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In this work we report a study of the specific heat at normal pressure and at zero magnetic field in the 95%Ni-2%Mn-2%Al alloy near
its Curie temperature atTC = 463 K. The specific heat was measured by using high-resolution ac calorimetry technique (under modulated
temperature). Adjustments were made by using acP (T )-function near its Curie critical temperature,TC . ThecP (T )-functionality is a power-
serie expansions inα-critical exponent giving bycP (T )= ε−α(A0 + B0ε

−α + A1ε + B1ε
1+α), whereAi are the amplitudes andBi the

background contributions. The best values of fitting parameters are: forT < TC was obtainedα=0.34,A′0 = 0, B′
0 = 1.5, A′1 = 0, B′

1 = 1

with TC = 462.1 K and forT > TC was obtainedα=0.20,A0 = 0.48, B0 = −119.8, A′1 = 0, B′
1 = 0.27 for Tc = 464.0 K, showing

a slight similarity between the critical exponents whenε → 0− andε → 0+, respectively. In summary, we report that the critical exponent
α = 027 ± 007 is in the range accepted by international literature for other second-order phase transitions for ferromagnetic-paramagnetic
ordering (α=0.3). The characteristics of this system near TC are very similar to that of pure Ni.

Keywords: Specific heat;α-critical exponent; high-resolution ac calorimetry; alumel.

En el presente trabajo reportamos un estudio del calor especı́fico a presíon normal y campo magnético cero en la aleación 95%Ni-2%Mn-
2%Al cerca de su temperatura de Curie enTC = 463 K, El calor espećıfico se midío usando la t́ecnica de calorimetrı́a ac de alta resolución
(bajo temperatura modulada). Los ajustes se hicieron con la funcióncP (T ) cerca de la temperatura de CurieTC . La funcionalidad decP (T )
es una expansión en series en el exponente crı́tico α de la formacP (T ) = ε−α(A0 +B0ε

−α +A1ε+B1ε
1+α), dondeAi son las amplitudes,

Bi las contribuciones de base yε es la temperatura reducida, definida como (T − TC )/TC .
Los valores de los parámetros de ajuste fueron: ParaT < TC se obtuvoα′ = 0.34, A′0 = 0, B′

0 = 1.5, A′1 = 0, B′
1 = 1 conTc = 462.1 K

y paraT > TC se obtuvoα=0.20,A0 = 0.48, B0 = −119.8, A′1 = 0, B′
1 = 0.27 paraTC = 464.0 K, mostrando una ligera similitud

entre los exponentes crı́ticos cuandoε →0− y ε → 0+, respectivamente. En resumen, reportamos que el exponente crı́tico α = 0.27±0.07
est́a dentro del rango aceptado en la literatura internacional para una transición de fases ferromagnética-paramagnetica de segundo orden
(α = 0.3). Las caracterı́sticas de este sistema cerca deTC son muy similares al sistema nı́quel puro.

Descriptores: Calor espećıfico; exponente crı́tico α; calorimetŕıa de alta resolución (ac); alumel.

PACS: 68.35.Rh; 75.50.I.k; 75.10Hk

1. Introduction

Alumel is an alloy consisting of approximately 95 percent
nickel (Ni), 2 percent manganese (Mn), 2 percent aluminum
(Al) and 1 percent silicon (Si) that is used for type K-
thermocouples. Type K is the most common general purpose
thermocouple in the 73 K to 1500 K range. Sensitivity is ap-
proximately 41µV/K. Alumel has an electrical resistivity of
approximately 0.294µ·m.

The Curie temperature of Nickel isTC = 627 K while
the Ńeel temperature ofα-Manganese, which is antiferro-
magnetic, isTN = 95 K [1]. However, Alumel, due to its
high concentration of Nickel is ferromagnetic whose Curie
temperature is about 464 K. One of the striking feature of
the ferromagnetic-paramegnetic phase transition, for exam-
ple in Iron (Fe), whose Tc = 1 044 K, is the critical behavior
observed in its thermodynamics properties at zero magnetic
field, H = 0, because of the symmetry of a ferromagnet to re-
verses in the field. There is a characteristic signature of crit-
icality: The specific heat diverge and is infinite at the critical
temperature itself [2].

Another common features of the ferromagnetic materi-
als is that the magnetizationm(T ) belowTC is a decreasing
function of T and vanishes atTC . For T very close toTC , the
power laws behavior

m ≈ (TC − T )β

is observed, whereβ is called a critical exponent
(β=0.33±0.03) [3].

The specific heat for a system is specified by its energy
levels and is governed by the manner in which the internal
energy is distributed among them. The particles of the sys-
tem can have translational, rotational, vibrational motions,
and electronic energy levels, and each type of thermal mo-
tions contributes to the specified heat of the system. This
contribution gives the total specific heat obtained by various
experimental techniques: adiabatic and ac calorimetries.

In this paper, we used the technique of high-resolution ac
calorimetry to measure the specific heat at constant pressure
of alumel near its magnetic transition around 463 K and use
the approximation serial power function for the specific heat
as a function of temperatureT , cP (T ), to fit the experimental
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data. The aim is to study the critical behavior of the phase
transition nearTC [5].

The outline of the present paper is as follows: In Sec. 2
we present the theoretical details about phase transition and
experimental aspects are given in Sec. 3. The results are pre-
sented in Sec. 4 and some concluding remarks are given in
Sec. 5.

2. Theoretical details

The partition function Z of a material system can be written,
in first approximation, by a product of the partition functions
for the various contributions of the total energy,i.e.,

Z = ZtZrZvZe

whereZt, Zr, Zv, andZe are the contributions of the trans-
lational (t), rotational (r), vibrational (v), and electronic (e)
motions, respectively.

However, there is another thermal excitation which oc-
curs over a restricted range of temperatures and contributes
to the energetic of the system, thus, to the specific heat too.
At temperature much belowTC , the thermal energy is insuf-
ficient to cause many excitation, and at higher temperature
(T > TC), the levels are equally populated and small change
in energy is possible, while asT ∼ TC transitions can occur
spontaneously. Therefore, the specific heat is significant high
only in the regionT ∼ TC and is usually detected as a sharp
singularity.

To describe this behavior of a functionf [x] as it ap-
proaches a nonanalytical (“critical”) pointxC , it is introduced
the critical exponentλ defined by

f [x] ∼ (∆x)λ as ∆x = x− x → 0+ (1)

or

lim
∆x→0+

ln[f [x]]
ln[∆x]

= λ (2)

wheref [x] is a nonanalytic function.
The limit (2) does not imply thatf [x] is actually propor-

tional toxλ. Fisher [6] proposed three principal cases:

1. Pure power

f [x] = A(∆x)λf0[x] A = constant;

2. Simple case

f [x] = (∆x)λf0[x]

where

f0[x] = f0 + f1(∆x) + f2(∆x)2 + · · ·

is analytic in the neighbor ofx = xC ;

3. Complex case

f [x] = (∆x)λf0[x]

butf0[x] is constant atx = xC .

For our system, the specific heat exponentα is given by

Cp =
{

ε−α, ε → 0+

ε−α′ , ε → 0−
(3)

where

ε =
T − TC

TC

is the reduced temperature and fall into class 3,i.e., one can
expect to have the following behavior

Cp[T ] = ε−α(A0 + B0ε
α + A1ε + B1ε

1+α) (4)

where the amplitudesA and the backgroundB are smooth
functions.

3. Experimental details

Alternating Current heating Calorimetry, ACC [4], is a tech-
nique for studying phase transitions and generally used to
study the thermal behavior (thermal response function of the
sample as a function of temperature) of a very small quantity
–about 20 mg– of any substance of interest. The substance
under study is thermally coupled to a biggest mass called
“reservoir” through an inert gas such as helium. The “reser-
voir” is heated at a constant rate, due to thermal coupling, the
sample is heated similarly.

The sample is illuminated periodically with a rich source
of infrared light to produce small fluctuations in temperature
around the average temperature of the reservoir. Light heat-
ing reduces the electrical noise and the thermal inertia of the
sample holder, but hardly measures the amount of heat ab-
sorbed by the sample. This problem usually is solved by
normalizing the data with respect to absolute measurements
previously reported in the literature.

The measures are carried out in a frequency regime in
which the amplitude of fluctuations in temperature of the
sample is inversely proportional to the specific heat. The
sample is in tight-vacuum chamber, the entire active space
being an almost cylindrical cell 25 mm hight and approxi-
mately 20 mm in diameter. On one side of this cell there is a
heater that can deliver very precise amounts of heat, and on
the other side there is a carbon-type thermistor which mea-
sures and controls the temperature of the bath. The electrical
resistance of the heater is in the 100Ω range and the thermis-
tor has a resistance of approximately 1 MΩ at 0◦C.

Two 25 µm type-K thermocouples were attached on
the rear face of the sample for monitoring its average dc-
temperature and its induced temperature oscillations due to
the periodic absorption of a small amount of heat on its front
face. The sample, with the leads attached was mounted in
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the chamber, in a horizontal position and close to the thermal
bath, to a distance of∼ 0.2 mm. In illuminating the sample
chamber care had to be taken to avoid error due to electrical
junctions at different temperatures or to other spurious ther-
moelectrical effects resulting from stray light. Details of the
calorimetry set-up are given in Ref. 4. The sample of alumel
was obtained from commercial wire (Omega Inc.). The tech-
nique of high-resolution ac calorimetry [5,7] was used for
measures of specific heat.

4. Results and discussions

Figure 1 shows the experimental data of the thermoelectri-
cal power of the tested sample of alumel, which was taken to
verify the critical region of its ferromagnetic-paramagnetic
phase transitions (previously reported in Ref. 8).

Ac calorimetry data of the sample of alumel were pro-
cessed as described in Ref. 8 and in the Fig. 2 exhibits the
behavior of the specific heat cP (T ) as a function of abso-
lute temperatureT . The measured temperature range was 50
– 700 K for a external fieldH = 0, but only temperature
region is shown where the anomaly occurs for a better illus-
tration. The phase transition from ferromagnetic to paramag-
netic ordering is of the second-order type or continuous tran-
sition, atTC = 463 K, due to the fact that there is no latent
heat. The data exhibited a pronounced specific heat peak at
TC = 463 K that was significantly sharper than that reported
for Niquel [9]. This critical behavior observed near the Curie
temperature of Alumel are due to short-range correlations of
their magnetic moments. It is a credit to the calorimetry high
resolution that such details can be seen near the transition
temperature,TC . It should be stressed that the behavior of
cp(T) far fromTC in the low temperature region, is similar to
that of Ni [1]. In the same figure it is shown the theoretical
fitting using the expression (4).

FIGURE 1. Temperature dependence of the thermoelectrical power
of alumel close to the ferromagnetic-paramagnetic phase transition.

FIGURE 2. Temperature dependence of specific heat cP [T ] un-
der normal pressure as a function of temperature for an sample of
alumel, which shows a sharp peak atTC = 463 K.

The fitting parameters forT < TC were:

A′0 = 0; B′
0 = 1.5; A′1 = 0; B′

1 = 1

which it gives a fitting value forα′ = 0.34 and a temperature
TC = 462.1 K. The fitting parameters forT > TC were:

A′0 = 0.48; B′
0 = −191.8; A′1 = 0; B′

1 = 0.27

which it gives fitting value forα = 0.20 and a temperature
TC = 464.0 K. and FG-4 samples did not display saturation
at H = 27 kOe, this is due to the nanoparticles of magnetite
hosted in the fibers, as these present a superparamagnetic be-
havior and the saturation field is aroundH = 50 kOe [15].

5. Conclusions

The cP (T) data for the alumel alloy near the Curie tempera-
ture are characteristic of a critical behavior given by a singu-
larity whenT → TC either from below or aboveTC , indicat-
ing that correlations are present of all orders.

The fitting parametersα′ andα are not equal because the
range nearTC is very narrow and very sensitive to rounding-
off effect of the data.

The average fitting value reported byα = 0.27± 0.07 is
in the range of values reported by the international literature,
for the ferromagnetic-paramagnetic ordering [10].
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