1 + cot?§) T2 et tan™! (— cot0)

I(I+1)+1,—21(1+1
x Ry (ot ). (57)

Therefore, the complete angular part of the solution is given
by
O(0)®(0)=tn—i(151)—m(2=sinh ™" (—cot 0)) e*"*. (58)

From now on, we shall introducg;™ (¢, ), a new notation,
according to

Z"(0, 0)=Vn=13141)—m (z: sinh™* (- cot 9)) eln¥  (59) a)

and refer taZ]" (6, ¢) as non-spherical angular functions. In
Fig. 5, we display two of the lowestZ;™ (6, )| functions

for illustrative purposes. A more extended sampler can be
found in Ref. 42. A comment is in order 9&;" (6, ¢)|. In

that regard, it is important to become aware of the fact al-
ready mentioned above that the Scarf Il potential possesse!
su(1,1) as a potential algebra, a result reported by Refs. 9
and 34 among others. There, it was pointed out that the re-
spective Hamiltonian{, equalsH = —C — 1/4, with C be-

ing the su(1, 1) Casimir operator, whose eigenvalues in our
convention arg(j — 1) with j > 0 versusj(j+1) andj < 0

in the convention of [9, 34]. As a consequence, the bound
state solutions to Scarf Il are assigned to infinite discrete,
irreducible unitary representationsD;” (™)(6,¢)}, of the
SU(1,1) group. TheSU(1,1) labelsm’, andj are mapped

onto ours via b)

1 1
'—a+c=11+1)+ =
m =at+g=U+1)+3,

j=m'—n, m =4 i+1,j4+2,.. (60)  FIGURE 5. . Graphical presentation of the pon-spherical—
. , ) . angular functiongZ1 (0, )| (left), and|Z3 (0, ¢)| (right) to the
meaning that bothi andm’ are half-integers. The represen- v, ) potential in Eq. (44). They portray in polar coordi-
tations are infinite because, for a fixgulalue,m’ is bounded  npate space in turn the componeniz” » (m'=5/2) (9, )|, and
, . L. . ] G = bl ]
from below tom;,;,, = j, butitis not bound from above. DY, (m=18/2) (9. )| of the respective infinite discrete unitary
In terms of theSU(1,1) labels the energy rewrites as St ;
. 5 oy (1,1) representation.
€, = —(j —1/2)%. The conditiona > n translates now

asj > 1/2. As aresult©(#) becomes

_ (b l(— , ) )
O(6) = Pn=p—; (sinh ™ (— cot 6)) 4.1. Romanovski polynomials and associated Legendre
_ \/(1 +C0t2 0)—m/+1/26—2btan*1(—cot 0) functions.
% R(rr}”f2b)(_cot 0) It is quite instructive to consider the case of a vanishing
m’—j

V2(0), i.e. ¢ = 0, and compare Eq. (54) to Eq. (7) foe= 0.

:D;r=m+1/2 (m/:l(lﬂ)ﬂ/z)(&w)ef"m’“”. (61) Inthis case

Here we kept the parametér general because its value

does not affect theSU(1,1) symmetry. Within this con- l=a, m? = (1 —n)?, (62)
text, [¢n—; (sinh ™" (—cot #) | can be viewed as the abso-

lute value of a component of an irreducib#/(1,1) rep-  which allows one to relate to [ andm asm = | — n. As
resentation [40,41] in terms of the Romanovski polynomialsjong as the two equations are equivalent, their solutions dif-
The|Z" (0, ¢)| functions are then images in polar coordinatefer at most by a constant factor. This allows us to establish a

space of theD" ., . (m'=L0+1)+1/2)| components. relationship between the associated Legendre functions and
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TABLE |. Characteristics of the orthogonal polynomial solutions to the generalized hypergeometric equation.

Notion Symbol w(z) Interval Number of orth. polynomials
Jacobi PY*(x) (I—-2)"(142)" [—1,1] infinite
Hermite H(z) e [—00, 0] infinite
Laguerre L (z) zPe=ov” [0, o0] infinite
Romanovski R (z) (1+ z%) Peatan™ @ [—00, 0] finite

the Scarf Il wave functions. Considering Egs. (24), and (33which is automatically fulfilled for anyn > 0. The presence
together with Egs. (52), one findst = —sinhz which  of the additional factor of1 +?)~! guarantees convergence
produces the following intriguing relationship between thealso form = 0. Equation (66) reveals that, for parameters
associated Legendre functions and the Romanovski polynattached to the degree of the polynomial, an infinite num-
mials: ber of Romanovski polynomials can appear orthogonal, al-
. o L (1+1,0) though not precisely with respect to the weight function that
P (cos ) ~ (14 cot™0) > R;_ 2" (— cot §), defines their Rodrigues representation. The study presented
l-m=n=0,1,2,..I. (63) here"is_ similar to Ref. 43. There: the exact solutions of the
Schibdinger equation with the trigonometric Rosen-Morse
Substituting the latter expression into the orthogonality intepotential have been expressed in terms of Romanovski poly-
gral between the associated Legendre functions, nomials (not recognized as such at that time), and also with
. parameters that depended on the degree of the polynomial.
m m Also in this case, the:-dependence of the parameters, and
/Pl (cos ) Fif*(cosB)dcos§ =0, 11, (64) the corresponding varying weight function make it possible
0 to satisfy Eq. (21) for an infinitely many polynomials.
results in the following integral:

T

/(1+Cot2 0)- 5 RT3 (ot gy p( ) 5. Summary

l—m l'—m

0 In this work we presented the classification of the orthog-

x(—cot@)dcosf® =0, 1#1. (65) onal polynomial solutions to the generalized hypergeomet-

o ] ] ] ric equation in the schemes of Koepf—Masjed-Jamei [22], on
Rewriting in conventional notations, the latter expression begne gne hand, and Nikiforov-Uvarov [7], on the other. We

comes found among them the real polynomials that define the solu-
+00 tions of the bound states within the hyperbolic Scarf poten-

/ \/w(“r%ao) (x)R(ljl%*o)(x) tial. These so called Romanovski polynomials have the re-

. e markable property that, for any given set of parameters, only

a finite number of them are orthogonal. In such a manner, the

% 1/ w(l+5:0) (x)R(l,/j’O) () dz —0, 14, finite ngmber of bound states within S_carf Il were mapped
R onto a finite set of orthogonal polynomials of a new type.
z=sinhz, l—-n=0-n"=m>0. (66) We showed that the Romanovski polynomials also define

the angular part of the wave function of the non-central po-
This integral describes orthogonality betweenir@mite set  tential considered in Sec. 4. Yet, in this case, the polynomial
of Romanovski polynomials wittdifferent polynomial pa- parameters turned out to be dependent on the polynomial de-
rameters(they would define wave functions of states boundgree. We identified these non-spherical angular solutions to
in different potentials This new orthogonality relationship the non-central potential under investigation as images in po-
does not contradict the finite orthogonality in Eq. (21), which|ar coordinate space of components of infinite discrete uni-
is valid for states belonging tsame potentia{equal poly-  tary SU/(1,1) representations. In the limit of the vanishing
nomial parameters Rather, for different potentials, Eq. (21) non-central piece of the potential, we established a non-linear
can be fulfilled for an infinite number of states. To see this, letelationship between the Romanovski polynomials and the
us consider for simplicity, = n’ =1 —m,i.e,l =1". Given  associated Legendre functions. On the basis of the orthogo-
p = [+1/2, the condition in Eq. (21) defines normalizability nality integral for the latter, we derived a new such integral

and takes the form for the former.
1 The presentation contains all the details which to our un-
20-m) <2{l+5)—-1=2, (67) derstanding are essential for reproducing our results. By this
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