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Exact spectrum and wave functions of the hyperbolic Scarf potential
in terms of finite Romanovski polynomials

D.E. Alvarez-Castillo and M. Kirchbach
Instituto de F́ısica, Universidad Aut́onoma de San Luis Potosı́,

Av. Manuel Nava 6, San Luis Potosı́, S.L.P. 78290, Mexico.

Recibido el 1 de septiembre de 2006; aceptado el 24 de febrero de 2007

The Schr̈odinger equation with the hyperbolic Scarf potential reported so far in the literature is somewhat artificially manipulated into the
form of the Jacobi equation with an imaginary argument and parameters that are complex conjugate to each other. Instead we here solve the
former equation anew and make the case that it reduces straightforward to a particular form of the generalized real hypergeometric equation
whose solutions are referred to in the mathematics literature as the finite Romanovski polynomials, in reference to the observation that for
any parameter set only a finite number of such polynomials appear to be orthogonal. This is a qualitatively new integral property that does
not copy any of the features of the Jacobi polynomials. In this manner, the finite number of bound states within the hyperbolic Scarf potential
is brought into correspondence with a finite system of a new class of orthogonal polynomials. This work adds a new example to the circle
of the problems on the Schrödinger equation. The techniques used by us extend the teachings on the Sturm-Liouville theory of ordinary
differential equations beyond their standard presentation in the textbooks on mathematical methods in physics.

Keywords:Schrodinger equation; Scarf potentials; Romanovski polynomials.

La solucíon a la ecuación de Schr̈odinger con el potencial de Scarf hiperbólico reportada hasta ahora en la literatura fı́sica est́a manipulada
artificialmente para obtenerla en la forma de los polinomios de Jacobi con argumentos imaginarios y parámetros que son complejos conju-
gados entre ellos. En lugar de eso, nosotros resolvimos la nueva ecuación obtenida y desarrollamos el caso en el que realmente se reduce
a una forma particular de la ecuación hipergeoḿetrica generalizada real, cuyas soluciones se refieren en la literatura matemática como los
polinomios finitos de Romanovski. La notación de finito se refiere a que, para cualquier parámetro fijo, solo un ńumero finito de dichos poli-
nomios son ortogonales. Esta es una nueva propiedad cualitativa de la integral que no surge como copia de ninguna de las caracterı́sticas de
los polinomios de Jacobi. De esta manera, el número finito de estados en el potencial de Scarf hiperbólico es consistente en correspondencia
a un sistema finito de polinomios ortogonales de una nueva clase.

Descriptores:Ecuacíon de Schrodinger; potenciales de Scarf; polinomios de Romanovski.

PACS: 02.30.Gp; 03.65.Ge; 12.60.Jv

1. Introduction

The exactly solvable Schrödinger equations occupy a pole
position in quantum mechanics insofar as most of them re-
late directly to physical systems. Suffices to mention as
prominent examples the quantum Kepler or Coulomb prob-
lem and its importance in the description of the discrete spec-
trum of the hydrogen atom [1], the harmonic-oscillator, the
Hulthen, and the Morse potentials with their relevance to vi-
brational spectra [2, 3]. Another good example is given by
the P̈oschl-Teller potential [4] which appears as an effective
mean field in many-body systems withδ-interactions [5]. In
terms of path integrals, the criteria for exact resolvability of
the Schr̈odinger equation is the existence of exactly solvable
corresponding path integrals [6].

There are various methods of finding the exact solutions
of the Schr̈odinger equation (SE) for the bound states, an is-
sue on which we shall focus in the present work. The tra-
ditional method, to be pursued by us here, consists in re-
ducing SE by an appropriate change of the variables to that
very form of the generalized hypergeometric equation [7]
whose solutions are polynomials, the majority of them be-
ing well known. The second method suggests to first un-
veiling the dynamical symmetry of the potential problem and

then employing the relevant group algebra in order to con-
struct the solutions as the group representation spaces [8, 9].
Finally, there is also the most recent and powerful method
of super-symmetric quantum mechanics (SUSYQM) which
considers the special class of Schrödinger equations (in units
of ~ = 1 = 2m) that allow for a factorization according
to [10-12],

(H(z)− en) ψn(z) =
(
− d2

dz2
+ v(z)− en

)
ψn(z) = 0 ,

H(z) = A+(z)A−(z) + e0 ,

A±(z) =
(
± d

dz
+ U(z)

)
. (1)

Here, H(z) stands for the (one-dimensional) Hamiltonian,
U(z) is the so called super-potential, andA±(z) are the lad-
der operators connecting neighboring solutions. The super-
potential allows us to recover the ground state wave function,
ψgst(z), as

ψgst(z) ∼ e−
∫ z U(y)dy . (2)

The excited states are then built up on top ofψgst(z) through
the repeated action of theA+(z) operators.
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FIGURE 1. The trigonometric Scarf potential (Scarf I) for the set
of parameters,a = 10, b = 5, andα = 1. The horizontal lines
represent the discrete levels.

1.1. The trigonometric Scarf potential

Super-symmetric quantum mechanics manages a family of
exactly solvable potentials (see Refs. 11 to 13 for details),
one of which is the so called trigonometric Scarf potential
(Scarf I) [14], here denoted byvt(z) and given by

v
(a,b)
t (z) =− a2 + (a2 + b2 − aα) sec2 αz

− b(2a + α) tan αz sec αz. (3)

It has been used in the construction of a periodic potential and
employed in one-dimensional crystal models in solid state
physics.

The exact solution of the Schrödinger equation with the
trigonometric Scarf potential (displayed in Fig. 1) is well
known [11, 13] and given in terms of the Jacobi polynomi-
als,P β,α

n (x), as

ψn(x) =
√

(1− x)γ(1 + x)δP
γ− 1

2 ,δ− 1
2

n (x),

x = sin αz,

wγ− 1
2 ,δ− 1

2 (x) = (1− x)γ− 1
2 (1 + x)δ− 1

2 ,

γ =
1
α

(a− b), δ =
1
α

(a + b) . (4)

Here, wγ− 1
2 ,δ− 1

2 (x) stands for the weight function from

which the Jacobi polynomialsP
γ− 1

2 ,δ− 1
2

n (x) are obtained via
the Rodrigues formula.

The corresponding energy spectrum is obtained as

εn = en + a2 = (a + nα)2 . (5)

1.2. The hyperbolic Scarf potential

By means of the substitutions

a −→ ia , α −→ −iα , b −→ b , (6)

FIGURE 2. The hyperbolic Scarf potential (Scarf II) for the set of
parameters,a = 10, b = 5, andα = 1. The horizontal lines
represent the energies,en, of the bound states.

Scarf I is transformed into the so-calledhyperbolicScarf po-
tential (Scarf II), here denoted byv(a,b)

h (z) and displayed in
Fig. 2,

v
(a,b)
h (z) = a2 + (b2 − a2 − aα)sech2αz

+ b(2a + α)sechαz tanh αz . (7)

The latter potential has also been found independently within
the framework of super-symmetric quantum mechanics while
exploring the super-potential [11,13,15]:

U(z) = a tanh αz + bsechαz . (8)

Upon the above substitutions, and takingα = 1 for simplic-
ity, the energy changes to

εn = en − a2 = −(a− n)2 , n = 0, 1, 2, ... < a . (9)

It is important to notice that, while the trigonometric
Scarf potential allows for an infinite number of bound states,
the number of discrete levels within the hyperbolic Scarf po-
tential is finite, a difference that will be explained in Sec. 3
below. Yet the most violent changes seem to be suffered by
the Jacobi weight function in Eq. (4) and are due to the open-
ing of the finite interval[−1,+1] toward infinity

x=sin αz ∈ [−1, 1] −→ x=sinhαz ∈ [−∞, +∞] . (10)

In this case, the wave functions become [11,16,17],

ψn(−ix) = (1 + x2)−
a
2 e−b tan−1 xcnP η∗,η

n (−ix) ,

η = ib− a− 1
2

. (11)

Here,cn is some state dependent complex phase to be fixed
later on. The latter equation gives the impression that the ex-
act solutions of the hyperbolic Scarf potential rely exclusively
upon those peculiar Jacobi polynomials with imaginary argu-
ments and complex indices. We here draw attention to the
fact that this need not be so.

Rev. Mex. F́ıs. E53 (2) (2007) 143–154
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1.3. The goal

The goal of this work is to solve the Schrödinger
equation with the hyperbolic Scarf potential
anew and to make the case that it reduces in
a straightforward manner to a particular form
of the generalized real hypergeometric equation
whose solutions are given by a finite set of real
orthogonal polynomials. In this manner, the fi-
nite number of bound states within the hyper-
bolic Scarf potential is brought in correspon-
dence with a finite system of orthogonal poly-
nomials of a new class.

These polynomials were discovered in 1884 by the En-
glish mathematician Sir Edward John Routh [18] and re-
discovered 45 years later by the Russian mathematician
Vsevolod Ivanovich Romanovski in 1929 [19] within the
context of probability distributions. Though they have been
studied on few occasions in the current mathematical litera-
ture where they are termed to as “finite Romanovski” [20-23]
or “Romanovski-Pseudo-Jacobi” polynomials [24], they have
been completely ignored by the textbooks on mathematical
methods in physics and, surprisingly enough, by the standard
mathematics textbooks as well [7,25-28]. The notion “finite”
refers to the observation that, for any given set of parameters
(i.e. in any potential), only a finite number of polynomials
appear orthogonal.

The Romanovski polynomials happen to be equal (up to
a phase factor) to Jacobi polynomials with imaginary argu-
ments and parameters that are complex conjugate to each
other, much like thesinh z = i sin iz relationship. Although
one may (but does not have to) deduce the local characteris-
tics of the latter, such as generating function and recurrence
relations, from those of the former, the finite orthogonality
theorem is qualitatively new. It does not copy any of the prop-
erties of the Jacobi polynomials, but requires an independent
proof.

Our work adds a new example to the circle of typical
quantum mechanical problems [29]. The techniques used by
us here extend the study of the Sturm-Liouville theory of or-
dinary differential equations beyond that of the usual text-
books.

A final comment on the importance of the potential in
Eq. (7). The hyperbolic Scarf potential finds various applica-
tions in physics ranging from electrodynamics and solid state
physics to particle theory. In solid state, physics Scarf II is
used in the construction of more realistic periodic potentials
in crystals [30] than those built from the trigonometric Scarf
potential. In electrodynamics, Scarf II appears in a class of
problems with non-central potentials (see Sec. 4). In particle

physics, Scarf II finds application in studies of the non-
perturbative sector of gauge theories by means of toy mod-
els such as the scalar field theory in (1+1) space-time di-
mensions. Here, one encounters the so called “kink-like”
solutions which are nothing more than static solitons. The
spatial derivative of the kink-like solution is viewed as the
ground state wave function of an appropriately constructed
Schr̈odinger equation, which is then employed in the calcu-
lation of the quantum corrections to the first order. In Ref. 17
it was shown that specifically Scarf II is amenable to a stable
renormalizable scalar field theory.

The paper is organized as follows. In the next section
we first highlight in brief the basics of the generalized hy-
pergeometric equation and then relate it to the Schrödinger
equation with the hyperbolic Scarf potential. The solutions
are obtained in terms of finite Romanovski polynomials and
are presented in Sec. 3. Section 4 is devoted to the disguise of
the Romanovski polynomials as non–spherical angular func-
tions. The paper ends with a brief summary.

2. Master formulas for the polynomial so-
lutions to the generalized hypergeometric
equation

All classical orthogonal polynomials appear as solutions of
the so called generalized hypergeometric equation (the pre-
sentation in this section closely follows Ref. 22):

σ(x)y′′n(x) + τ(x)y′n(x)− λnyn(x) = 0, (12)

σ(x) = ax2 + bx + c, τ(x) = xd + e ,

λn = n(n− 1)a + nd. (13)

There are various methods for finding the solution, here de-
noted by

yn(x) ≡ Pn

(
d e
a b c

∣∣∣∣∣x
)

, (14)

with the symbol

Pn

(
d e
a b c

∣∣∣∣∣x
)

,

in which the equation parameters have been made explicit,
standing for a polynomial of degreen, λn being the eigen-
value parameter, andn = 0, 1, 2, . . .. In Ref. 22 a master
formula for the (monic,P̄n) polynomial solutions has been
derived by Koepf and Masjed-Jamei; according to them, one
finds

P̄n

(
d e
a b c

∣∣∣∣∣x
)

=
n∑

k=0

(
n
k

)
G

(n)
k (a, b, c, d, e)xk ,

Rev. Mex. F́ıs. E53 (2) (2007) 143–154
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G
(n)
k =

(
2a

b +
√

b2 − 4ac

)n

2F1

(
(k − n),

(
2ae−bd

2a
√

b2−4ac
+ 1− d

2a − n
)

2− d
a − 2n

∣∣∣∣∣
2
√

b2 − 4ac

b +
√

b2 − 4ac

)
. (15)

Though the formal proof of this relation is a bit lengthy,
its verification with symbolic mathematical software such as
Maple is straightforward. Notice that theG(n)

k are not nor-
malized. On the other side, Eq. (12) can be treated alterna-
tively as described in the textbook by Nikiforov and Uvarov
in Ref. 7, where it is cast into a self-adjoint form and its
weight function,w(x), satisfies the so called Pearson differ-
ential equation,

∂

dx
(σ(x)w(x)) = τ(x)w(x) . (16)

The Pearson equation is solved by

w(x) ≡ W
(

d e
a b c

∣∣∣∣∣x
)

= exp
(∫

(d− 2a)x + (e− b)
ax2 + bx + c

dx

)
, (17)

and shows how one can calculate any weight function asso-
ciated with any parameter set of interest (we again used a
symbol for the weight function that makes explicit the pa-
rameters of the equation). The corresponding polynomials
are now classified according to the weight function, and are
built up from the Rodrigues representation as

Pn

(
d e
a b c

∣∣∣∣∣x
)

= Πk=n
k=1 (d + (n + k − 2)a)P̄n

(
d e
a b c

∣∣∣∣∣x
)

=
1

W
(

d e
a b c

∣∣∣∣∣x
)

× dn

dxn

(
(ax2 + bx + c)nW

(
d e
a b c

∣∣∣∣∣x
))

.

(18)

The master formulas in the respective Eqs. (15) and (18), al-
low for the construction of all the polynomial solutions to the
generalized hypergeometric equation. One identifies as spe-
cial cases the canonical parameterizations known as

• the Jacobi polynomials witha = −1, b = 0, c = 1,
d = −γ − δ − 2, ande = −γ + δ,

• the Laguerre polynomials witha = 0, b = 1, c = 0,
d = −1, ande = α + 1,

• the Hermite polynomials witha = b = 0, c = 1,
d = −2, ande = 0,

• the Romanovski polynomials witha = 1, b = 0, c = 1,
d = 2(1− p), ande = q with p > 0,

• the Bessel polynomials witha = 1, b = 0, c = 0,
d = α + 2, ande = β.

All other parameterizations can be reduced to one of the
above five by an appropriate shift of the variables. The first
three polynomials are the only ones that are traditionally
presented in the standard textbooks on mathematical methods
in physics such as [25-28], while the fourth and fifth seem to
have escaped due attention. Notice that the Legendre, Gegen-
bauer, and Chebychev polynomials appear as particular

cases of the Jacobi polynomials. The Bessel polynomials are
not orthogonal in the conventional sense,i.e. within a real
interval, and will be left out of consideration.

Some of the properties of the fourth polynomials have
been studied in the specialized mathematics literature such
as Refs. 20, 21, and 23. Their weight function is calculated
from Eq. (17) as

w(p,q)(x) = (x2 + 1)−peq tan−1 x . (19)

This weight function was first reported by Routh [18], then
and independently by Romanovski [19]. The polynomials as-
sociated with Eq. (19) are named after Romanovski, and will
be denoted byR(p,q)

m (x). They have non-trivial orthogonal-
ity properties over the infinite interval[−∞,+∞]. Indeed,
as long as the weight function decreases asx−2p, integrals of
the type

+∞∫

−∞
w(p,q)(x)R(p,q)

m (x)R(p,q)
m′ (x)dx (20)

will be convergent only if

m + m′ < 2p− 1 , (21)

Rev. Mex. F́ıs. E53 (2) (2007) 143–154
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meaning that only a finite number of Romanovski polyno-
mials are orthogonal. This is the reason for the term “fi-
nite”Romanovski polynomials (details are given in Ref. 31).
The differential equation satisfied by the Romanovski poly-
nomials reads as

(1 + x2)
d2R

(p,q)
n (x)
d2x

+ (2(−p + 1)x + q)
dR

(p,q)
n (x)
dx

− (n(n− 1) + 2n(1− p))R(p,q)
n (x) = 0 . (22)

In the next section we shall show that the Schrödinger equa-
tion with the hyperbolic Scarf potential reduces precisely to
that very Eq. (22).

2.1. The real polynomial equation associated with the
hyperbolic Scarf potential

The Schr̈odinger equation for the potential of interest when
rewritten in a new variable,x, introduced via an appropriate

point canonical transformation [32, 33], taken by us as
z = f(x) = sinh−1 x, is obtained as:

(1 + x2)
d2gn(x)

dx2
+ x

dgn(x)
dx

+
(−b2+a(a+1)

1+x2
−b(2a+1)

1+x2
x+εn

)
gn(x)=0, (23)

with gn(x) = ψn(sinh−1 x), and εn = en − a2. Equa-
tion (19) suggests the following substitution in Eq. (23):

gn(x) = (1 + x2)
β
2 e−

α
2 tan−1 xD(β,α)

n (x) ,

x = sinh z , −∞ < x < +∞. (24)

In effect, Eq. (23) reduces to the following equation for
D

(β,α)
n (x),

(1 + x2)
d2D

(β,α)
n (x)
dx2

+ ((2β + 1)x− α)
dD

(β,α)
n (x)
dx

+

(
β2 + εn +

(a + a2 + β − β2 − b2 + α2

4 ) + x(−b− 2ab + α
2 − αβ)

1 + x2

)
D(β,α)

n (x) = 0 . (25)

If the potential equation (25) is to coincide with the Ro-
manovski equation (22), then

• first the coefficient in front of the1/(x2 + 1) term
in (25) must vanish,

• the coefficients in front of the first derivatives must be
equal,i.e. 2(−p + 1) + q = (2β + 1)x− α,

• the eigenvalue constants should also be equal,i.e.
εn + β2 = −n((n− 1) + 2(1− p)).

The first condition restricts the parameters of theD
(β,α)
n (x)

polynomials to

a + a2 − b2 +
α2

4
+ β − β2 = 0 , (26)

−b− 2ab +
α

2
− αβ = 0 . (27)

Solving Eqs. (26) and (27) forα andβ results in

β = −a , α = 2b . (28)

The second condition relates the parametersα andβ to p and
q, and amounts to

β = −a = −p +
1
2
, −α = q = −2b. (29)

Finally, the third restriction leads to a condition that fixes the
Scarf II energy spectrum as

εn = −(a− n)2 . (30)

In this way, the polynomials that enter the solution of the
Schr̈odinger equation will be

D(β=−a,α=2b)
n (x) ≡ R

(p=a+ 1
2 ,q=−2b)

n (x). (31)

They are obtained by means of the Rodrigues formula from
the weight functionw(a+ 1

2 ,−2b)(x) as

R
(a+ 1

2 ,−2b)
n (x) =

1
w(a+ 1

2 ,−2b)(x)
dm

dxm

× (1 + x2)mw(a+ 1
2 ,−2b)(x),

w(a+ 1
2 ,−2b)(x) = (1 + x2)−a− 1

2 e−2b tan−1 x. (32)

As a result, the wave function of thenth level,ψn, takes the
form

ψn(z = sinh−1 x) :def= gn(x) =
1√

d sinh−1 x
dx

√
(1 + x2)−(a+ 1

2 )e−2b tan−1 xR
(a+ 1

2 ,−2b)
n (x),

d sinh−1 x =
1√

1 + x2
dx . (33)

Rev. Mex. F́ıs. E53 (2) (2007) 143–154
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The orthogonality integral of the Schrödinger wave functions gives rise to the following orthogonality integral of the Ro-
manovski polynomials:

+∞∫

−∞
ψn(z)ψn′(z)dz =

+∞∫

−∞
(1 + x2)−(a+ 1

2 )e−2b tan−1 xR
(a+ 1

2 ,−2b)
n (x)R(a+ 1

2 ,−2b)

n′ (x)dx , (34)

which coincides in form with the integral in Eq. (20) and is
convergent forn < a. The fact that only a finite number of
Romanovski polynomials are orthogonal is reflected by the
finite number of bound states within the potential of interest,
a number that depends on the potential parameters, in accord
with Eq. (21).

As to the complete Scarf II spectrum, it was constructed
in Ref. 9 using the dynamical symmetry approach [8]. There,
the Scarf II potential was found to possessSU(1, 1) as a sym-
metry group. The bound states have been assigned to the
discrete unitary irreducible representations ofSU(1, 1). The
scattering and resonant states (which are beyond the scope of
the present study) have been related to the continuous unitary
and non-unitary representations ofSU(1, 1), respectively.

A comment is in order on the relation between the Ro-
manovski polynomials and the Jacobi polynomials of imag-
inary arguments and parameters that are complex conjugate
to each other. Recall the real Jacobi equation,

(1− x2)
d2P γ,δ

n (x)
dx2

+ (γ − δ − (γ + δ + 2)x)
dP γ,δ

n (x)
dx

− n(n + γ + δ + 1)P γ,δ
n (x) = 0 . (35)

As mentioned above, the real Jacobi polynomials are orthog-
onal within the[−1, 1] interval with respect to the weight-
function in Eq. (4). Transforming to a complex argument,
x → ix, and parameters,γ = δ∗ = c + id, Eq. (35) trans-
forms into

(1 + x2)
d2P c+id,c−id

n (ix)
dx2

+ (−2d + 2(c + 1)x)
dP c+id,c−id

n (ix)
dx

+ n(n + 2c + 1)P c+id,c−id
n (ix) = 0 . (36)

Correspondingly, the weight function turns out to be

wc+id,c−id(ix) = (1 + x2)ce−2d tan−1 x , (37)

and it coincides with the weight function of the Romanovski
polynomials in Eq. (19) upon the identificationsc = −p, and
q = −2d. This means thatP c+id,c−id

n (ix) will differ from

the Romanovski polynomials by a phase factor found asin in
Ref. 35:

inPn

(
2(1− p) iq
−1 0 1

∣∣∣∣∣ix
)

= Pn

(
2(1− p) q

1 0 1

∣∣∣∣∣x
)

. (38)

Because of this relationship, the Romanovski polyno-
mials have been termed to as “Romanovski-Pseudo-
Jacobi” by Lesky [24]. The relationship in Eq. (38)
tells that theR

(p,q)
n (x) properties translate into those of

P−p−i q
2 ,−p+i q

2 (ix) and visa versa, and that it is a matter of
convenience to prefer one polynomial over the other. When
it comes to recurrence relations, generating functions, etc., it
is perhaps more convenient to favor the Jacobi polynomials,
although the generating function of the Romanovski polyno-
mials is equally well calculated directly from the correspond-
ing Taylor series expansion [31]. However, concerning the
orthogonality integrals, the advantage is clearly on the side
of the real Romanovski polynomials. This is so because the
complex Jacobi polynomials are known for their highly non-
trivial orthogonality properties, which depend on the inter-
play between integration contour and parameter values [36].
For this reason, in random matrix theory [37], the problem
on the gap probabilities in the spectrum of the circular Jacobi
ensemble is treated in terms of the Cauchy random ensemble,
a venue that heads one again to the Romanovski polynomials
(notice that forp = 1, q = 0 the weight function in Eq. (19)
reduces to the Cauchy distribution).

In summary, for all the reasons given above, the Ro-
manovski polynomials qualify as the most adequate real de-
grees of freedom in the mathematics of the hyperbolic Scarf
potential.

3. The polynomial construction

The construction of theR
(a+ 1

2 ,−2b)
n (x) polynomials is now

straightforward and based upon the Rodrigues representation
in Eq. (18), where we plug in the weight function from
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Eq. (19). In carrying out the differentiations, we find the lowest four (unnormalized) polynomials to be

R
(a+ 1

2 ,−2b)
0 (x) = 1, (39)

R
(a+ 1

2 ,−2b)
1 (x) = −2b + (1− 2a)x, (40)

R
(a+ 1

2 ,−2b)
2 (x) = 3− 2a + 4b2 − 8b(1− a)x + (6− 10a + 4a2)x2, (41)

R
(a+ 1

2 ,−2b)
3 (x) = −266 + 12ab− 8b3 + [−3(−15+16a−4a2)+12(3−2a)b2]x

+ (−72b + 84ab− 24a2b)x2 + 2(−2 + a)(−15 + 16a− 4a2)x3. (42)

As illustration, in Fig. 3 we show the Scarf II wave functions of the first and third levels.
The finite orthogonality of the Romanovski polynomials becomes especially transparent in the interesting limiting case of

the sech2z potential (it appears in the non-relativistic reduction of the sine-Gordon equation), where one easily finds that the
normalization constantsN

(a+ 1
2 ,0)

n are given by the following expressions:

(
N

(a+ 1
2 ,0)

1

)2

=
(2a− 1)2

√
πΓ(a− 1)

2Γ(a + 1
2 )

, a > 1 ,

(
N

(a+ 1
2 ,0)

2

)2

=
2
√

π(a− 1)Γ(a− 2)
Γ(a− 1

2 )
(3− 2a)2, a > 2 ,

(
N

(a+ 1
2 ,0)

3

)2

=
3
√

π(a− 2)Γ(a− 3)
Γ(a− 1

2 )
(4a2 − 16a + 15)2, a > 3 etc. (43)

Software like Maple or Mathematica are quite useful for the
graphical study of these functions. The latter expressions
show that, for positive integer values of thea parameter,
a = n, only the first(n − 1) Romanovski polynomials are
orthogonal (the convergence of the integrals requiresn < a),
as it should be in accordance with Eqs. (21), (9). The gen-
eral expressions for the normalization constants of any Ro-
manovski polynomial are defined by integrals of the type

+∞∫

−∞
(1 + x2)−(p−n)eq tan−1 xdx

and are analytic for(p− n) integer or semi-integer.

4. Romanovski polynomials and non-
spherical angular functions in electrody-
namics with non-central potentials

In recent years, there have been several studies of the bound
states of an electron within a compound Coulomb- and non-
central potential (see Refs. 38 and 39, and references therein).
Let us assume the following potential:

V (r, θ) = VC(r) +
V2(θ)

r2
, V2(θ) = −c cot θ , (44)

whereVC(r) denotes the Coulomb potential andθ is the polar
angle (see Fig. 4). The corresponding Schrödinger equation
reads

[
−

[
1
r2

∂

∂r
r2 ∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
r2 sin2 θ

∂2

∂φ2

]
+ V (r, θ)

]
Ψ(r, θ, ϕ) = EΨ(r, θ, ϕ) , (45)

and is solved as usual by separating the variables:

Ψ(r, θ, φ) = R(r)Θ(θ)Φ(ϕ) . (46)

The radial and angular differential equations forR(r) and
Θ(θ) are then found to be

d2R(r)
dr2

+
2
r

dR(r)
dr

+
[
(VC(r) + E)− l(l + 1)

r2
)
]
R(r) = 0, (47)

and

d2Θ(θ)
dθ2

+ cot(θ)
dΘ(θ)

dθ

+
[
l(l + 1)− V2(θ)− m2

sin2 θ

]
Θ(θ) = 0 , (48)

with l(l + 1) being the separation constant. From now on we
shall focus our attention on Eq. (48). It is obvious that for
V2(θ) = 0, and upon changing variables fromθ to cos θ, it
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FIGURA 3. Wave functions for the first and third levels within the
hyperbolic Scarf potencial.

FIGURE 4. The non-central potentialV (r, θ), displayed here in its
intersection with thex = 0 plane, i.e. for r =

√
y2 + z2, and

θ = tan−1 y/z. The polar angle part of its exact solutions is ex-
pressed in terms of the Romanovski polynomials.

becomes the associated Legendre equation. Correspondingly,
Θ(θ) approaches the associated Legendre functions,

Θ(θ)
V2(θ)→0−→ Pm

l (cos θ) , (49)

an observation that will become important below.
In order to solve Eq. (48) we follow the prescription given

in Ref. 38 and begin by substituting the polar angle by the

new variable,z, introduced viaθ → f(z). This transforna-
tion leads to the new equation:

[
d2

dz2
+

[
−f ′′(z)

f ′(z)
+ f ′(z) cot f(z)

]
d
dz

+ [−V2(f(z)

+ l(l + 1)− m2

sin2 f(z)

]
f ′ 2(z)

]
ψ(z) = 0, (50)

with f ′(z)≡df(z)/dz, andψ(z) defined asψ(z)=Θ(f(z)).
Next, one requires the coefficient in front of the first
derivative to vanish, which transforms Eq. (50) into a1d
Schr̈odinger equation. This restrictsf(z) to satisfying the
differential equation:

f ′′(z)
f ′(z)

= f ′(z) cot f(z) , (51)

which is solved byf(z) = 2 tan−1 ez. With this relation and
after some algebraic manipulations, one finds that

sin θ =
1

cosh z
, cos θ = − tanh z , (52)

and consequently,

f ′(z) = sin f(z) = sech z. (53)

Equation (52) impliessinh z = − cot θ, or, equivalently,
θ = cot−1(− sinh z). Upon substituting Eq. (53) into
Eqs. (44), and (50), one arrives at

d2ψ(z)
dz2

+
[
l(l + 1)

1
cosh2 z

+ c tanh z
1

cosh z
−m2

]
ψ(z) = 0 ,

ψ(z) :def= Θ
(
θ = cot−1(− sinh z)

)

Θ(θ) :def= ψ
(
z = sinh−1(− cot θ)

)
. (54)

Taking into consideration Eqs. (7),(44), and (52), one real-
izes that the latter equation is precisely the one-dimensional
Schr̈odinger equation with the hyperbolic Scarf potential
where

l(l + 1) = −(b2 − a(a + 1)) , m2 = −εn = (a− n)2 ,

m > 0 , c = −b(2a + 1). (55)

Taking into account Eq. (9) above, the first Eqs. (55) is satis-
fied by

a = b = l(l + 1) . (56)

As long as the integer numberm satisfies

m = a− n = l(l + 1)− n > 0,
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then 1 ≤ m ≤ l(l + 1). In this way, the solution forΘ
becomes

Θ(θ) = ψn=l(l+1)−m

(
z = sinh−1(− cot θ)

)

= (1 + cot2 θ)−
l(l+1)

2 e−l(l+1) tan−1(− cot θ)

×R
(l(l+1)+ 1

2 ,−2l(l+1))

l(l+1)−m (− cot θ) . (57)

Therefore, the complete angular part of the solution is given
by

Θ(θ)Φ(ϕ)=ψn=l(l+1)−m

(
z=sinh−1(−cot θ)

)
eiεnϕ. (58)

From now on, we shall introduceZm
l (θ, ϕ), a new notation,

according to

Zm
l (θ, ϕ)=ψn=l(l+1)−m

(
z=sinh−1(− cot θ)

)
eiεnϕ, (59)

and refer toZm
l (θ, ϕ) as non-spherical angular functions. In

Fig. 5, we display two of the lowest|Zm
l (θ, ϕ)| functions

for illustrative purposes. A more extended sampler can be
found in Ref. 42. A comment is in order on|Zm

l (θ, ϕ)|. In
that regard, it is important to become aware of the fact al-
ready mentioned above that the Scarf II potential possesses
su(1, 1) as a potential algebra, a result reported by Refs. 9
and 34 among others. There, it was pointed out that the re-
spective Hamiltonian,H, equalsH = −C−1/4, with C be-
ing thesu(1, 1) Casimir operator, whose eigenvalues in our
convention arej(j−1) with j > 0 versusj(j +1) andj < 0
in the convention of [9, 34]. As a consequence, the bound
state solutions to Scarf II are assigned to infinite discrete,
irreducible unitary representations,{D+

j
(m′)(θ, ϕ)}, of the

SU(1, 1) group. TheSU(1, 1) labelsm′, andj are mapped
onto ours via

m′ = a +
1
2

= l(l + 1) +
1
2
,

j = m′ − n , m′ = j, j + 1, j + 2, .... (60)

meaning that bothj andm′ are half-integers. The represen-
tations are infinite because, for a fixedj value,m′ is bounded
from below tom′

min = j, but it is not bound from above.
In terms of theSU(1, 1) labels the energy rewrites as

εn = −(j − 1/2)2. The condition a > n translates now
asj > 1/2. As a result,Θ(θ) becomes

Θ(θ) = ψn=m′−j

(
sinh−1(− cot θ)

)

=
√

(1 + cot2 θ)−m′+1/2e−2b tan−1(− cot θ)

×R
(m′,−2b)
m′−j (− cot θ)

= D+
j=m+1/2

(m′=l(l+1)+1/2)(θ, ϕ)e−im′ϕ. (61)

Here we kept the parameterb general because its value
does not affect theSU(1, 1) symmetry. Within this con-
text, |ψm′−j

(
sinh−1(− cot θ

) | can be viewed as the abso-
lute value of a component of an irreducibleSU(1, 1) rep-
resentation [40,41] in terms of the Romanovski polynomials.
The|Zm

l (θ, ϕ)| functions are then images in polar coordinate
space of the|D+

j=m+1/2
(m′=l(l+1)+1/2)| components.

FIGURE 5. Graphical presentation of the non-spherical-
angular functions|Z1

1 (θ, ϕ)| (left), and |Z1
2 (θ, ϕ)| (right) to the

V2(r, θ) potential in Eq. (44). They portray in polar coordi-
nate space in turn the components|D+

j=3/2
(m′=5/2)(θ, ϕ)|, and

|D+
j=3/2

(m′=13/2)(θ, ϕ)| of the respective infinite discrete unitary
SU(1, 1) representation.

4.1. Romanovski polynomials and associated Legendre
functions.

It is quite instructive to consider the case of a vanishing
V2(θ), i.e. c = 0, and compare Eq. (54) to Eq. (7) forb = 0.
In this case

l = a , m2 = (l − n)2 , (62)

which allows one to relaten to l andm asm = l − n. As
long as the two equations are equivalent, their solutions dif-
fer at most by a constant factor. This allows us to establish a
relationship between the associated Legendre functions and
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TABLE I. Characteristics of the orthogonal polynomial solutions to the generalized hypergeometric equation.

Notion Symbol w(x) Interval Number of orth. polynomials

Jacobi P ν,µ
n (x) (1− x)ν(1 + x)µ [−1, 1] infinite

Hermite H(x) e−x2
[−∞,∞] infinite

Laguerre Lα,β(x) xβe−αx2
[0,∞] infinite

Romanovski R
(p,q)
n (x) (1 + x2)

−p
eq tan−1 x [−∞,∞] finite

the Scarf II wave functions. Considering Eqs. (24), and (33)
together with Eqs. (52), one findscot θ = − sinh z which
produces the following intriguing relationship between the
associated Legendre functions and the Romanovski polyno-
mials:

Pm
l (cos θ) ∼ (1 + cot2 θ)−

l
2 R

(l+ 1
2 ,0)

l−m (− cot θ) ,

l −m = n = 0, 1, 2, ...l. (63)

Substituting the latter expression into the orthogonality inte-
gral between the associated Legendre functions,

π∫

0

Pm
l (cos θ)Pm

l′ (cos θ)d cos θ = 0 , l 6= l′, (64)

results in the following integral:

π∫

0

(1 + cot2 θ)−
l+l′
2 R

(l+ 1
2 ,0)

l−m (− cot θ)R(l′+ 1
2 ,0)

l′−m

×(− cot θ)d cos θ = 0 , l 6= l′. (65)

Rewriting in conventional notations, the latter expression be-
comes

+∞∫

−∞

√
w(l+ 1

2 ,0)(x)R(l+ 1
2 ,0)

n=l−m(x)

×
√

w(l′+ 1
2 ,0)(x)R(l′+ 1

2 ,0)

n′=l′−m(x)
dx

1 + x2
= 0 , l 6= l′ ,

x = sinh z , l − n = l′ − n′ = m ≥ 0 . (66)

This integral describes orthogonality between aninfinite set
of Romanovski polynomials withdifferent polynomial pa-
rameters(they would define wave functions of states bound
in different potentials). This new orthogonality relationship
does not contradict the finite orthogonality in Eq. (21), which
is valid for states belonging tosame potential(equal poly-
nomial parameters). Rather, for different potentials, Eq. (21)
can be fulfilled for an infinite number of states. To see this, let
us consider for simplicityn = n′ = l−m, i.e., l = l′. Given
p = l+1/2, the condition in Eq. (21) defines normalizability
and takes the form

2(l −m) < 2
(

l +
1
2

)
− 1 = 2l , (67)

which is automatically fulfilled for anym > 0. The presence
of the additional factor of(1+x2)−1 guarantees convergence
also form = 0. Equation (66) reveals that, for parameters
attached to the degree of the polynomial, an infinite num-
ber of Romanovski polynomials can appear orthogonal, al-
though not precisely with respect to the weight function that
defines their Rodrigues representation. The study presented
here is similar to Ref. 43. There, the exact solutions of the
Schr̈odinger equation with the trigonometric Rosen-Morse
potential have been expressed in terms of Romanovski poly-
nomials (not recognized as such at that time), and also with
parameters that depended on the degree of the polynomial.
Also in this case, then-dependence of the parameters, and
the corresponding varying weight function make it possible
to satisfy Eq. (21) for an infinitely many polynomials.

5. Summary

In this work we presented the classification of the orthog-
onal polynomial solutions to the generalized hypergeomet-
ric equation in the schemes of Koepf–Masjed-Jamei [22], on
the one hand, and Nikiforov-Uvarov [7], on the other. We
found among them the real polynomials that define the solu-
tions of the bound states within the hyperbolic Scarf poten-
tial. These so called Romanovski polynomials have the re-
markable property that, for any given set of parameters, only
a finite number of them are orthogonal. In such a manner, the
finite number of bound states within Scarf II were mapped
onto a finite set of orthogonal polynomials of a new type.

We showed that the Romanovski polynomials also define
the angular part of the wave function of the non-central po-
tential considered in Sec. 4. Yet, in this case, the polynomial
parameters turned out to be dependent on the polynomial de-
gree. We identified these non-spherical angular solutions to
the non-central potential under investigation as images in po-
lar coordinate space of components of infinite discrete uni-
tary SU(1, 1) representations. In the limit of the vanishing
non-central piece of the potential, we established a non-linear
relationship between the Romanovski polynomials and the
associated Legendre functions. On the basis of the orthogo-
nality integral for the latter, we derived a new such integral
for the former.

The presentation contains all the details which to our un-
derstanding are essential for reproducing our results. By this
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means, we worked out two problems which could be used in
the class on quantum mechanics and on mathematical meth-
ods in physics as well and which allow us to practice perform-
ing with symbolic software. The appeal of the two examples
is that they simultaneously relate to relevant peer research.

The hyperbolic Scarf potential and its exact solutions are
interesting mathematical entities on their own, with several
applications in physics, ranging from super-symmetric quan-
tum mechanics over soliton physics to field theory. We expect
future research to reveal additional, interesting properties and
problems related to the hyperbolic Scarf potential and its ex-
act real polynomial solutions.
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